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Abstract: Detecting failure cases is an essential element for ensuring the safety self-driving system.
Any fault in the system directly leads to an accident. In this paper, we analyze the failure of semantic
segmentation, which is crucial for autonomous driving system, and detect the failure cases of the
predicted segmentation map by predicting mean intersection of union (mIoU). Furthermore, we
design a deep neural network for predicting mIoU of segmentation map without the ground truth and
introduce a new loss function for training imbalance data. The proposed method not only predicts
the mIoU, but also detects failure cases using the predicted mIoU value. The experimental results
on Cityscapes data show our network gives prediction accuracy of 93.21% and failure detection
accuracy of 84.8%. It also performs well on a challenging dataset generated from the vertical vehicle
camera of the Hyundai Motor Group with 90.51% mIoU prediction accuracy and 83.33% failure
detection accuracy.

Keywords: failure detection; semantic segmentation; convolutional neural network (CNN); au-
tonomous driving system

1. Introduction

In recent years, with deep learning breakthroughs on vision applications [1–4], au-
tonomous driving vehicle technology has been commercialized. Especially, the convolu-
tional neural network (CNN) [5–10] shows an outstanding performance in several core
technologies and has achieved novel performance in various computer vision tasks such as
classification [11–15] and object detection [16–19]. In particular, the semantic segmentation
task [20–23] is indispensable in autonomous driving systems which gives detection and
identification information of objects.

Based on vision methods, advanced driver assistance systems make autonomous
driving possible. The National Highway Traffic Safety Administration [24] categorizes five
levels of developmental stages of autonomous driving technology:

• Level 0: The driver performs all operations.
• Level 1: Some functions are autonomous, but the driver’s initiative is required.
• Level 2: Many of the essential functions are autonomous, but driving still requires

attention.
• Level 3: This is an autonomous driving stage, but, when a signal is given in an

unexpected situation, the driver must intervene.
• Level 4: This is an autonomous driving stage that does not require a driver to board.

These levels can be divided into two main stages: Levels 0–2 represent the autonomous
driving assistance stage and Levels 3–4 represent the fully autonomous driving stage.
To achieve a Level 3 autonomous driving system, notifying the driver when an unex-
pected situation occurs is necessary, which needs failure detection system. In this paper,
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we focus on detecting failure case on semantic segmentation which is the main vision
recognition system.

1.1. Safety Problem of Real-World Application

When applying semantic segmentation networks to real-world applications for safety
issues, it is a problem that there are no clear criteria to judge failure cases. In other words,
allowing the system to detect failures is important for self-driving [25–27] in autonomous
driving systems. For example, predicted semantic segmentation map from neural network,
Figure 1 (right), displays the misrecognition of the sidewalk as a lane. If such misconception
occurs in the network of actual autonomous driving vehicles, it can function as a fatal flaw
which leads to serious accidents (e.g., fatality or car accident). Therefore, the function of
notifying them and handing over authority to drivers is essential when the driving system
has delivered the wrong results to drivers. To prevent such accidents, we propose a neural
network method by predicting the mean intersection of union (mIoU), which is a widely
used evaluation metric in the semantic segmentation task, indicating how accurately each
pixel of the image is classified.

Figure 1. Failure case of a semantic segmentation task: input image (left); ground truth segmentation map (middle); and
predicted segmentation map (right).

1.2. Background Theory

Before describing our proposed failure detection and mIoU prediction framework,
this section briefly reviews the fundamental theories related to the proposed method. We
first briefly examine the theory of deep learning and then explain the neural network
architecture that exhibits good image classification performance. Then, we review the
semantic segmentation network and failure detection network used in this paper.

1.2.1. Deep Neural Network

Deep neural network (DNN) is an artificial neural network consisting of several
hidden layers between the input and output layers which models complex nonlinear
relationships. Additional layers help convergence of the features by gradually assembling
lower layers.

Previous DNNs [28] have usually been designed as front-feed neural networks, but
recent studies have successfully applied deep learning structures for various applications
with standard error backpropagation algorithms [29,30]. Moreover, weights can be updated
using the stochastic gradient descent via the equation below:

4 wij(t + 1) = 4wij(t) + η
δC

δwij
, (1)

where η indicates learning rate and C denotes the cost function. The selection of the cost
function depends on the learning objectives and data.
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1.2.2. Convolutional Neural Network

While conventional machine learning methods extract hand-crated feature, CNN
needs minimal preprocessing. CNN consists of one or several convolutional layers with
additional weights and pooling layers. These structures allow the CNN to make full
use of the input data from a two-dimensional structure and train by using standard
backpropagation. CNN is used as a general structure in various imaging and signal
processing techniques and multiple benchmark results for standard image data. This
section details the structure and role of CNN.

Convolutional layers are the vanilla blocks of the CNN. As shown in Figure 2, the
network is divided into feature extracting part and classifying part. Feature extraction area
comprises several convolutional and pooling layers. The convolutional layer is an essential
element that applies a filter to the input data and reflects the activation function with an
optional pooling layer. After the convolutional layers extract features, the fully connected
layer (FCL) classifies the image using the extracted features. A flattening layer is placed
between the part that extracts the image features and the one that classifies the image.

Figure 2. An example of a convolutional neural network structure.

1.3. Research Objective and Contribution

This paper aims to predict mIoU of an image using semantic segmentation maps
and design a network to determine whether it belongs to a failure case. In this study, we
propose a two-stage network algorithm which evaluates the score to detect the failure
case for the image input. First, the encoder network Efficient Spatial Pyramid of Dilated
Convolutions for Semantic Segmentation (ESPNet) [31] extracts features for the image
and semantic segmentation map. Second, failure cases of the segmentation network are
detected by FCL for mIoU prediction of images through the proposed methods. As a result,
the proposed method can be used as a basis for a fully autonomous driving system to allow
self-diagnosis. Our main contributions can be summarized as follows:

• We secure safety by proposing a failure detection network for image segmentation.
• Our model simultaneously performs mIoU prediction and failure detection for a

single image.
• We propose a modified loss function to solve the data imbalance problem of the

generated ground-truth (GT) mIoU.
• The proposed model exhibits good performance not only on the Cityscapes dataset

but also on the Hyundai Motor Group (HMG) dataset.

The remainder of the paper is organized as follows. Section 2 describes the complete
process of our mIoUNet method and analyzes the structure of the model. Section 3 presents
the experimental results using various network structures and the various input channels.
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The challenge dataset verifies the robustness of the network using the surround-view
monitoring (SVM) camera road image provided by HMG. Finally, the paper ends with the
conclusion in Section 4.

2. Proposed Failure Detection Network

In this section, we propose a network called mIoUNet that predicts the mIoU for
images and detect failure. The learning pipeline of the proposed algorithm is as follows.
First, we fully explain the how the training data are generated. Secondly, we show the
optimized network structure that suits our purpose. Then, the details of CNN and FCL are
introduced including the activation function and loss function. Finally, modified the loss
function is introduced for failure detection task.

2.1. Data Generation

We define the terms used in this paper as follows. The GT segmentation map is ground
truth of a semantic segmentation example. The GT mIoU is calculated by comparing the
GT segmentation map with predicted segmentation map from the segmentation network.
An example can be seen in Figure 3. The right side of the figure shows a segmentation map
image which was generated using the ESPNet in Figure 3 (left), while the middle figure
shows the GT segmentation map. After extracting segmentation maps, GT mIoU values
are calculated in the form of a scalar value.

Figure 3. An example of an input image (left); ground-truth (GT) segmentation map (middle); and segmentation map (right).

2.2. Selection of the Convolutional Neural Network Structure

Our mIoUNet structure consists of a front part composed of the CNN, which performs
feature extraction, and a back part composed of FCL for failure detection. In this paper, we
propose an end-to-end network with sigmoid function at the end. Our main segmentation
network is ESPNet, which is a segmentation network of a reduction-split-transform-merge
structure using convolutional factorization. Similarly, mIoUNet uses the encoder part of
ESPNet to extract similar feature from same structure, as illustrated in Figure 4.

Figure 4. Network structure of ESPNet-C.
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2.3. Selection of the Fully Connected Layer Structure

In image classification, the structure of FCL is selected by referring to the experimental
results of the performance by changing number of layers and nodes [32]. To select the
best structure of mIoUNet, experiments were conducted with various layers and nodes
with the highest accuracy. Table 1 presents 10 different cases [32] of the FCL structures and
their results. CNN-2 structure is used, which is most similar to ESPNet-C. More details are
provided in Section 3.3.

Table 1. Classification accuracy with various fully connected layer (FCL) structures.

CNN-2

Output FCL Structure Classification Accuracy (%)

10 × 10 91.14
16 × 10 91.58
32 × 10 91.99
64 × 10 91.82

128 × 10 91.86
256 × 10 92.02
512 × 10 90.98
1024 × 10 91.54
2048 × 10 91.27
4096 × 10 87.51

FCL: fully connected layer.

2.4. Selection of the Activation Function

The Sigmoid function is used at the end of the FCL. As illustrated in Figure 5, the func-
tion has outputs value between 0 and 1; therefore, it is suitable for predicting mIoU values.

f (x) =
1

1 + e−x . (2)

Figure 5. Sigmoid activation function.

2.5. Selection of the Loss Function

The difference between the predicted mIoU and GT mIoU values obtained through
the model is defined as the loss, and the network tries to learn to by minimizing the loss.
Mean squared error (MSE) is selected to calculate the loss value between scalar values.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (3)

where yi denotes the predicted mIoU value and ŷi indicates the GT mIoU value.
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2.6. Modified Loss Function

In the initial version, mIoUNet was trained with MSE as a loss function, but prediction
for the testing set converged near 0.5. In other words, mIoUNet did not detect out of
range mIoU values. As a result of analyzing the data to determine the cause, imbalance
distribution of GT mIoU was composed, as depicted in Table 2.

As shown in Table 2, the GT mIoU value of the test set distributed between 0.4 and 0.6
was 394, 78.8% of the total data. Such cross imbalance on data made the model overfit the
prediction for mIoU values between 0.4 and 0.6. The MSE learning problem is that the data
are concentrated around 0.5; the tendency is to follow the average simply to minimize the
MSE loss value. Therefore, the loss value was modified as follows for learning.

Table 2. Cityscapes test set—distribution of GT mIoU.

GT mIoU 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–1

Numbers 0 4 16 47 210 184 38 1 0
Fraction (%) 0 0.8 3.2 9.4 42 36.8 7.6 0.2 0

The new modified loss corrects the overfitting problem by minimizing the effect on
outliers for robustness in normal networks. When the difference between the actual and
scalar value is less than 0.1, the transformed loss value is squared by the initial loss value,
and, when it is greater than 0.1, the original loss value is square-rooted. As shown in
Figure 6, in the case of a loss calculated less than the value of 0.1 as the error margin, a
smaller loss value is used. In the opposite case, a larger loss value is used to allow the
optimizer to backward error:

Modified loss function→
{√

loss, (|loss| ≥ 0.1)
loss2, (|loss| < 0.1).

(4)

Figure 6. Modified loss function.

2.7. Final Network Structure

Our proposed model structure is shown in Figures 7 and 8. Figure 7 depicts the train-
ing, validation, and test process of the pipelines. Figure 8 presents the overall architecture
of proposed model. Network details such as layer structure are described in Table 3.

In the case of semantic segmentation, the intersection of union (IoU) value becomes
the denominator of the number of pixels corresponding to any class and the number of
pixels accurately predicted for that class. The average value is called mIoU. In this paper,
we compute the mIoU between the GT segmentation map and the segmentation map
obtained via ESPNet to obtain the GT mIoU value.
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Figure 7. Pipelines of our proposed network.

Figure 8. Overall architecture of our proposed network.
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Table 3. mIoUNet architecture details.

mIoU-Net CNN Network
Layer Calculation Input C Output C Kernel Size Stride Padding DF Output Size

Input 3 × 1024 × 512
C_1 3 (Input) 8 3 2 1 1 8 × 256 × 512

Level_1 P_1 3 (Input) 3 2 3 × 256 × 512
Cat_1 8(C_1), 3(P_1) 11 × 256 × 512

BN + RU_1 11 11 × 256 × 512

C_2 11(BN +
RU_1) 6 3 2 1 1 6 × 128 × 256

DC_1 6 (C_2) 8 3 2 1 8 × 128 × 256
DC_2 6 (C_2) 6 3 2 2 6 × 128 × 256

Level_2_0 DC_3 6 (C_2) 6 3 2 4 6 × 128 × 256
DC_4 6 (C_2) 6 3 2 8 6 × 128 × 256
DC_5 6 (C_2) 6 3 2 16 6 × 128 × 256
Cat_2 8,6,6,6,6 (DC_1,2,3,4,5) 32 × 256 × 512

BN + RU_2 32 32 32 × 256 × 512

C_3 32 (BN +
RU_2) 6 1 1 1 1 6 × 128 × 256

DC_6 6 (C_3) 8 3 2 1 8 × 128 × 256
DC_7 6 (C_3) 6 3 2 2 6 × 128 × 256

Level_2 DC_8 6 (C_3) 6 3 2 4 6 × 128 × 256
DC_9 6 (C_3) 6 3 2 8 6 × 128 × 256

DC_10 6 (C_3) 6 3 2 16 6 × 128 × 256
Cat_3 8,6,6,6,6 (DC_6,7,8,9,10) 32 × 256 × 256

BN + RU_3 32 32 32 × 128 × 256
P_2 3 3 2 × 2 3 × 128 × 256

Cat_4 32,32,3(BN+RU_2,3,P_2) 67 × 128 × 256

C_4 67 (Cat_4) 12 3 2 1 1 12 × 64 × 128
DC_11 12 (C_4) 16 3 2 1 16 × 64 × 128
DC_12 12 (C_4) 12 3 2 2 12 × 64 × 128

Level_3_0 DC_13 12 (C_4) 12 3 2 4 12 × 64 × 128
DC_14 12 (C_4) 12 3 2 8 12 × 64 × 128
DC_15 12 (C_4) 12 3 2 16 12 × 64 × 128
Cat_5 16,12,12,12,12 (DC_11,12,13,14,15) 64 × 64 × 128

BN + RU_4 64 64 × 64 × 128

C_5 64 12 1 1 1 1 12 × 64 × 128
DC_16 12 (C_5) 16 3 2 1 16 × 64 × 128
DC_17 12 (C_5) 12 3 2 2 12 × 64 × 128
DC_18 12 (C_5) 12 3 2 4 12 × 64 × 128

Level_3 DC_19 12 (C_5) 12 3 2 8 12 × 64 × 128
DC_20 12 (C_5) 12 3 2 16 12 × 64 × 128
Cat_6 16,12,12,12,12 (DC_16,17,18,19,20) 64 × 64 × 128

BN + RU_5 64 64 64 × 64 × 128
Cat_7 64,64 (BN+RU_4,BN+RU_5) 128 × 64 × 128

BN + RU_6 128 128 128 × 64 × 128

PW Conv 128 20 1 20 × 64 × 128
Flatten 1 × 8192
FC_1 8192 256
FC_2 256 20
FC_3 20 1

Sigmoid 1 1 1

C, convolution; P, padding; Cat, concatenation; BN, batch normalization; RU, ReLU; DC, dilated convolution; PW, pointwise convolution;
FC, fully connected layer; Input C, input channel; Output C, output channel; DF, dilated factor.
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3. Experimental Results

We conducted extensive experiments to demonstrate the performance of our proposed
network. For performance evaluation, the prediction accuracy of the mIoU value of the
image in the testing set was calculated, and the accuracy of the failure detection was
calculated through the predicted mIoU value. The mean absolute error (MAE) was used as
the evaluation metric to calculate the error because, when calculating positive and negative
numbers, the meaning may be canceled out.

The MAE is calculated as follows:

MAE =
1
n

n

∑
i=1
|(yi − ŷi)|, (5)

where yi denotes the predicted mIoU value and ŷi indicates the GT mIoU value.
The mIoU prediction accuracy is calculated as follows:

mIoU prediction accuracy = (1−MAE)× 100. (6)

Failure detection accuracy is calculated as follows. The precision, recall, and F1-
score values are considered simultaneously to determine whether the detection result is
reasonable. The method of calculating the performance indicators can be easily understood
in Figure 9.

Figure 9. Confusion matrix.

The results of the experiment are classified into each situation according to the follow-
ing criteria: True positive (TP) and true negative (TN) are the cases when the performance
of ESPNet is well predicted by mIoUNet. In more detail, TP is defined when the mIoU
prediction value and the GT mIoU value are greater than a threshold value of 0.5 where TN
is smaller than 0.5. In both cases, the mIoUNet successfully detects not only the failure case
but also success case for ESPNet. On the other hand, false positive (FP) and false negative
(FN) are when mIoUNet fails to predict the failure or success case of ESPNet. FP is defined
as the mIoU prediction value is larger than 0.5, but the GT mIoU prediction value is less
than 0.5. On the contrary, FN is defined as the mIoU prediction value is smaller than 0.5,
but the GT mIoU prediction value is greater than 0.5. In both cases, we define that the
mIoUNet fails to detect properly the failure cases and success cases.

The evaluation metrics for failure case detection are calculated as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
, (7)

Precision =
TP

TP + FP
, (8)
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Recall =
TP

TP + FN
, (9)

F1 = 2× Precision× Recall
Precision + Recall

. (10)

3.1. Experimental Setup

In this subsection, we analyze our experimental results to evaluate the performance of
the proposed algorithm on Cityscapes and Hyundai Motor Group (HMG) dataset. After
each convolutional layer in the CNN, a batch normalization [33] and a rectified linear
unit [5] layer are applied. Adam optimizer method [34] is used for training with batch size
of 12 for 30 epochs. The size of the network input was set to R1024×512×3. Initial learning
rate starts from 0.0001 and halving every 10 epochs. Dropout [35] is applied at a ratio
of 0.5. All experiments were conducted on an NVIDIA Tesla V 100 implemented with
PyTorch library.

3.2. Datasets

Two datasets were used in the experiment. The first is the Cityscapes dataset, a widely
used segmentation dataset, which includes 2975 images for the training/validation set and
the testing set contains 500 images. The second, vertical image, dataset for the road area
was obtained by attaching an SVM camera to an actual vehicle from HMG. It consists of
863 images in the training/validation set and 216 in the testing set. To check the network
robustness, we applied our method to rain/haze images and real-world road images,
which are treated as different domains.

3.3. Experimental Results
3.3.1. Quantitative Results

Various FCL structures were applied to predict mIoU values and used in our task.
According to the various FCL structures, the evaluation indicators are as follows: selecting
the most efficient model, mIoU prediction accuracy, number of parameters, and run time.

Similar to the image classification in [32], as the number of nodes in the FCL increases,
the mIoU prediction accuracy becomes higher. However, real-time detection must be
guaranteed. Therefore, 256-20-1, a structure with high accuracy that does not require a
run time of 1 s, was selected. The evaluation indices obtained using the selected network
structure are shown in Table 4. The mIoU prediction accuracy was calculated using (5)
and (6).

Table 4. Mean intersection of union (mIoU) prediction accuracy and run time of various fully
connected layer (FCL) structures.

FCL Structure mIoU Predicition Accuracy (%) Params (M) Run Time (s)

10 × 20 × 1 93.08 172.6 0.084
16 × 20 × 1 93.06 270.9 0.094
32 × 20 × 1 93.17 533.1 0.122
64 × 20 × 1 93.10 1057.5 0.194

128 × 20 × 1 93.01 2106.2 0.318
256× 20 × 1 93.21 4203.5 0.558
512 × 20 × 1 93.32 8398.4 1.048
1024 × 20 × 1 93.14 16,788.1 2.02
2048 × 20 × 1 93.24 33,567.5 4.038
4096 × 20 × 1 93.25 67,126.2 7.76

FCL: fully connected layer. mIoU: mean intersection of union.

Experiments were conducted in two directions using the selected network structure:

• Additional information: Additional information is learned by increasing the number
of channels to improve prediction performance. We experimented with the cases
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of RGB, RGB hue, and RGB segmentation (RGBSeg) to observe the difference when
learning additional information.

• Real-time application: The image size was reduced and trained to secure real-time
performance.

In adding one more channel with additional information, the accuracy improved
when adding a hue channel corresponding to the color and adding a segmentation map.
The increase in run time due to the increased network parameters as the channel was
added was insignificant. We decided to use an input image with four RGB channels and a
segmentation map for the best results (Table 5).

Table 5. mIoU prediction accuracy for different input channels.

Input Image mIoU Predicition Accuracy (%) Params (M) Run Time (s)

RGB (3) 91.95 4203.5 0.548
RGBhue (4) 93.1 4203.6 0.558
RGBSeg (4) 93.21 4203.6 0.558

mIoU: mean intersection of union.

After fixing the input image with RGBSeg with four channels, the input size was
adjusted to reduce the network parameters. The experiments were conducted by reducing
the existing 1024 × 512 input image to two times and four times. As the computation
amount was reduced, the run time was similarly reduced with a real-time application, but
the accuracy also decreased (Table 6).

Table 6. mIoU prediction accuracy for different input sizes.

Input Image Size mIoU Predicition Accuracy (%) Params (M) Run Time (s)

1024 × 512 93.21 4203.6 0.558
512 × 256 92.05 1057.8 0.206
256 × 128 92.55 271.4 0.009

mIoU: mean intersection of union.

As expected, when the image size was the largest, the accuracy was highest, and,
when the image size was halved, the accuracy decreased by about 1.2%. The detection
results of the limit situations according to each input size of the image are listed in Table 7.

Table 7. Failure detection result for the selected network structure.

Input Image Size mIoU Predicition Accuracy (%) Precision Recall F1-Score

1024 × 512 84.8 0.818 0.902 0.856
512 × 256 70.0 0.695 0.709 0.702
256 × 128 55.4 0.0 0.554 0.0

The accuracy of failure detection significantly decreased as the input size decreases.
However, as presented in Table 7, the precision, recall, and F1-score values were calculated
to determine why the mIoU prediction accuracy was higher than 512 × 256. As a result
of checking the value, the image size was reduced so much that the network could learn
much less, and training was performed to reduce the loss function. Therefore, all testing
set images were recognized as failures due to overfitting on most GT mIOU values. In
addition, when comparing the results for images of size 1024 × 512 and 512 × 256, the
accuracy difference is almost 15%. Although the run time differed by about 2.7 times, the
detection accuracy was significantly lower; therefore, it was not efficient to reduce the
input size of the image to provide real-time characteristics.

The accuracy of MSE loss function and the accuracy of modified loss function differ
as follows (Table 8). As a result of comparison, the loss function that fits well with the
characteristics of unbalanced data was used to confirm 4.6% accuracy improvement for
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failure detection and 2.3% for mIoU prediction. The mIoU prediction accuracy is obtained
using (5) and (6). Failure detection accuracy was calculated using (7).

Table 8. Failure detection and mIoU prediction accuracy for the different loss function on
Cityscape dataset.

Loss Function Failure Detection Accuracy (%) mIoU Prediction Accuracy (%)

Mean squared error 80.2 90.9
Modified loss function 84.8 93.21

3.3.2. Qualitative Results

This section shows examples of mispredicted Cityscapes dataset images among the
results classified by the mIoUNet. The qualitative test results show the input image, GT
segmentation map, and segmentation map for the testing set at the same time, as well as
the GT mIoU, mIoU prediction, mIoU error value and failure detection result of the image.

False-Negative Image

Figure 10 presents examples of results classified as false-negative images. Figure 10
(left) displays input images, and Figure 10 (middle) displays segmentation maps. Out of
the 500 images, 27 images were detected. The false negative refers to when the GT mIoU
is greater than 0.5 and the mIoU prediction is less than 0.5. The MAE values for mIoU of
these images are as follows.

Figure 10. Examples of false-negative images in the Cityscapes dataset.
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If the network is used for the actual autonomous driving function, convenience can be
increased by allowing the MAE value that defines the limit situation to be set according to
users’ convenience.

Table 9 demonstrates that false-negative images have a small error. In particular, the
average error was 0.075, which is smaller than the error value of 0.1, which is defined as
the failure cases.

Table 9. Mean absolute error (MAE) of false-negative images in the Cityscapes dataset.

Number of Images Average MAE Min MAE Max MAE

27 0.075 0.005 0.172

False-Positive Image

Figure 11 is an example of a result identified as a false-positive image. The first column
of Figure 11 depicts the input images, and the second column of Figure 11 depicts the
segmentation maps. Total 42 from 500 samples. The false-positive case is when the GT
mIoU is less than 0.5, and the mIoU prediction is greater than 0.5. The MAE values for the
mIoU of these images are as follows.

Figure 11. Examples of false-positive images in the Cityscapes dataset.

Table 10 demonstrates that false-positive images have larger error values than false-
negative images. The average error of the images was calculated as 0.045, and the max
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error was 0.5. To determine the cause, the images that make the average error higher are
classified separately.

Table 10. Mean absolute error (MAE) of false-positive images in the Cityscapes dataset.

Number of Images Average MAE Min MAE Max MAE

42 0.15 0.045 0.501

Failure Cases

Figure 12 presents six images with large error values. The first column of Figure 12
displays the input images and the second column of Figure 12 displays the segmentation
maps. First, some cases had many pixels in the image that were not considered a class in the
segmentation map. In the semantic segmentation process on the right side of each picture,
the area shown as black is the area deduced as pixels with no class. This dramatically
decreases the GT mIoU value when calculating the mIoU value. This phenomenon is solved
by randomly assigning classes by handling exceptions during the semantic segmentation
inference or by inference using a better semantic segmentation network. Second, there are
few pixels in the general roadway area in the image. For example, one can see narrow roads,
roads with severe curvature and alleyways with many other buildings and structures. This
problem can be solved by assigning more weight to pixels corresponding to classes, such
as roads, people, and obstacles, which are essential in safe driving when the network is
learning.

Figure 12. Examples of failure-case images in the Cityscapes dataset.

3.4. Experimental Results on the Rain/Haze Dataset

Experiments were conducted with images from the rain/haze composite version of
the Cityscapes dataset (Figure 13). This can be viewed in the same domain but in a different



Appl. Sci. 2021, 11, 1870 15 of 21

environment. The quantitative test result is the average of all the result values for the
testing set. The qualitative test results show the input image, GT segmentation map, and
segmentation map for the testing set at the same time, as well as the GT mIoU, mIoU
prediction, mIoU error value, and failure detection result of the image.

Figure 13. Examples of failure-case images in the Cityscapes rain/haze dataset.

3.4.1. Quantitative Results

The official RainCityscapes dataset [36] is composed of 66 images with different rain
and haze versions. The experiments confirm that no significant difference exists based on
RainCityscapes. We randomly used images corresponding to the various hyperparameters
of the dataset in the experiments. mIoUNet detected 14 of 66 images as limit situations.
Although a slight performance decline occurred due to the effects of rain and haze, the
model is generally robust to other environments. mIoU prediction accuracy and the Failure
detection accuracy for rain/haze dataset are shown in Table 11.

Table 11. mIoU prediction and failure detection accuracy for RainCityscapes.

MIoU Acc (%) FD Acc (%) Params (M) Run Time (s)

90.70 78.7 4203.6 0.558
mIoU, mean intersection of union; FD, failure detection.
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3.4.2. Qualitative Results

Examples of images detected as failure cases are presented in Figure 13. These im-
ages are also detected as failure cases when there are few road areas or many obstacles
and buildings.

3.5. Experimental Results on the DeepLabV3+ Model

We experimented with DeepLabV3+ [20] to ensure that the proposed method is also
applicable to other semantic segmentation models. We conducted an experiment to ensure
that performance is maintained even when using GT mIoU values generated by other
segmentation models after fixing the structure of the network, which is the second step of
our network structure. Table 12 represents the distribution of GT mIoU values generated
using DeepLabV3+ models.

The results of the learning using MSE and the modified loss function are shown
in Table 13. As the shown in the table, the proposed loss function shows improved
performance, but not as much as using ESPNet in Table 8. This is likely because the
distribution of GT mIoU using DeepLabV3+ models has lower variance than that of
ESPNet. However, a slight performance improvement was shown in the accuracy of failure
detection and mIoU predication. We confirm that the proposed loss function not only
results in significant performance improvements in unbalanced data, but also performs
well in data from other distributions.

Table 12. Distribution of the ground truth (GT) mean intersection of union (mIoU) generated by DeepLabV3+.

GT mIoU 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–1

numbers 0 1 7 10 85 225 145 25 2
fraction (%) 0 0.2 1.4 2 17 45 29 5 0.4

Table 13. Failure detection and mIoU prediction accuracy for the different loss function for the
Cityscape dataset with DeepLabV3+.

Loss Function Failure Detection Accuracy (%) mIoU Prediction Accuracy (%)

Mean squared error 90.8 78.9
Modified loss function 91.7 80.8

3.6. Experimental Results on the Challenging Dataset

We experimented with HMG dataset, which has a different viewpoint from Cityscapes.
This dataset used a SVM camera road image dataset. It consists of 1079 road images
acquired by an SVM camera attached to a vehicle, provided by Hyundai Motor Group.
The experimental environment is the same as previously described. However, the last of
the FCL is set to 12 because the number of segmentation classes is 12. Training set and
validation set comprised 80% (863 images), and the remaining 20% (216) of the images were
used as the testing set. Considering that the total number of images is 1079, which is less
than that of the Cityscapes dataset, the learning rate was reduced by half every 50 epochs
with 150 total epochs of training. The GT mIoU value distribution of HMG dataset was
composed as depicted in Table 14.

Table 14. HMG testing set—distribution of the ground truth (GT) mean intersection of union (mIoU).

GT mIoU 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–1

numbers 0 0 4 17 27 43 54 61 10
fraction (%) 0 0 1.8 7.8 12.5 19.9 25 28.2 4.6
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3.6.1. Quantitative Results

In the case of HMG dataset, we experimented with the use of loss function as MSE
and the application of modified loss function (Table 15). The table shows that using the
modified loss function gives better performance on both Cityscapes and HMG dataset.

Table 15. Failure detection and mIoU prediction accuracy for the different loss function for the
Hyundai Motor Group (HMG) dataset.

Loss Function Failure Detection Accuracy
(%)

mIoU Prediction Accuracy
(%)

Mean squared error 79.8 88.21
Modified loss function 83.3 90.51

The results of different experiments on the number of input channels are shown in
Table 16.

Table 16. Mean intersection of union (mIoU) prediction accuracy for different inputs for the Hyundai
Motor Group (HMG) dataset.

Input Image mIoU Prediction
Accuracy (%) Params (M) Run Time (s)

RGB (3) 86.42 2525.5 0.33
RGBhue (4) 88.38 2525.6 0.34
RGBSeg (4) 90.51 2525.6 0.34

mIoU, mean intersection of union.

Due to the dataset characteristics, it is necessary to change mIoU value to set it as the
failure case. In addition, 0.6 was set as the threshold value of the mIoU corresponding to
the failure case, where all performance indicators are generally good as following Table 17.

Table 17. Failure detection results of the selected network structure for the Hyundai Motor Group
(HMG) dataset.

Threshold MIoU Accuracy (%) Precision Recall F1-Score

0.6 75.46 0.775 0.806 0.791
0.7 83.33 0.707 0.829 0.764
0.8 87.5 0.125 0.333 0.182

3.6.2. Qualitative Results

This section presents examples of mispredicted HMG dataset images among the
results classified by mIoUNet.

False-Negative Image in the HMG Dataset

The first column of Figure 14 depicts the input images, and the second column of
Figure 14 depicts the segmentation maps. In the case of false-negative images (Figure 14),
many images were taken during the day, and the degree of light dispersion was large
within one image. For example, images with shadows and images with lights shining on a
tunnel were classified.
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Figure 14. Examples of false-negative images on the Hyundai Motor Group (HMG) dataset.

False-Positive Image in the HMG Dataset

The first column of Figure 15 presents the input images, and the second column of
Figure 15 presents the segmentation maps. In the case of false-positive images, many
images were taken at night, and the images with high light dispersion were detected. The
difference from the false-negative image is that many images were detected when the edge
information, such as road markers or lanes, was not adequately visible or was in the road
area. To summarize the results, the proposed model has a problem in that the mIoU cannot
be accurately predicted when the light change is considerable in the vertical image of the
road. However, the qualitative evaluation results reveal that using additional information,
such as edges, can increase prediction accuracy.
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Figure 15. Examples of false-positive images on the Hyundai Motor Group (HMG) dataset.

4. Conclusions

In the image recognition system of an autonomous vehicle, for safety, it is crucial
for the system to judge the failure cases autonomously, which is a standard for Level
3 autonomous driving. This paper proposes failure detection network for road images
segmentation using mIoU. Our mIoUNet uses CNN and FCL, which are commonly used
in the existing classification network structure.

The results on the Cityscapes dataset reveal 93.21% mIoU prediction accuracy and
84.8% failure detection accuracy. As a challenging task, HMG’s SVM camera acquisition
dataset, which is taken from different viewpoints, demonstrated 90.51% mIoU prediction
accuracy and 83.33% failure detection accuracy.

As a result of experimenting with many different FCL structure versions, an efficient
256 × 12 × 1 FCL structure with high accuracy and fast inference speed is implemented
and assessed with a model trained using a modified loss function. Performance of the
network improved due to an increase in the number of input channels. This phenomenon
means additional information is provided and detecting failure situations can be improved.

Finally, as a result of analyzing pictures with terrible error values, we observed that
the proposed model successfully detects failure cases. We note the possibility that the
performance of the proposed network can be improved according to the performance
of semantic segmentation that creates the GT mIoU. This result suggests that a more
accurate and robust semantic segmentation model results in better performance of the
proposed model.
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Although it is meant to detect failure cases in road images in autonomous driving, the
proposed method only evaluated the reliability of single images. We aim to study a failure
detection network that can predict the reliability of each pixel in an image as future work.
Lightening the network structure to ensure real-time performance can also be considered
as a future work.
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