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Abstract: Cement stabilized soil is one of the commonly used as ground reinforcement solutions
in geotechnical engineering. In this study, the main object was to apply three machine learning
(ML) methods namely gradient boosting (GB), artificial neural network (ANN) and support vector
machine (SVM) to predict unconfined compressive strength (UCS) of cement stabilized soil. Soil
samples were collected at Hai Duong city, Vietnam. A total of 216 soil–cement samples were mixed
in the laboratory and compressed to determine the UCS. This data set is divided into two parts of the
training data set (80%) and testing set (20%) to build and test the model, respectively. To verify the
performance of ML model, various criteria named correlation coefficient (R), mean absolute error
(MAE) and root mean square error (RMSE) were used. The results show that all three ML models
were effective methods to predict the UCS of cement-stabilized soil. Amongst three model used in
this study, optimized ANN model provided superior performance compare to two others models
with performance indicator R = 0.925, RMSE = 419.82 and MAE = 292.2 for testing part. This study
can provide an effective tool to quickly predict the UCS of cement stabilized soil with high accuracy.

Keywords: gradient boosting; artificial neural network; support vector machine; feature impor-
tant analysis

1. Introduction

Ground under the foundation is an important part, which has the effect of bearing
most or all of the load on the building. The presence of soft soil layers under the foundation
can cause problems for buildings [1]. However, in recent decades, the urban population is
increasing rapidly, increasing the need for infrastructure, so soft ground areas are also stud-
ied for the construction of buildings. These soils are often characterized by high plasticity,
high void ratio and low strength [2]. Soft soil can be reinforced by various methods depend-
ing on specific conditions [3], such as mechanically stabilized earth (MSE) embankments [4],
granular or sand compaction piles [5], vertical drains [6] and the lime/cement deep mixing
method [7]. In another study, YI Oh and EC Shin used pile reinforcement revetments and
ground net reinforcement on soft ground to reduce deflection settlement [8]. Among the
soft soil reinforcement methods, the cement-stabilized sandy soil method has been used for
many years [9,10]. The cementation of sandy soil can increase the hardness, shear strength
and compressive strength of the material [9]. Many researchers have investigated the
mechanical properties of cement-treated soil by various methods. For example, Changizi
and Haddad [11] ran a series of unconfined compression tests and direct shear tests, their
studies have shown that the unconfined compressive strength (UCS) and soil adhesion
will increase when the nanosilica content increases. In addition, using the unconfined
compression tests and the California bearing ratio (CBR) tests, Ghasabkolaei et al. [12] and
Choobbasti et al. [13] also concluded similarly about the positive relationship between UCS
value and nanosilica content that is in the composition of cement. In many other studies,
the authors also build experimental models to predict the strength of cement stabilized soft
ground [14].
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Based on the experimental results, Miura et al. [15] gave the experimental equations to
calculate UCS of high water content cement stabilized clay based on the ratio of cement and
water. In addition, Horpibulsuk et al. [16] have developed a standardized experimental
model to predict cement stabilized soil strength based on Abram’s law, and at the same
time consider the cement–water ratio as the main parameter. Last but not least, a model
equation to calculate the cement content required to reach a desired strength, which scientist
Horpibulsuk et al. [17] have drawn from the results of experiments on soft clay mixed
cement and considering the ratio of water–cement is a microstructural parameter.

Through many studies it can be found that the UCS value is an important parameter
to evaluate the bearing capacity of cement-stabilized soil [3,9]. However, the UCS value
is mainly determined by experimental studies and experimental equations. However,
the experimental method often requires a large number of samples, it is expensive and
time-consuming [18]. Moreover, the experimental equations often have to be based on
approximate hypotheses, so errors still exist [16]. In addition, the soil properties in each
place are so different, it is difficult to apply the general experimental formulas.

In recent years, artificial intelligence and machine learning models are used more and
more widely, many scientists in the field of geology apply these models to predict the UCS
value of soil stabilized with cement. Of particular note is the study of Narendra et al. [19].
They built a genetic programming model GP to predict the UCS value of red earth (CL),
brown earth (CH) and black cotton soil (CH) stabilized with cement. In addition, the
algorithms ANN and SVM are also used to predict unconfined compressive strength of
cement stabilized soil [18,20] these models show high accuracy, and cost savings compared
to experimental methods [18].

In this study, the main object is to apply three machine learning (ML) methods namely
gradient boosting (GB), artificial neural network (ANN) and support vector machine
(SVM) to predict unconfined compressive strength of cement stabilized soil. The model
architectures were optimized then using the Monte-Carlo method to model and consider
the randomness of the data division. To verify the performance of the ML model, different
criteria named correlation coefficient (R), mean absolute error (MAE) and root mean
square error (RMSE) were used. The results show that the optimized ML models are an
efficient and stable method to predict the unlimited compressive strength of soil–cement
mixing piles.

2. Significance of the Research Study

Accurately predicting the UCS of cement-stabilized soil is of crucial important because
of many possible advantages and contributions to foundation reinforcement. Approaches
in the available literature still face some limitations, for instance, the lack of dataset sam-
ples (Suman et al. [18] with 58 samples; Das et al. [20] with 55 samples and Hoang-Anh
Le et al. [21] with 118 samples), accuracy assessment and improvement of the ML ap-
proaches. Therefore, the contribution of the present study could be highlighted through the
following ideas: (i) an unpublished large data set include 216 experimental tests; (ii) a com-
parison of 3 ML algorithms, namely GB, ANN and SVR, which model architectures were
optimized using random search technique; (iii) the performance of ML algorithms is eval-
uated under the presence of random splitting dataset, which could truly find out the
efficiency of ML algorithms and (iv) a sensitivity analysis is performed to reveal the role of
each input parameters in predicting the UCS of cement-stabilized soil.

3. Data Collection and Preparation
3.1. Experimental Measurement of UCS of Cement-Stabilized Soil

In this study, a database containing 216 soil samples were collected at Tran Nguyen
Han street, Thanh Binh district, Hai Duong city, Vietnam (Figure 1). Soil samples were
collected at two −2.0 m and −4.0 m depth, in three boreholes. Those boreholes were made
with 10 m distance from each other. Soil samples were collected by pressing a cylinder into
the soil block at the boreholes, and then covered with a moisture-proof bag to keep original
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water content (Figure 2). Collected soil were stored and transported by boxcar from the
collecting site to the laboratory.
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Soil parameters was analyzed, evaluated and processed through specific stages: mois-
ture content tests; wet density tests; mix soil cement; forming and curing of specimen and
then unconfined compression tests were performed using specialized equipment (Figure 3).
Experimental results obtained the relationship of axial stress–strain curves (Figure 4) and
the UCS of the samples were defined as destructive compressive axial stress. An example
of axial stress–strain curves are given in Appendix B (Figure A1).

It is important to note that three kinds of general cement in the north of Vietnam were
used for the cement mixing test, including Vissai cement, Chinfon Hai Phong cement and
Nghi Son cement. A cement mixing ratio (i.e., the amount of cement in q m3 of the mixture)
was applied to 100 kg/m3, 150 kg/m3 and 200 kg/m3. The specimens were cured during
7 days and 28 days at the indoor and outdoor condition. With the indoor curing condition,
the specimens were covered with a sealant to prevent water evaporation from the specimen
and the specimen was placed in the curing container. On the other hand, outdoor curing
of specimens were placed in a room without any controlled intern of temperature and
humidity, and without the sealant.
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3.2. Data Preparation

It is known that the UCS values depend on a large number of parameters. In this
study, factors that are important in the UCS of the soil–cement mixture determination
were selected. The soil type (denoted as S) seem to influence the UCS of the mixture as it
determines the soil’s grain composition [22]. Moisture content of soil samples (denoted
as Mc) also play an important role in the UCS detecting [23,24]. The wet density of soil
(denoted as We) should also be considered as it determines the natural state of the soil prior
to mixing [24]. The soil sampling depth (denoted as D) should also be taken into account
when it affects the soil condition [25]. We cannot fail to mention the amount of cement
(denoted as Ac) used for mixing when it determines the adhesion between soil particles [26].
Factors related to the sample after mixing such as: specimen diameter (denoted as Di);
specimen length (denoted as L); specimen area (denoted as A); specimen volume (denoted
as V); mass of specimen (denoted as M) and density of specimen (denoted as De) might also
affect much to the prediction [27,28]. In addition, a number of other important factors to
consider were the curing condition (denoted as Cc) and the curing period (denoted as Cp)
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that affect the rate of strength development of the cement. Finally, the type of cement
(denoted as T) was also taken into consideration when the quality of cement in Vietnam
appears to be uneven among each other. The UCS of the cement–soil mixture (denoted
as qu) was the single output. Detailed statistics of the parameters used in the study are
presented in Table 1. An example of this data set is given in Appendix A (Table A1).

Table 1. Inputs and output of the present study.

No D We Cc (*) Cp S (*) Mc T (*) Ac Di L A V M De qu

Unit m g/cm3 - - - % - kg/cm3 cm cm cm2 cm3 g g/cm3 kPa

1 4 1.72 1 7 2 1.72 1 100 4 10 19.4 194 339.8 1.75 472
2 4 1.76 1 7 3 1.76 1 100 5 10 19.45 194.52 333.8 1.72 498.2
3 4 1.72 1 7 2 1.72 1 100 5 10 19.63 196.35 342 1.74 649.41
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .

214 2 1.93 2 28 1 1.96 2 200 5 10 19.43 194.26 324.4 1.67 3780.35
215 2 1.93 2 28 1 1.93 2 200 5 10 19.4 194 317.8 1.64 4143.8
216 2 1.93 2 28 1 1.9 2 200 4.9 10 19.17 191.67 324.2 1.69 4922.67

Min 2.00 1.72 1.00 7.00 1.00 1.72 1 100 4.00 10 18.86 188.57 248.80 1.31 244.06
Average 3.00 1.83 1.50 17.50 1.67 1.83 2 150 4.98 10 19.48 194.87 336.31 1.72 1927.87

Max 4.00 1.93 2.00 28.00 3.00 1.96 3 200 5.00 10 19.74 197.40 385.80 1.96 5129.83
SD (*) 1.00 0.10 0.50 10.52 0.75 0.10 0.82 40.92 0.07 0.00 0.19 1.96 36.26 0.18 1215.94

SD (*) = Standard deviation; Cc (*): 1—Indoor; 2—outdoor; S (*): 1—Yellow clay; 2—Black organic sandy clay; 3—Black sandy clay;
T (*): 1—Vissai cement; 2—Nghi Son cement; 3—Chinfon Hai Phong cement.

4. Machine Learning Methods
4.1. Gradient Boosting (GB)

Gradient boosting (GB) is a machine learning algorithm developed by scientist Jerome
Friedman [29]. GB is suitable for regression and classification problems [30], has high
adaptability and is able to model feature parent and inherently perform feature selec-
tion [31]. In it, many decision trees are planted sequentially using information from
existing trees [32]. Each tree (weak learner) was added to improve previous learners,
forming an additive model [33]. That helps the prediction become more accurate (good
learner model), the process ends when no further improvement is possible [32]. So, by
continuously adjusting and optimizing the weak learner’s weight in order for it to be a
good learner, in which the learner’s weights are optimized by gradient descent of the loss
function [30]. Mathematically the model can be viewed as [34]:

F(x) =
M

∑
i=1

γi.hi(x) (1)

where F(x) is the output model, γi is the learner’s weight of iteration ith, hi(x) is weak
learner of iteration ith and M is the number of iterations.

4.2. Artificial Neural Network (ANN)

The artificial neural network is a form of artificial intelligence that mimics the behavior
of the human brain and nervous system [35]. ANN can also be learned through the gradient
descent of the loss function, namely the back propagation method [36]. ANN is a powerful
tool for predicting non-linear problems [37]. The non-linear mapping reinforces the linkages
between the input data and the output data [38]. The operational structure of ANN has
been described in many studies [39,40]. Multilayer perceptron is the most widely used
ANN type.

It consists of an input data layer, an output data layer and in the middle is one or
more hidden layers [36]. The model complexity is determined by the number of nodes
of hidden layers. The input weight matrix is used to link the input layer and the hidden
layer. The output weight matrix is used to link the hidden layer and the output layer [41].
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The output values are compared with the expected values in the set in the training data,
errors are calculated and returned to the network. The connection weight is automatically
adjusted until the minimum error target is reached [38]. The architecture of ANN model
was illustrated in Figure 5.
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4.3. Support Vector Machine (SVM)

SVM is a popular learning model first proposed by Vapnik (1995) [42]. The objective
of the support vector machine algorithm is to find a hyper-plane in a multidimensional
space that distinctly classifies the data points. To separate two layers of data points,
multiple hyper-plane can be selected. However, the most suitable plane is the one with the
maximum margin (i.e., the maximum distance between data points of both layers). SVM
has the optimization goal of minimizing structural risk [43], minimizing predictive error
and model complexity [20]. SVM exhibits a significant improvement in functionality, which
is often used. Use when the target variable involves categorical data [42], a small amount
of data and non-linearity, multiple input parameters [43,44]. Consider the training data set:

{(x1, y1), . . . , (xn, yn)}, x ∈ Rn, y ∈ r (2)

where x is the input and y is the output. Rn is the N-dimensional vector space and r is the
one-dimensional vector space [21]. The final equation of SVM can be written as:

f (x) =
nsv

∑
i=1

(βi − β∗i )K(xixj) + a (3)

where βi and β∗i are the Lagrangian multipliers and nsv is the number of support vectors.
K(xixj) is the kernel function [45].

4.4. Hyperparameters Tuning with the Random Search (RS) Method

In machine learning, hyper-parameters are valuable parameters used to control the
learning process, for example the number of neurons in the hidden layer of the ANN model,
the kernel type of SVM or the number of trees in the GB model. It must be asserted that the
hyper-parameters control the behaviors of training algorithms and has a significant effect
on the performance of machine learning models [44]. In addition, it is difficult to compare
models once they are not optimized or compare an optimal model to a suboptimal one.
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In general, there are different ways to optimize a math problem, for example grid
search (GS) and random search (RS) [45,46] or use some global optimization algorithm
such as Bayesian optimization [44], genetic algorithm [47] and particle swarm optimiza-
tion [48]. Among those algorithms, GS and RS showed simple algorithm and good per-
formance [45,46,49]. The two algorithms have different strategies for searching in hyper-
parameters space.

The comparison between the GS and RS method was shown in Figure 6. It can be seen
that GS looks for different hyper-parameter combinations in order while the RS chooses
the hyper-parameter randomly within the permitted range. Bergstra and Bengio [46] have
shown that RS is more interesting than GS in the case of some machine learning algorithms
on some data sets. The RS method can significantly reduce the number of solutions to seek
before there is a high probability to find the most accurate model, on the contrary, it can
be seen that to find a good solution, the GS method must have the thick mesh and takes
more resources to deal with. In order to compare the performance of different machine
learning algorithms, only RS technique is chosen to find the optimal hyper-parameters for
the construction of ML models.
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4.5. K-Fold Cross Validation

K-folding cross validation (CV) is a common technique in machine learning, used
during model training and editing, helping to avoid over fitting with the final model
Figure 7 showed flowchart of the 5 fold cross-validation technique. In this technique, the
training data was divided into five folding sets. The training will be done in five iterations
and for each time 4 folds will be used for training and the remainder fold will be used for
verification. The performance of the model was the average of the performance of the five
iteration results.
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4.6. Performance Indicators

In this paper, to evaluate the accuracy of the model, the author used three indicators
accounting for the error between the actual and predicted values were used, namely the
mean absolute error (MAE) [51], root mean square error (RMSE) [52] and correlation
coefficient (R) [50]. R measures the correlation between the predicted value and the
actual value, valid in the range [−∞, 1]. The model will have high accuracy when R
approaches 1. Conversely, low RMSE and MAE show better accuracy of the proposed
ML algorithms. More specifically, the ideal values of RMSE and MAE are 0. On the other
hand, RMSE calculates the squared root average difference, whereas MAE calculates the
difference between the predicted and actual values. These values can be calculated using
the following equations:

MAE =
1
k

k

∑
i=1

∣∣poi − pti

∣∣ (4)

RMSE =

√√√√ 1
k

k

∑
i=1

(
poi − pti

)2 (5)

R =
∑
(
poi − po

)
(pti − pt)√

∑
(
poi − po

)2
∑(pti − qt)

2
(6)

where k is the number of the observations, po and po are the measured and mean measured
values of the critical; pt and pt are the predicted and mean predicted values, respectively.

5. Results and Discussion
5.1. Hyperparameters Tuning Results

In this section, three ML models including GB, ANN and SVM were developed to
predict the USC of the cement-stabilized soil. The hyper-parameters range of those ML
models was also given in Table 2. To prepare the data for the hyper-parameters tuning
process, the initial data set was random divided into two sets, including the training set
(80%) and testing set (20%). To avoid data leakage, ML models were evaluated based on
data from the 5 fold CV technique, which mean testing data was hidden in this step.

Table 2. Hyper-parameters space of machine learning (ML) models.

Gradient Boosting Artificial Neural Network Support Vector Machine

Learning rate 0.01–0.3 Number of
neurons 2–50 Regularization

parameter (C) 0.001–1000

Number of tree 10–300 Solver (*) 1, 2, 3 Kernel coefficient
Gamma (γ) 0.001–1

Min samples split 2–20 Activation
function (**) 1, 2, 3 Kernel type (***) 1, 2, 3

Min samples leaf 2–20 Max iteration 1000–4000
Max depth 0–20 Learning rate 0.001–0.2
Data used 5Fold CV Data used 5Fold CV Data used 5Fold CV

Performance index R Performance index R Performance index R

(*): 1—Quasi-Newton method; 2—Stochastic Gradient Descent; 3—Adam; (**): 1—Logistic; 2—Tanh; 3—Relu; (***): 1—Polynomial;
2—Radial basis function; 3—Sigmoid.

In the process of hyper-parameter tuning, the model with the best R performance
indicator was selected as the final model and the model’s hyper-parameters were consid-
ered the optimum hyper-parameters. A summary of the optimal hyper-parameters of each
model was presented in Table 3.
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Table 3. Optimum hyper-parameters of ML models.

Gradient Boosting Artificial Neural Network Support Vector Machine

Learning rate 0.2 Number of
neurons 50 Regularization

parameter (C) 1000

Number of tree 117 Solver Adam Kernel coefficient
Gamma (γ) 0.1

Min samples split 9 Activation
function Logistic Kernel type Radial bias

function
Min samples leaf 3 Max iteration 3000

Max depth 16 Learning rate 0.1
Best criteria R 0.929 Best criteria R 0.93 Best criteria R 0.871

It can be seen that all three models showed good performance after hyper-parameter
optimization when the R criterion was above 0.87. The hyper-parameters combined quite
complexly to create the best model. In the GB model, the higher learning rate seemed to
bring better performance when in the ANN model, Adam was the best training algorithm
for this data set. Furthermore, the SVM model with the kernel type of the radial basis
function gives better performance than the sigmoid function. Besides, the lower the gamma
on SVM model, the lower the performance. Out of the three models, ANN and GB showed
outstanding performance compared to the SVM model. To be more specific, the best R
criteria of the ANN and GB model was 0.93 and 9.29 respectively compared to 0.871 of the
SVM model.

5.2. Comparison of GB, ANN and SVM

From a statistical standpoint, the randomness in the data set needed to be carefully
considered when comparing models. In this section, to compare the performance of the
three optimized models, 300 samplings were performed taking into account the random
division between training set and testing set. In these samplings, the training and test set
sizes were kept the same, however the index number of the training and test data were
randomly selected in the original data set. The models would be built on the training set
and then validated on the testing set.

Figures 8–10 showed a density curve of the performance results after 300 samplings
on the training set and testing set. The summary of the performance indicators of each
models was presented in Tables 4–6. It can be seen that the values of R of all three models
showed a strong prediction UCS of cement-stabilized soil as the values of R were in the
range of 0.9–1 on the training set and in the range of 0.8–1 on the testing set. The values of
RMSE were in the range of 150–350 (kPa) on training set and in the range of 200–650 (kPa)
on the testing set while the value of MAE varied from 50 to 250 (kPa) on the training set
and from 100 to 400 (kPa) on the testing set.

It also can be seen that out of the three models, the ANN model gave outstanding
performance, reflected in the average of all performance indicators, namely R = 0.925,
RMSE = 419.82 and MAE = 292.2 on testing set. The GB and SVM models showed equal
performance when the GB model had better performance at R but worse at RMSE and MAE.
To be more specific, GB had the average performance indicator of R = 0.912, RMSE = 446.79
and MAE =319.23 while SVM model had the average criteria R = 0.903, RMSE = 446.67 and
MAE = 309.76 on the testing set. In addition, the minimum and maximum values of the
performance indicators of the ANN modet all allowed it to outperform the other models,
proving that the model was more stable.
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Table 4. Summary of the 300 samplings using R criteria.

Model Dataset Average Min Max SD (*)

GB
Training 0.968 0.968 0.982 0.005
Testing 0.912 0.798 0.973 0.029

ANN
Training 0.980 0.968 0.991 0.004
Testing 0.925 0.850 0.981 0.031

SVM
Training 0.965 0.950 0.979 0.006
Testing 0.903 0.759 0.957 0.031

SD (*) = Standard Deviation.

Table 5. Summary of the 300 samplings using RMSE criteria.

Model Dataset Average Min Max SD (*)

GB
Training 284.41 215.58 327.34 20.23
Testing 446.79 298.94 629.76 58.71

ANN
Training 231.2 163.03 292.94 23.16
Testing 419.82 221.04 599.35 65.91

SVM
Training 292.7 229.11 341.08 19.97
Testing 446.67 299.93 641.16 58.59

SD (*) = Standard Deviation.

Table 6. Summary of the 300 samplings using MAE criteria.

Model Dataset Average Min Max SD (*)

GB
Training 203.49 161.85 229.3 11.92
Testing 319.23 211.68 436.57 34.91

ANN
Training 115.29 86.01 155.6 12.71
Testing 292.2 171.95 413.51 41.57

SVM
Training 159.5 125.69 193.39 11.87
Testing 309.76 215.35 434.12 37.3

SD (*) = Standard Deviation.

5.3. Predictability of Models

In this section, the results of typical ML models were presented. All three models
showed good prediction when the linear fit almost overlapped with the best fit on both
the training set and testing set (Figure 11). Out of the three models, ANN showed the best
performance when all prediction points on the training and testing set were almost closest
to the perfect fit. Based on the analysis results, it can be confirmed that the ML models
were successful in predicting UCS of the cement-stabilized soil and optimized ANN was
the most suitable model for this data set.

Table 7 presented some previous research results on ML applications in determining
USC of some soil type. The results of the present study and previous studies show the
expected effect of the ML technique in determining the UCS of soils with most of the R
reaching between 0.8 and 0.95 on the testing data set. However, due to the use of different
data sets, the comparison among these results make no sense. A project that combines
datasets from different studies is needed to create a large database for building generalized
models in the UCS prediction of soil reinforcement.
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Figure 11. Measure and predicted values of unconfined compressive strength (UCS) of cement-stabilized soil using the
training set: (a) gradient boosting (GB); (c) ANN and (e) support vector machine (SVM) and testing set: (b) GB; (d) ANN
and (f) SVM.
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Table 7. Comparison with previous studies.

Author Model Sample Type Number of Samples R RMSE

Suman et al. [18]
FN

Cement stabilized soil 58
0.95 -

MARS 0.95 -
MLR 0.73 -

Hoang-Anh Le et al. [21] GPR UCS of soil 118 0.861 0.442

Das et al. [20]
BRNN

Cement stabilized soil 55
0.87 -

LMNN 0.851 -
DENN 0.846 -

The present study
RS-ANN

Cement stabilized soil 216
0.925 419.82

RS-GB 0.912 446.79
RS-SVM 0.903 446.67

5.4. Feature Importance Analysis

The GB algorithm allows estimating the importance of input features. In fact, the GB
algorithm included many decision trees and for each tree, the feature importance of an
input variable was calculated as the fraction of samples that will traverse a node that splits
based on that variable. The mean score of all trees then decided the important index of
each features. The important index scores will be in the range [0, 1] and the higher scores
the more important the feature.

The result shown on Figure 12: It can be seen that amongst the 14 input variables that
used to detect the UCS of cement-stabilized soil, the wet density (We) and the amount of
cement (Ac) was the most important features, which score an average sensitive index of
0.7 and 0.212, respectively. From a soil mechanic point of view, We affects the unit weight
of soil or decides particle density while the amount of cement (Ac) decides the cohesion
between the soil particles, so both of them play an important role in predicting the UCS of
cement-stabilized soil. The variables M, Mc and De were ranked as the third to the fifth
important predictors with an average sensitive index, ranging from 0.12 to 0.085. The other
variables such as D, Cc, A, V and S had a lower sensitive index, ranging from 0.051 to 0.026,
indicating that they are not affected much by the regression result. Remain features include
T, Cp, Di and L, which had an important index lower than 0.006, showing that they nearly
did not affect the prediction result.
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6. Conclusions

The main aim of this study was to develop three machine-learning methods to predict
the USC of cement-stabilized soil. The models were optimized by the RS technique to find
out the best architecture including some hyper-parameters that had a significant effect on
the performance of machine learning models.

The results showed that all three optimized machine-learning model including GB,
ANN and SVR had an impressive ability in predicting the USC of cement-stabilized soil
with R criteria ranging from 0.85 to 1. Besides, 300 simulations including randomization
of data between the training set and the testing set were conducted. It can be seen that,
among the three models used in this study, the ANN model had superior performance
compared to the other two models on both training and testing training, represented in
the average performance index of 300 simulations, specifically R = 0.98, RMSE = 231.2 and
MAE =115.29 for the training set and R = 0.925, RMSE = 419.82 and MAE = 292.2 for the
testing set.

In addition, the feature important index analysis by the GB model showed that
between 14 input variables, the wet density (We) and the amount of cement (Ac) was
the most important features, which play an important role in predicting of the UCS of
cement-stabilized soil.

The results of this study indicated that machine learning methods, especially the ANN
model, can be an effective tool for quickly predicting UCS of cement stabilized soils with
excellent performance.
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Appendix A

Table A1. An example of the data set of the present study.

No D We Cc Cp S Mc T Ac Di L A V M De qu

Unit m g/cm3 - - - % - kg/cm3 cm cm cm2 cm3 g g/cm3 kPa

1 2 1.93 1 7 1 1.9 1 150 5 10 19.63 196.35 379.8 1.93 1707.95
2 2 1.93 2 7 1 1.93 2 200 5 10 19.37 193.74 342.2 1.77 4018.33
3 4 1.72 2 28 2 1.72 3 200 5 10 19.48 194.78 278 1.43 2336.29
4 2 1.93 1 28 1 1.96 1 100 5 10 19.63 196.35 381.4 1.94 1836.64
5 4 1.72 2 7 2 1.72 3 150 5 10 19.32 193.22 309 1.6 1383.56
6 2 1.93 1 7 1 1.93 1 200 5 10 19.63 196.35 377.2 1.92 1976.48
7 4 1.76 2 28 3 1.76 2 200 5 10 19.45 194.52 274.2 1.41 3147.3
8 2 1.93 2 28 1 1.9 2 200 4.9 10 19.17 191.67 324.2 1.69 4922.67
9 2 1.93 1 7 1 1.96 2 100 5 10 19.63 196.35 375.2 1.91 791.39

10 2 1.93 2 28 1 1.96 3 100 4.9 10 19.01 190.12 300 1.58 1118.24
11 4 1.72 2 7 2 1.72 3 200 5 10 19.58 195.83 313.6 1.6 1475.3
12 4 1.76 1 28 3 1.76 1 150 5 10 19.63 196.35 349.2 1.78 1363.25
13 4 1.72 1 7 2 1.72 1 150 5 10 19.63 196.35 346.4 1.76 805.39
14 2 1.93 1 7 1 1.93 2 150 5 10 19.63 196.35 375.4 1.91 1422.7
15 2 1.93 1 28 1 1.9 3 100 5 10 19.63 196.35 379 1.93 695.1
16 2 1.93 1 28 1 1.93 3 100 5 10 19.63 196.35 380.4 1.94 755.31
17 2 1.93 1 7 1 1.9 2 100 5 10 19.63 196.35 379 1.93 1158.82
18 2 1.93 2 7 1 1.96 3 100 5 10 19.48 194.78 331 1.7 1289.44
19 4 1.72 1 28 2 1.72 2 100 5 10 19.63 196.35 354.6 1.81 449.55
20 2 1.93 1 7 1 1.9 2 150 5 10 19.63 196.35 382.4 1.95 1799
21 4 1.72 1 28 2 1.72 1 150 5 10 19.63 196.35 355.8 1.81 1105.88
22 2 1.93 2 7 1 1.93 1 200 5 10 19.43 194.26 346 1.78 4099.15
23 2 1.93 1 28 1 1.96 1 200 5 10 19.63 196.35 379.6 1.93 2596.24
24 2 1.93 1 28 1 1.93 2 200 5 10 19.63 196.35 382.4 1.95 2619.07
25 4 1.72 2 7 2 1.72 1 100 4.9 10 19.17 191.67 311.4 1.62 900.82
26 4 1.76 2 28 3 1.76 2 150 5 10 19.32 193.22 267.8 1.39 2238.02
27 2 1.93 1 28 1 1.9 2 150 5 10 19.63 196.35 382.8 1.95 2734.99
28 4 1.76 1 7 3 1.76 1 100 5 10 19.45 194.52 333.8 1.72 498.2
29 4 1.76 2 7 3 1.76 3 150 5 10 19.43 194.26 310.4 1.6 1995.69
30 2 1.93 1 28 1 1.9 2 100 5 10 19.63 196.35 378.2 1.93 1883.47
31 2 1.93 1 28 1 1.96 3 100 5 10 19.63 196.35 376.2 1.92 499.66
32 4 1.76 2 7 3 1.76 3 200 5 10 19.48 194.78 313.4 1.61 2305.96
33 4 1.76 2 28 3 1.76 3 150 4.9 10 19.06 190.63 262.4 1.38 1909.18
34 2 1.93 2 28 1 1.93 1 150 5 10 19.3 192.96 311.2 1.61 4595.34
35 2 1.93 1 28 1 1.96 1 150 5 10 19.63 196.35 377.2 1.92 1936.14
36 4 1.76 2 28 3 1.76 1 100 4.9 10 18.86 188.57 255.6 1.36 713.58
37 2 1.93 1 7 1 1.96 1 200 5 10 19.53 195.3 376.8 1.93 1316.62
38 2 1.93 1 28 1 1.9 2 200 5 10 19.63 196.35 382.4 1.95 3076.98
39 4 1.72 2 28 2 1.72 2 100 4.9 10 18.93 189.34 257.8 1.36 687.38
40 4 1.72 1 28 2 1.72 2 150 5 10 19.63 196.35 350.6 1.79 710.01
41 4 1.72 1 28 2 1.72 1 200 5 10 19.63 196.35 355.4 1.81 1690.15
42 4 1.76 1 28 3 1.76 3 100 5 10 19.63 196.35 346.6 1.77 605.68
43 2 1.93 1 7 1 1.96 2 200 5 10 19.63 196.35 384.4 1.96 1744.79
44 2 1.93 1 28 1 1.96 3 200 5 10 19.63 196.35 383.4 1.95 2705.26
45 4 1.72 2 7 2 1.72 2 100 5 10 19.43 194.26 298.2 1.54 660.47
46 2 1.93 1 7 1 1.9 2 200 5 10 19.63 196.35 385.8 1.96 1992.59
47 2 1.93 2 28 1 1.96 2 100 5 10 19.22 192.18 301.6 1.57 2725.33
48 2 1.93 2 28 1 1.93 2 200 5 10 19.4 194 317.8 1.64 4143.8
49 2 1.93 1 28 1 1.93 3 150 5 10 19.63 196.35 380.2 1.94 2396.77
50 2 1.93 2 7 1 1.93 3 150 5 10 19.32 193.22 356 1.84 3197.18
51 4 1.72 2 7 2 1.72 3 200 5 10 19.48 194.78 313.4 1.61 2305.96
52 4 1.76 2 7 3 1.76 1 150 5 10 19.45 194.52 324.8 1.67 1223.71
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Table A1. Cont.

No D We Cc Cp S Mc T Ac Di L A V M De qu

Unit m g/cm3 - - - % - kg/cm3 cm cm cm2 cm3 g g/cm3 kPa

53 2 1.93 2 28 1 1.9 1 200 5 10 19.3 192.96 319.6 1.66 5129.83
54 2 1.93 2 28 1 1.93 3 150 5 10 19.3 192.96 311 1.61 4864.9
55 4 1.76 1 28 3 1.76 2 150 5 10 19.63 196.35 352.8 1.8 1352.47
56 4 1.72 2 7 2 1.72 3 150 5 10 19.43 194.26 313.8 1.62 1067.63
57 2 1.93 2 28 1 1.96 3 150 4.9 10 19.11 191.15 309.6 1.62 4085.39
58 4 1.76 2 28 3 1.76 3 200 5 10 19.24 192.44 275.6 1.43 3856.02
59 4 1.72 2 7 2 1.72 2 150 5 10 19.63 196.35 301.4 1.54 998.22
60 4 1.72 2 28 2 1.72 2 200 5 10 19.45 194.52 275.4 1.42 2080.09
61 4 1.72 2 7 2 1.72 2 200 5 10 19.69 196.87 303.2 1.54 1889.58
62 2 1.93 1 7 1 1.93 3 200 5 10 19.63 196.35 377.6 1.92 1702.19
63 4 1.72 2 28 2 1.72 3 200 5 10 19.32 193.22 277.8 1.44 2481.45
64 2 1.93 2 7 1 1.9 1 200 5 10 19.19 191.92 346.6 1.81 4149.05
65 2 1.93 1 7 1 1.93 1 100 5 10 19.63 196.35 376.2 1.92 1192.32
66 2 1.93 1 28 1 1.96 3 150 5 10 19.63 196.35 380.2 1.94 1982.46
67 2 1.93 1 28 1 1.96 2 100 5 10 19.63 196.35 376 1.91 1215.35
68 4 1.76 1 7 3 1.76 2 150 5 10 19.63 196.35 350 1.78 754.49
69 2 1.93 1 28 1 1.93 3 200 5 10 19.63 196.35 380.4 1.94 2470.45
70 2 1.93 2 28 1 1.96 1 200 5 10 19.43 194.26 315.6 1.62 3906.32
71 4 1.72 1 28 2 1.72 3 100 5 10 19.63 196.35 341.6 1.74 568.93
72 4 1.72 1 28 2 1.72 2 100 5 10 19.63 196.35 350.6 1.79 418.33
73 4 1.72 1 7 2 1.72 3 100 5 10 19.63 196.35 342 1.74 298.24
74 4 1.72 1 28 2 1.72 2 200 5 10 19.63 196.35 354.6 1.81 1232.07
75 4 1.72 2 7 2 1.72 2 150 5 10 19.63 196.35 311 1.58 1103.77
76 4 1.72 2 7 2 1.72 1 150 5 10 19.53 195.3 322.2 1.65 1193.45
77 2 1.93 2 28 1 1.9 3 150 4.9 10 19.11 191.15 312.4 1.63 3882.56
78 2 1.93 2 7 1 1.93 3 100 5 10 19.32 193.22 343 1.78 1562.15
79 4 1.72 2 7 2 1.72 3 100 5 10 19.27 192.7 282.2 1.46 990.67
80 4 1.72 2 28 2 1.72 2 200 5 10 19.4 194 276.4 1.42 2221.06
81 4 1.76 1 7 3 1.76 2 200 5 10 19.63 196.35 355.4 1.81 1138.63
82 2 1.93 2 28 1 1.93 3 100 5 10 19.24 192.44 305.8 1.59 1560.77
83 2 1.93 2 28 1 1.93 2 150 5 10 19.24 192.44 305.2 1.59 4363.29
84 4 1.72 2 7 2 1.72 1 200 5 10 19.74 197.4 312 1.58 1621.66
85 2 1.93 2 7 1 1.93 1 100 5 10 19.27 192.7 336.6 1.75 1857.65
86 4 1.72 1 28 2 1.72 2 200 5 10 19.63 196.35 358 1.82 1393.78
87 4 1.72 1 7 2 1.72 1 200 5 10 19.63 196.35 349.4 1.78 1311
88 4 1.76 1 7 3 1.76 3 150 5 10 19.63 196.35 342.2 1.74 765.61
89 2 1.93 2 7 1 1.93 2 100 5 10 19.35 193.48 337.8 1.75 3019.78
90 2 1.93 2 28 1 1.9 2 150 4.9 10 19.01 190.12 318 1.67 4785.22
91 4 1.72 1 28 2 1.72 3 200 5 10 19.63 196.35 357.8 1.82 1642.09
92 4 1.72 2 7 2 1.72 1 100 5 10 19.37 193.74 293 1.51 807.75
93 2 1.93 1 7 1 1.96 3 150 5 10 19.63 196.35 379 1.93 1648.09
94 2 1.93 2 7 1 1.96 1 200 5 10 19.45 194.52 345.4 1.78 2821.29
95 2 1.93 1 28 1 1.93 1 150 5 10 19.63 196.35 379.6 1.93 2454.92
96 2 1.93 2 7 1 1.93 3 200 5 10 19.48 194.78 351.4 1.8 3222.19
97 4 1.72 2 7 2 1.72 2 200 5 10 19.66 196.61 294.8 1.5 1907.62
98 4 1.72 1 7 2 1.72 3 150 5 10 19.63 196.35 346.6 1.77 615.01
99 2 1.93 2 7 1 1.9 3 100 5 10 19.32 193.22 343 1.78 1443.71
100 2 1.93 2 7 1 1.96 2 150 5 10 19.35 193.48 337.2 1.74 3117.79
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28. Güneyli, H.; Rüşen, T. Effect of Length-to-Diameter Ratio on the Unconfined Compressive Strength of Cohesive Soil Specimens.
Bull. Eng. Geol. Environ. 2015, 75. [CrossRef]

29. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
30. Wei, L.; Yuan, Z.; Zhong, Y.; Yang, L.; Hu, X.; Zhang, Y. An Improved Gradient Boosting Regression Tree Estimation Model for

Soil Heavy Metal (Arsenic) Pollution Monitoring Using Hyperspectral Remote Sensing. Appl. Sci. 2019, 9, 1943. [CrossRef]
31. Chopra, T.; Vajpai, J. Fault Diagnosis in Benchmark Process Control System Using Stochastic Gradient Boosted Decision Trees.

Int. J. Soft Comput. Eng 2011, 1, 98–101.
32. Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M. Assessment of Spatial Hybrid Methods for Predicting Soil

Organic Matter Using DEM Derivatives and Soil Parameters. Catena 2019, 174, 206–216. [CrossRef]
33. Devos, L.; Meert, W.; Davis, J. Fast Gradient Boosting Decision Trees with Bit-Level Data Structures. In Lecture Notes in Computer

Science, Proceedings of the Machine Learning and Knowledge Discovery in Databases, Würzburg, Germany, 16–20 September 2019; Brefeld,
U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C., Eds.; Springer International Publishing: Cham, Switzerland,
2019; Volume 11906, pp. 590–606. ISBN 978-3-030-46149-2.

34. Liu, L.; Ji, M.; Buchroithner, M. Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval
Using Visible near-Infrared Shortwave Infrared Spectra. Remote Sens. 2017, 9, 1299. [CrossRef]

35. Shahin, M.A.; Jaksa, M.B.; Maier, H.R. Artificial Neural Network Applications in Geotechnical Engineering. Aust. Geomech. 2001,
36, 49–62.
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