

Figure S1. Spatiotemporal map of the monthly availability of the MODIS AOD product for the entire domain

Figure S2. Annual emission fluxes of (a) $\mathrm{SO}_{2,}$ (b) NO_{x}, (c) BC , (d) OC , (e) PM_{10}, (f) $\mathrm{PM}_{2.5}$ for the regions $\left(70^{\circ} \mathrm{N}-90^{\circ} \mathrm{N} ; 60^{\circ} \mathrm{W}-60^{\circ} \mathrm{E}\right)$ from the eighteen inventories

Figure S3. Spatial distributions of the CMAQ model-estimated (first column), MODIS-observed (second column), and assimilated (third column) AODs over the Arctic from April 2008 to September 2008.

Figure S4. Spatial distributions of monthly averaged PM_{10} and $\mathrm{PM}_{2.5}$ calculated from the CMAQ simulations and inferred from the linear relationship between PMs and assimilated AODs

Table S1. Monthly mean of PM_{10} and $\mathrm{PM}_{2.5}$ from the CMAQ simulation and linear estimation and their relative differences over the entire domain. .

Month	Mean PM10, cmą	Mean PM10, CMAQ (w/ or)	RDPm10 ${ }^{\text {® }}$	Mean PM2.5, СмAQ	Mean PM2.5, сmaQ (w/OI)	RDPm2.5 ${ }^{\text {\# }}$
April	1.00 ($\pm 0.64)^{*}$	2.95 ($\pm 2.77)$	168.52	0.54 ($\pm 0.39)$	1.45 ($\pm 1.59)$	194.59
May	$0.92(\pm 0.58)$	3.50 ($\pm 2.96)$	258.12	$0.47(\pm 0.27)$	1.68 ($\pm 1.38)$	281.51
June	$0.84(\pm 0.44)$	$2.18(\pm 1.71)$	154.25	$0.34(\pm 0.18)$	0.85 ($\pm 0.70)$	159.55
July	$0.99(\pm 0.52)$	$2.37(\pm 1.63)$	140.80	$0.44(\pm 0.19)$	1.06 ($\pm 0.68)$	140.76
August	$1.10(\pm 0.55)$	3.15 ($\pm 2.15)$	173.71	$0.51(\pm 0.27)$	1.39 ($\pm 0.98)$	185.26
September	$1.08(\pm 0.84)$	3.70 (± 3.00)	182.75	0.46 ($\pm 0.36)$	$1.30(\pm 0.88)$	241.38

${ }^{*}$ Mean (\pm standard deviation), unit ($\mu \mathrm{g} \mathrm{m} \mathrm{m}^{-3}$).
@ Relative Differences of PM10 (RDрм10) were calculated by following equation:.

$$
\begin{equation*}
R D_{P M 10}=\frac{P M_{10, C M A Q(w / O I)}-P M_{10, \text { CMAQ }}}{P M_{10, C M A Q}} \times 100(\%) \tag{1}
\end{equation*}
$$

\# Relative Differences of PM2.5 (RDPM2.5) were calculated by following equation:

$$
\begin{equation*}
R D_{P M 10}=\frac{P M_{2.5, C M A Q(w / O I)}-P M_{2.5, C M A Q}}{P M_{2.5, C M A Q}} \times 100(\%) \tag{2}
\end{equation*}
$$

Table S2. The optimized free parameters obtained from the sensitivity test.

Month	$\mathbf{f}_{\mathbf{m}}$	$\mathbf{f o}_{\mathbf{o}}$	ε_{m}	ε_{o}
April	3.0	0.1	0.0	0.04
May	4.0	0.1	0.0	0.05
June	4.0	0.6	0.0	0.05
July	2.0	0.3	0.0	0.04
August	4.0	0.4	0.0	0.05
September	5.0	0.4	0.0	0.01

