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Abstract: Cell-penetrating peptides (CPPs), due to their effectiveness and low cytotoxicity, are of
increasing interest in the context of the transport of macromolecules to the cells. The simplest and
safest method seems to be the non-covalent binding of CPP and cargo molecules. However, it requires
the optimization of the reaction conditions. The study aimed to determine the effectiveness and
cytotoxicity of the Pep-1, KALA, and TAT proteins as well as the NLS [47–55] and NLS [47–56]
sequences derived from the Simian Vacuolating 40 (SV40) T-antigen in the context of the transport of
the pmaxGFP plasmid to primary human coronary artery endothelial cells. The results are presented
in the form of extensive photographic documentation, which shows significant differences in the
efficiency of the transfection process between electroporation and the use of CPPs. The study
presents negative results in which, despite the manipulation of various parameters (incubation
time, incubation temperature, culture time, charge ratio, plasmid concentration), results similar to
electroporation were not obtained.

Keywords: cell-penetrating peptides; primary human coronary artery endothelial cells; TAT; KALA;
Pep-1

1. Introduction

Cell-penetrating peptides (CPPs), also referred to as protein transduction domains
(PTDs) or Trojan peptides, form a structurally diverse group of molecules with varied
physicochemical properties. However, they usually have at least two features in com-
mon. Firstly, they can penetrate the cell membrane barrier even after binding with macro-
molecules. Secondly, they are mostly short peptides with a length of up to 30 amino
acids [1]. Moreover, in vitro and in vivo studies have indicated their low cytotoxicity and
immunogenicity together with high efficiency.

CPPs may enter the cell due to several mechanisms, including clathrin-dependent and
independent endocytosis and direct translocation. Additionally, this characteristic is not
affected by the attachment of varied cargo molecules to the CPP [1].

Two main approaches are currently applied for combining transported molecules with
CPPs. The first is the introduction of a covalent bond, while the second is based on the
creation of non-covalent interactions. Although covalent bonding is commonly used, it has
several disadvantages. An example is the probability of undesirable changes in the attached
molecule during a chemical reaction [2]. Moreover, it cannot be used for the transport of
plasmids. To overcome these problems, non-covalent bonds can be applied. In such a case,
the cargo and CPP are combined with electrostatic and hydrophobic interactions. This
limits the possibility of changes in biological activity resulting from binding. Furthermore,
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it enables the transport of plasmids. Another advantage is the simplicity of the method
since it only requires incubation of the compounds. Moreover, this strategy is similar, in
terms of effectiveness and safety, to the introduction of covalent bonds [3,4].

The effectiveness of the non-covalent approach strongly depends on the charge ratio
(CR), which is the ratio of the number of moles of positively charged amino acid groups in
the CPP to the number of moles of negatively charged groups in the binding molecule [5].
Too high of a CR results in the formation of large complexes of molecules with low cellular
penetration capacity, while too low is not effective due to insufficient internalization.

The study aimed to assess the usefulness of selected CPPs (TAT, Pep-1, KALA) and
nuclear localization sequences (NLS [47–55] and NLS [47–56]) for introducing pmaxGFP
plasmids to the human primary coronary artery endothelial cells. Both the effectiveness and
potential cytotoxic effect were assessed. The results are presented in the form of extensive
photographic documentation, which shows significant differences in the efficiency of the
transfection process between electroporation and the use of CPPs.

2. Materials and Methods
2.1. Cell Culture

Commercially available human primary coronary artery endothelial cells (pHCAEC;
ATCC, Manassas, VA, USA) were used in the study. The cells were obtained from a 23-year-
old Caucasian male. The donor died as a result of a blunt head injury. Cells after the third
passage positively passed virological tests and then were frozen and transported.

The pHCAEC cell line was cultured according to the manufacturer’s instructions in
Vascular Cell Basal Medium (ATCC) in combination with Endothelial Cell Growth Kit-
VEGF (ATCC). The culture was carried out under standard conditions (37 ◦C, 5% CO2) in
the presence of antibiotics—penicillin (10 µg/mL), streptomycin (10 µg/mL) and ampho-
tericin B (25 µg/mL; ATCC).

To assess the efficiency of transport, endothelial cells were incubated with electrostatic
complexes of CPPs and plasmid pmaxGFP for 24 or 48 h. Control cells were cultured
under the same conditions and underwent (I) no incubation with CPPs and plasmid,
(II) incubation with the plasmid vector alone.

2.2. Formation of Electrostatic Interactions between Plasmid and Penetrating Proteins

The vector used in the study was the pmaxGFP plasmid (Lonza, Basel, Switzerland),
which conditions the expression of green fluorescence protein (GFP). Additionally, three
types of CPPs—Pep-1 (synthetic CPP with primary amphipathicity resulting from the
amino acid sequence itself, not from the folding structure, that comprises a tryptophan-rich
hydrophobic domain, a hydrophilic domain derived from an NLS of simian virus 40 (SV40)
large T-antigen, and a spacer between them (a cysteamine group of Pep-1 is present at
the C-terminus and plays a crucial role in the delivery of cargoes into the cells)), KALA
(synthetic, cationic amphipathic CPP, with α-helix conformation when the pH is 7.5; it
binds oligonucleotides and disrupts the cell membrane), and HIV transactivator protein
(TAT) were applied. Moreover, two different nuclear localization sequences (NLS) were
also assessed. These were NLS [47–55] and NLS [47–56] derived from the SV40 T-antigen,
which can pass through the pores of the nuclear envelope to the interior of the cell nucleus
due to the strong affinity for importin (All from AnaSpec, Fremont, CA, USA).

To determine the effect of incubation conditions on the efficiency of non-covalent
bonding between CPPs and pmaxGFP, variable conditions were used in regards to: (I) the
type of CPP/NLS (TAT, KALA, Pep-1, NLS [47–55] and NLS [47–56]), (II) the charge ratio
(1: 1, 1: 2, 1: 4, 1: 8, 1:16), (III) the amount of plasmid (1 or 2 µg), (IV) the temperature (21 or
37 ◦C), and (V) the incubation time (15 or 30 min). The influence of the length of culture
in the presence of complexes (24 or 48 h) was also evaluated. The applied conditions are
summarized in Table 1.
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Table 1. Conditions of CPP-cargo complexes preparation.

Type of
CPP/NLS CR 1 Amount of

Plasmid [µg]
Time of

Incubation [min]
Time of

Culture [h]
Temperature of
Incubation [◦C]

TAT

1:1 1 2 15 30 24 48 21 37
1:2 2 15 30 24 48 21 21
1:4 1 2 15 24 24 48 21 37
1:8 1 2 15 30 24 48 21 37

1:16 1 15 30 24 48 21 37

Pep-1

1:1 1 2 15 30 24 48 21 37
1:2 2 15 30 24 48 21 37
1:4 1 2 15 30 24 48 21 21
1:8 1 2 15 30 24 48 21 37

1:16 1 15 30 24 48 21 37

KALA

1:1 1 2 15 30 24 48 21 21
1:2 2 15 30 24 48 21 37
1:4 1 2 15 30 24 48 21 37
1:8 1 2 15 30 24 48 21 21

1:16 1 15 30 24 48 21 37

NLS
[47–55]

1:1 2 15 30 24 48 21 37
1:2 2 15 30 24 48 21 21
1:4 2 15 30 24 48 21 37
1:8 2 15 30 24 48 21 37

NLS
[47–56]

1:1 2 15 30 24 48 21 21
1:2 2 15 30 24 48 21 37
1:4 2 15 30 24 48 21 37
1:8 2 15 30 24 48 21 37

2.3. Results Evaluation

The analysis of the results was made by a visual evaluation of the images obtained
using the system for visualization of cells from Zeiss and Zeiss Zen software and cell
counting with ImageJ (NIH). The parameters used were defined based on the control cells.
The process efficiency was compared to the one received with transfection of pHCAEC
using pmaxGFP and electroporation by nucleofection (4D-Nucleofector; Lonza) and P3
Primary Cell 4D-Nucleofector® X kit (Lonza). Every variant of the experiment was done in
at least three independent experiments. Pictures included in the publication show repre-
sentative views for all of the experiments. Additionally, for greater readability, the results
are presented in the form of heatmaps showing the mean and the standard deviations
(in parentheses) created with GraphPad Prism (version 7.0 for Mac, GraphPad Software,
La Jolla, CA, USA).

3. Results

The results were presented in the form of extensive photographic documentation.
Cells with the expression of plasmid are characterized by green fluorescence. For control
cells, no positive signal was observed (Figure 1). This confirms the assumption that the
plasmid alone is not able to penetrate the cell membrane.

Figures 2–22. Variations in the conditions of complex formation and the time of
incubation with cells affected the efficiency of the transduction process. For CPP com-
plexes with 1 µg plasmid, only single cells expressing GFP were observed either after 24 h
(Figures 2 and 3) or 48 h culture (Figures 4 and 5). For this reason, further tests were carried
out using 2 µg of pmaxGFP. In addition, CR 1:16 caused a significant cytotoxic effect. This
was especially visible in the case of the KALA protein and contributed to the reduction
of CR used in subsequent stages of the study (Figures 2–5). Extending the incubation
time of CPPs with the plasmid led to an increase in the number of GFP positive cells
(Figures 10–13 and 18–21). In turn, increasing the temperature during complex formation
enhanced cytotoxicity, particularly for Pep-1 and TAT (Figures 8, 9, 12, 13, 16, 17, 20 and 21).
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At the same time, no significant influence of temperature on process efficiency was observed.
In contrast, extending the culture time in the presence of CPPs and plasmid complexes
from 24 to 48 h led to a significant increase in the number of cells characterized by green
fluorescence (Figures 4–7 and 14–21). At low CR and complex formation temperatures of
21 ◦C, none of the proteins used showed significant cytotoxicity. The optimal CR for the
CPPs and plasmid used varied depending on the conditions used. However, regardless of
the approach applied, in none of the cases was efficiency even close to that obtained using
electroporation by nucleofection (Figure 22).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21 
 

cells, no positive signal was observed (Figure 1). This confirms the assumption that the 
plasmid alone is not able to penetrate the cell membrane. 

 
Figure 1. Control cells cultured under standard conditions did not show GFP expression. Control groups were cells cul-
tured in pure medium (A) and in medium supplemented with 1 μg of plasmid (B). Bar = 50 μm. 

Figures 2–22. Variations in the conditions of complex formation and the time of in-
cubation with cells affected the efficiency of the transduction process. For CPP complexes 
with 1 μg plasmid, only single cells expressing GFP were observed either after 24 h (Fig-
ures 2 and 3) or 48 h culture (Figures 4 and 5). For this reason, further tests were carried 
out using 2 μg of pmaxGFP. In addition, CR 1:16 caused a significant cytotoxic effect. This 
was especially visible in the case of the KALA protein and contributed to the reduction of 
CR used in subsequent stages of the study (Figures 2–5). Extending the incubation time of 
CPPs with the plasmid led to an increase in the number of GFP positive cells (Figures 10–
13, 18–21). In turn, increasing the temperature during complex formation enhanced cyto-
toxicity, particularly for Pep-1 and TAT (Figures 8,9,12,13,16,17,20,21). At the same time, 
no significant influence of temperature on process efficiency was observed. In contrast, 
extending the culture time in the presence of CPPs and plasmid complexes from 24 to 48 
h led to a significant increase in the number of cells characterized by green fluorescence  
(Figures 4–7,14–21). At low CR and complex formation temperatures of 21 °C, none of the 
proteins used showed significant cytotoxicity. The optimal CR for the CPPs and plasmid 
used varied depending on the conditions used. However, regardless of the approach ap-
plied, in none of the cases was efficiency even close to that obtained using electroporation 
by nucleofection (Figure 22). 

Figure 1. Control cells cultured under standard conditions did not show GFP expression. Con-
trol groups were cells cultured in pure medium (A) and in medium supplemented with 1 µg of
plasmid (B). Bar = 50 µm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21 
 

 
Figure 2. Results of 24 h culture in the presence of complexes in CRs of 1:1, 1:4, 1:8 and 1:16. The complexes were formed 
using incubation of 1 μg pmaxGFP with chosen CPPs at 21 °C for 15 min. Bar = 50 μm. CR, charge ratio. 

 
Figure 3. Effect of 24 h culture in the presence of complexes in CRs of 1:1, 1:4, 1:8 and 1:16. The complexes were formed 
using incubation of 1 μg pmaxGFP with chosen CPPs at 21 °C for 15 min. CR, charge ratio. (A) Transfection efficiency. (B) 
Percent of cells with abnormal morphology. Data are presented as means, numbers in parentheses represent standard 
deviations. 

Figure 2. Results of 24 h culture in the presence of complexes in CRs of 1:1, 1:4, 1:8 and 1:16. The
complexes were formed using incubation of 1 µg pmaxGFP with chosen CPPs at 21 ◦C for 15 min.
Bar = 50 µm. CR, charge ratio.
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Figure 3. Effect of 24 h culture in the presence of complexes in CRs of 1:1, 1:4, 1:8 and 1:16. The
complexes were formed using incubation of 1 µg pmaxGFP with chosen CPPs at 21 ◦C for 15 min.
CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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complexes were formed using incubation of 1 µg pmaxGFP with chosen CPPs at 21 ◦C for 15 min.
Bar = 50 µm. CR, charge ratio.
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Figure 5. Effect of 48 h culture in the presence of complexes in CRs of 1:1, 1:4, 1:8 and 1:16. The
complexes were formed using incubation of 1 µg pmaxGFP with chosen CPPs at 21 ◦C for 15 min.
CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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Figure 6. Results of 24 h culture in the presence of complexes in CRs of 1:1, 1:2, 1:4 and 1:8. The
complexes were formed using incubation of 2 µg pmaxGFP with chosen CPPs at 21 ◦C for 15 min.
Bar = 50 µm. CR, charge ratio.
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Figure 7. Effect of 24 h culture in the presence of complexes in CRs of 1:1, 1:2, 1:4 and 1:8. The
complexes were formed using incubation of 2 µg pmaxGFP with chosen CPPs at 21 ◦C for 15 min.
CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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Figure 9. Effect of 24 h culture in the presence of complexes in CRs of 1:1, 1:2, 1:4 and 1:8. The
complexes were formed using incubation of 2 µg pmaxGFP with chosen CPPs at 37 ◦C for 15 min.
CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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Figure 11. Effect of 24 h culture in the presence of complexes in CRs of 1:1, 1:2, 1:4 and 1:8. The
complexes were formed using incubation of 2 µg pmaxGFP with chosen CPPs at 21 ◦C for 30 min.
CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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Bar = 50 µm. CR, charge ratio.
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Figure 13. Results of 24 h culture in the presence of complexes in CRs of 1:1, 1:2, 1:4 and 1:8. The
complexes were formed using incubation of 2 µg pmaxGFP with chosen CPPs at 37 ◦C for 30 min.
CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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Figure 15. Effect of 48 h culture in the presence of complexes in CRs of 1:1, 1:2, 1:4 and 1:8. The
complexes were formed using incubation of 2 µg pmaxGFP with chosen CPPs at 21 ◦C for 15 min. Bar
= 50 µm. CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology.
Data are presented as means, numbers in parentheses represent standard deviations.
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Figure 19. Effect of 48 h culture in the presence of complexes in CRs of 1:1, 1:2, 1:4 and 1:8. The
complexes were formed using incubation of 2 µg pmaxGFP with chosen CPPs at 21 ◦C for 30 min.
CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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CR, charge ratio. (A) Transfection efficiency. (B) Percent of cells with abnormal morphology. Data are
presented as means, numbers in parentheses represent standard deviations.
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4. Discussion

Drugs containing proteins or nucleic acids are a promising form of therapy for many
diseases, including those considered incurable at the current level of medicine development.
The structure of the cell membrane, however, does not allow direct cell penetration. The
crucial issue is the choice of the appropriate method of transport to the cells’ interior. The
viral and non-viral systems created so far have many significant disadvantages. Therefore,
attempts are still underway to optimize the transport of macromolecules across the cell
membrane. The results published so far indicate that chimeric molecules composed of
CPPs and various molecules can internalize cells both in vitro and in vivo [6,7]. Insufficient
understanding of the internalization mechanism is holding back their commercialization.
However, some of the best-known penetrating peptides have been included in clinical
trials with moderate success [8,9]. Nevertheless, studies regarding the effectiveness of the
production conditions of chimeric particles composed of CPPs and selected therapeutic
molecules on the cytotoxicity and process efficiency are still necessary. This will allow for
improvement of the methodology to maximize benefits.

Endothelium obtained from a 70 kg male body would weigh over 1 kg, cover an area
of almost 3 m2, and contain about a trillion cells. These specialized cells build a layer
that is the first barrier between blood components and other body tissues. For this reason,
the endothelium is constantly exposed to harmful substances transported within liquid
tissues. At the same time, maintaining the proper functioning of the endothelium is pivotal
for the organisms [10]. Endothelial cells participate in such important processes as blood
pressure regulation, coagulation, fibrinolysis, angiogenesis, and inflammatory reactions.
Abnormalities in the functioning of endothelial cells are the cause of many diseases, e.g.,
atherosclerosis and hypertension. These disorders are also associated with stroke, venous
thrombosis, peripheral vascular disease, chronic renal failure, cancer development, and
vascular complications in diabetes [10]. Methods of proven efficacy in maintaining normal
endothelial function include a Mediterranean diet, weight reduction, stopping smoking,
or exercise [11]. Unfortunately, changes that have already appeared cannot be removed
by such simple methods. In addition to many conventional approaches, such as invasive
and non-invasive procedures and pharmacotherapy, the use of peptides penetrating cells
to introduce molecules that restore or support endothelial function is a promising field of
research.

Effective internalization of CPPs in combination with various cargo has also been con-
firmed for endothelial cells. The first report on this subject came from 2000 when penetrine
was used to transfer the caveolin-1 scaffold domain to mouse endothelial cells [7]. The study
aimed to determine the role of this domain in the regulation of signal transduction. The
result was an effective uptake of the constructed chimeric protein, which was manifested
in the inhibition of NO production and a reduction in the degree of acetylcholine-induced
vasodilation. Furthermore, peptide administration was associated with the inhibition of
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acute inflammation and vascular leakage to a similar extent as the use of glucocorticoids
such as dexamethasone or endothelial NO synthase inhibitor. Penetrin was attached to
the molecule via covalent binding and administered intraperitoneally to mice at 0.3 and
1 mg/kg three times for 24 h. The administration did not significantly affect animal body
functions, such as blood pressure or heart rate [7].

The ability of cell-penetrating peptides to internalize endothelial cells has also been
used to determine the role of cyclic guanosine monophosphate (cGMP) cGMP protein
kinase (cGPK) in nitric oxide-dependent vasodilatation and blood pressure regulation [12].
For this purpose, a chimeric protein containing a cGPK inhibitor peptide in combination
with TAT was synthesized. In addition, in this case, a covalent bond was used. The chimeric
protein was administered to 8 mice by continuous 72-h infusion into the internal jugular
vein. Effective internalization of peptides associated with cGPK inhibitors was confirmed
by the measurements of systolic and diastolic blood pressure, which values increased in
the study group. The presence of inhibitors in cardiac tissues has also been confirmed
by Western blotting. Changes in blood pressure were not observed in any of the control
groups. The researchers did not mention any side effects of CPPs, and the administration
of unbound TAT molecules did not have any effect on blood pressure [12]. In turn, Pep-1
was used to introduce the chimeric Pep-1-EGFP protein into HUVECs (human umbilical
vein endothelial cells) [13]. For this purpose, two expression plasmids, pET15b-EGFP
(expressing only EGFP) and pET15b-PEP-1-EGFP (expressing both EGFP and Pep-1 bound
covalently), were introduced into E.coli cells. The fusion protein and EGFP were isolated by
affinity chromatography. Purified EGFP protein was not transduced into HUVEC cells. In
turn, the Pep-1-EGFP fusion protein internalized into the cells in a time and dose-dependent
manner. EGFP fluorescence was observed after 27 h. Additionally, the fusion peptide did
not show a cytotoxic effect in the MTT test, even at the highest dose of 200 µmol/L [13].

So far, no clinical trials have been carried out using CPPs to transport molecules to
vascular endothelium in humans. However, they were used to introduce an anti-c-Myc
antisense molecule called AVI-5126 into vascular smooth muscle cells. Researchers wanted
to determine whether graft immersed in a solution containing AVI-5126 in combination
with CPP rich in arginine before bypass surgery would reduce the degree of inner layer
growth and thus the risk of vascular occlusion at the intervention site (NCT00451256) [14].
Unfortunately, the studies were suspended in phase II due to insufficient efficacy [15].
A better approach could be the acceleration of endothelialization in the intervention site
instead of inhibiting neointima growth. Perhaps the opportunity for this will also be the
use of CPPs. With proven effective internalization of vascular endothelial cells in in vivo
studies, it is probably only a matter of time before they are used in clinical trials.

Although the method of creating covalent bonds between a penetrating and trans-
ported molecule is still the most widespread, the formation of non-covalent interactions
arouses more and more interest. Studies have confirmed that simple incubation of CPPs
with selected molecules in the appropriate CR leads to bonding. Literature reports have
confirmed the ability of TAT [16], Pep-1 [13], and KALA [17] to form non-covalent bonds.
Moreover, each of the selected peptides contains sequences of a cationic character capa-
ble of producing electrostatic interactions with negatively charged phosphate residues in
plasmid DNA. The binding efficiency strongly depends on the ratio of these charges. By
default, low CR values between 1:1 and 1:10 are used. However, in some cases, the CR with
optimal efficiency can be as high as 1:100 [18]. Selected penetrating peptides in CR 1:16 led
to severe damage to endothelial cells, which justifies the subsequent reduction of the ratio
used to a maximum value of 1:8. However, the most effective CR differed depending on
the type of CPP used.

The efficiency of generating non-covalent interactions between CPPs and selected
molecules depends not only on CR but also on the conditions of the complex formation.
The study used two variable incubation parameters for selected CPPs and pDNA: time and
temperature. Both of the times (15 and 30 min) applied in the study are commonly used
in laboratory practice [3,12,13]. However, for pmaxGFP, the extension of the incubation
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time from 15 to 30 min led to an increase in the number of GFP positive cells. This suggests
that more time is necessary to create non-covalent interactions between the protein and
the plasmid. There was no significant effect of prolonged incubation on changes in cell
morphology. In turn, an increase in the incubation temperature of CPPs with pmaxGFP
intensified the cytotoxic effect, especially for Pep-1 and TAT. This could be due to inefficient
binding of plasmid DNA by CPPs under these conditions. Research has shown that free
CPPs are characterized by higher cytotoxicity than those associated with the transported
molecule [19]. It also confirms the observed decrease in the number of GFP-positive
cells when the incubation temperature increased. Based on the obtained data, it can be
concluded that room temperature is optimal to create non-covalent interactions between
selected CPPs and pmaxGFP. This is consistent with the previously obtained results [20].
High temperature may also be a factor that slightly changes protein activity. Optimization
of the binding process should therefore be based on increasing the incubation time of CPPs
with the transported molecule rather than increasing the temperature. The complexes were
formed in an aqueous environment, which is also one of the standard methods. However,
different approaches may be used since the complexes may be formed in various buffers [21]
or culture media [22]. According to the current state of knowledge, the efficiency of using
these environments has not been compared so far. However, due to the formation of
electrostatic interactions, the presence of ions and other particles in the environment may
be crucial. The amount of plasmid used was also important. Incubation of 1 µg of the
plasmid with CPPs showed only single cells characterized by GFP expression. A better
effect was obtained for 2 µg of the plasmid. Therefore, only this amount was used in the
later stages of the experiment. Literature data confirm the satisfactory transduction level of
1 µg plasmid conditioning GFP expression combined with TAT [22]. However, the optimal
amount due to the use of transcriptional machinery of the host cell may closely depend on
the type of cell line used. The incubation time of the pHCAEC with selected peptides was
also assessed. The effectiveness of the process was tested after 24 or 48 h of culture in a
medium containing CPPs. Prolonged incubation intensified the effect. Research confirms
the effective internalization of protein molecules introduced with CPPs within 5 min.
However, for nucleic acids, the maximum efficiency is observed much later [13]. This time
is necessary not only for the internalization but also for the expression of the introduced
gene. However, shorter incubation times are also used. In the case of CRISPR/Cas9 system
elements introduced into HEK293T (human embryonic kidney cells), HeLa, embryonic
stem cells, and embryonic tumor cells using synthetic peptide cells were cultured in the
presence of complexes only for 4 h. Cell observation was carried out after another 24 h
of culture in pure medium and confirmed effective internalization [23]. Reduction of the
exposure time of cells could potentially limit cytotoxicity. However, most studies do not
confirm the negative effect of low CPP concentrations on cells in the case of either 24 or
48 h culture.

Penetrating peptides are generally considered safe to use. Most studies have not
demonstrated any cytotoxicity or immunogenicity. The results obtained in the presented
study show an increase in cytotoxic effect with an increased CR value and incubation
temperature. For KALA, changes in the cell morphology can already be observed at CR 1:8,
whereas CR 1:16 caused a significant toxic effect. This is in line with the literature reports.
Wan et al. confirmed the minimal cytotoxicity of KALA in CR as between 1:1 and 1:10
and demonstrated its significant toxic effect at higher ratios [24]. In the case of the two
other peptides, even in the highest CR used, no significant morphological changes were
observed when the incubation of CPPs with the plasmid took place at room temperature
(RT). However, increasing the temperature during complex formation led to a cytotoxic
effect at a CR of only 1:2. Due to the characteristics of pHCAECs, we were unable to directly
indicate the cytotoxicity of CPPs or CPPs–plasmid complexes using the MTT assay. We
observed huge discrepancies in the MTT results (data not shown) and morphology of cells,
which may be connected with their high sensitivity to changes in cell to extracellular matrix
adhesion.
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Another problem is the way CPPs internalize the cell. The two main mechanisms of
cell membrane penetration are direct translocation and endocytosis. Endocytosis is limited
as the entrapment of CPPs in the endocytic follicle leads to their degradation. However,
in some cases, methods aimed to intensify the phenomenon of molecules escaping from
early endocytic vesicles before lysis have been used. Studies have shown that the primary
mechanism for the transduction of the cell membrane by Pep-1 is direct translocation [25].
KALA enters the cell mainly through endocytosis. However, it can escape from the
early endocytic vesicles [24]. In turn, the model of cell membrane penetration by TAT
probably changes with temperature. Direct translocation occurs at lower temperatures,
while endocytosis becomes the main penetration mechanism at higher temperatures [26].

The disadvantage of non-covalent binding of CPPs remains the impact of many factors
on process efficiency. These factors are: (I) the type of cell line, (II) the type of transported
molecule and its concentration, (III) the properties of the penetrating peptide, (IV) the
temperature and incubation time, (V) the CR used, and (VI) the length of the culture
period with complexes. Another variable that may influence the efficiency of CPP–cargo
complex formation is the pH of incubation. As the study already involved a large number
of variables, adding another one would make it extremely complicated, and thus, it was
not considered. Applying many variables complicates the optimization process since
optimization involves many variants. It extends the time of experiments and significantly
increases their costs. It also makes it impossible to specify a universal protocol for the
use of CPPs. Despite these adversities, there are many reports regarding effective cell
penetration by CPPs in non-covalent interactions with other molecules like siRNA [20],
proteins [27], and plasmids [28]. So far, however, no similar tests have been performed on
endothelial cells.

Unfortunately, the introduction of pmaxGFP expression plasmids in non-covalent
combinations with CPPs into pHCAEC cells did not bring satisfactory results. Despite
the varied conditions of complex formation and prolonged time of culture or the use of
different CPPs, efficiency similar to the results obtained with electroporation was not
achieved. This may be due to the characteristics of endothelial cells. Tight intercellular
connections may not allow the internalization of weak CPPs and plasmid complexes.
According to our current state of knowledge, this is the only study on the introduction of
CPPs in non-covalent junctions into endothelial cells. The solution, in this case, is probably
the use of covalent bonds. However, this prevents the transport of plasmids as they do not
contain free ends capable of forming a connection.

Additionally, two NLS sequences were used to compare transduction efficiency. NLS
is a group of short cationic peptides containing a polylysine, polyarginine, or polyproline
fragment that allows the molecule to be transported to the cell nucleus through nuclear
pores. Some NLSs can also penetrate the cell membrane [29]. Studies by Koo et al. showed
that the interleukin 1α precursor (pIL-1α) can internalize the cell with similar efficiency
as TAT [29]. Moreover, effective cell penetration in vivo has also been demonstrated
in rat organisms and organs such as the liver, spleen, and intestines. In our study, the
observations showed that NLS works with greater efficiency than the other CPPs used.
Both NLSs showed optimal performance when complexes were formed for 30 min at 21 ◦C,
followed by 48 h incubation with the cells. The most effective CR for NLS [47–55] was 1:1,
while for NLS [47–56] it reached 1:8. However, the results were still not as satisfying as
those obtained for electroporation.

5. Conclusions

Therapeutic methods based on proteins or nucleic acids require developing new,
safer tools for their introduction. In this context, the use of cell-penetrating peptides
seems particularly attractive. The simplest way to form connections between CPPs and
cargo molecules is the introduction of non-covalent interactions. However, in some cases,
like tightly packed endothelial cells, this approach may be less effective. Appropriate
manipulation of complex formation and incubation conditions may influence the obtained



Appl. Sci. 2021, 11, 1997 18 of 19

results. Undoubtedly, there is a need for more extensive research that will allow us to
determine the most effective protocols, especially in the case of cells as difficult to culture
as endothelial cells.
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