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Abstract: In recent years, the penetration of fuel cells in distribution systems is significantly increased
worldwide. The fuel cell is considered an electrochemical energy conversion component. It has the
ability to convert chemical to electrical energies as well as heat. The proton exchange membrane
(PEM) fuel cell uses hydrogen and oxygen as fuel. It is a low-temperature type that uses a noble metal
catalyst, such as platinum, at reaction sites. The optimal modeling of PEM fuel cells improves the
cell performance in different applications of the smart microgrid. Extracting the optimal parameters
of the model can be achieved using an efficient optimization technique. In this line, this paper
proposes a novel swarm-based algorithm called coyote optimization algorithm (COA) for finding the
optimal parameter of PEM fuel cell as well as PEM stack. The sum of square deviation between mea-
sured voltages and the optimal estimated voltages obtained from the COA algorithm is minimized.
Two practical PEM fuel cells including 250 W stack and Ned Stack PS6 are modeled to validate the
capability of the proposed algorithm under different operating conditions. The effectiveness of the
proposed COA is demonstrated through the comparison with four optimizers considering the same
conditions. The final estimated results and statistical analysis show a significant accuracy of the
proposed method. These results emphasize the ability of COA to estimate the parameters of the PEM
fuel cell model more precisely.

Keywords: fuel cell; proton exchange membrane; parameter estimation; coyote optimization algorithm

1. Introduction

No doubt, clean energy technologies play a part an important role in defeating fossil
fuel tiredness and global pollution. Proton exchange membrane fuel cells (PEMFCs) are
prime examples of these technologies for electrochemical energy conversion [1]. Proton ex-
change membrane fuel cells (PEMFCs) are considered an effective variant to diesel dis-
tributed generations that can back up electricity and balance grid power. The key merits of
these PEMFCs in power system applications are high start-up reliability, little costs for start-
up, low carbon emissions, rapid reaction to demand changes, and quiet operation [1–5].
For these reasons, the hydrogen-fueled cars on the global market have been fed by PEMFCs,
where they participate in about 90% of fuel cell research and development [6]. For instance,
in Finland, a substantial amount of hydrogen is extracted as a byproduct in industrial
factories that specialize in chlorine and sodium chlorate, whereas the hydrogen quality is
adequate for employment as a sustainable fuel in PEMFCs [7,8]. As a result, this hydrogen
can be used in PEMFC power plants that operate at partial loading conditions, and so
they can yield an important quick load cover in power systems, besides other renewable
energy sources [9–12]. In this regard, fuel cell units are considered as electrochemical
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energy conversion devices in AC and DC power networks [13,14]. These units can convert
chemical energy to electrical energy besides heat while they use oxygen and hydrogen
as fuel. It is a low-temperature form that uses a noble metal catalyst, such as platinum,
at reaction sites. In addition, energy releases during the reaction [15–17]. The fuel cell
chemical reactions produce dc electricity, heat, and liquid water [18,19].

The parameter estimation of fuel cells has attracted research interest in recent years.
A PEMFC is considered one of the most promising devices that convert chemical en-
ergy fuels into electrical energy based on electrochemical responses [15–18]. Specifically,
the PEMFCs have numerous rewards, e.g., good electrical efficiency, little emission, and flex-
ibility in fuel, that make them applicable to diverse applications [20–24]. For instance,
they can apply in the combined tough issue owing to PEMFC being a compound mul-
tivariable powerfully coupled scheme. For getting precise values for these parameters,
numerous methods have been introduced in the literature. Most importantly, the usage
of meta-heuristics has arisen as a viable and talented choice by reason of their robustness,
ease of application, simplicity, and derivative-free generation of both electric power as well
as heat.

To additionally enhance the PEMFC performance, numerous efforts have been made
by researchers that are carried out to guess the parameters of the PEMFC, which can be
summarized as follows:

• Ref. [16] applies particle swarm optimization (PSO) method for PEMFC parameter
extraction;

• Ref. [25] used hybrid adaptive differential evolution procedure for the extraction
process of PEMFC parameters;

• Ref. [26] develops grasshopper optimization algorithm for PEMFC parameter extraction;
• Ref. [27] proposed multi-verse optimizer for parameter PEMFC extraction.
• The hybrid artificial bee colony technique for estimating the parameter of PEMFC

in [28];
• The estimation of PEMFC parameters was obtained by a combination between back-

tracking search technique combined with Burger’s chaotic map in [29];
• A P systems-based optimizer for parameter estimation of PEMFC model in [30];
• Another optimization called biogeography-based optimization technique improved

by adding with mutations to estimate the parameter of two renewable energy cells
solar and fuel cells in [31];

• The parameter estimation problem based on the fuel cell polarization curve using bird
mating optimization algorithm in [32];

• Refs. [18,33,34] proposed a hybrid genetic algorithm for estimation the PEMFC
parameters;

• In [35], the harmony search optimizer was developed for parameter identification of a
PEMFC model;

• Due to the recent development in machine learning methods [36,37], the authors
of [38] the convolutional neural network have been used for the PEMFC parameters
identification;

• In [39], the PEMFC parameters are extracted based on the polarization curve and
provide the behavior analysis considering the various temperature impacts;

• In [5], the Matlab/Simulink-based model was proposed in conjunction with a waste
heat recovery system; and

• In [40], the parameters of PEMFC are identified by using a new modified version of
the differential algorithm associated with the collective guidance factor.

In recent years, many optimization techniques were developed for several engineering
problems. In particular, COA is a recent method for global optimization problems. It is a
population-based metaheuristic technique. The COA has been classified as both swarm
intelligence and evolutionary heuristic and it is based on the coyotes’ behavior. The fitness
function is reduced using the social structure and exchanging experiences between the
coyotes instead of hunting only. In this regard, we propose a novel method to detect
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the unidentified parameter of the electrochemical model for PEM fuel cells in this paper.
Specifically, a new swarm-based algorithm called coyote COA is developed to determine
the accurate parameter of PEM fuel cells. In the proposed optimization model, the fit-
ness function is minimized based on both the social structure and swapping experiences
amongst the coyotes instead of only hunting. The main merit of COA is that it has no
control parameters, and therefore it is a promising optimization tool compared with those
in the literature. The efficacy of the proposed method is established while a significant
improvement in the accuracy of the estimated parameters of PEM fuel cells is attained.

The reminder of this work is organized as follows: In Section 2, the electrochemical
models of the fuel cell are presented. Section 3 presents the solution methodology of
parameter estimation by using COA. Section 4 demonstrates the results and discussion of
the proposed COA capability for solving the parameter estimation problem with aid of
PEM fuel cells. Finally, Section 5 concludes the remarks and outputs of this research work.

2. Electrochemical Model of PEM Fuel Cell
2.1. Operating Principles of PEM Fuel Cell

The PEM fuel cell consists of three basic elements, anode, proton exchange membrane,
and cathode. The hydrogen gas ionizes producing protons and electrons. The reaction of
the anode site is given as follows:

Anode (oxidation) : 2H2 � 4H+ + 4e−. (1)

At the cathode site, a reduction process occurs, where oxygen molecules react with
electrons from the circuit and protons from the electrolyte (proton exchange membrane)
forming water. Equations (2) and (3) describe the reaction at the cathode site and the overall
reaction of the cell.

Cathode (reduction) : 4H+ + 4e− + O2 � 2H2O (2)

Overall reaction : 2H2 + O2 � 2H2O. (3)

2.2. Output Voltage of PEM Fuel Cell

The output voltage at the terminals of a single PEM fuel cell, Vcell , has resulted
from thermodynamic potential, ENernst, and the potential losses within the conversion
process [16,41],

Vcell = ENernst − (All losses in a f uel cell). (4)

The thermodynamic potential ENernst can be determined from Equation (5) for the fuel
cell. It depends on hydrogen/oxygen at real functioning conditions, the partial pressure of
hydrogen (P∗H2

) and oxygen (P∗O2
), and temperature (T in Kelvin).

ENernst = 1.229− (8.5× 10−3)(T − 298.15) + (4.308× 10−5)T ln(P∗H2
×
√

P∗O2
) (5)

P∗H2
=

RHa·PH2O

2

[(
1/

RHa·PH2O

Pa
e(1.635( I

A )/T1.334)

)
− 1
]

(6)

P∗O2
= RHc·PH2O

[(
1/

RHc·PH2O

Pc
e(4.192( I

A )/T1.334)

)
− 1
]

(7)

where, PH2O is the saturation pressure of water vapor in atm, given in Equation (8).
RHa and RHc are relative humidity of vapor at anode and cathode respectively [41].

log10(PH2O) = 2.95× 10−2(T− 273.15)− 9.18× 10−5(T− 273.15)2 + 1.44× 10−7(T− 273.15)3 − 2.18 (8)

The losses associated with PEM fuel cells are classified into three categories; activation,
ohmic, and concentration losses. These losses caused the variation of the output voltage of
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the fuel cell with the load current [18]. The relation between cell terminal voltage and the
load current is known as the polarization curve.

Figure 1 depicts the voltage losses of PEM fuel cells at different current levels. The PEM
fuel cell has three categories of losses; activation loss, ohmic voltage loss, and concentration loss.
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Activation cell loss is the first category and the most dominant loss, especially at the
beginning of the reaction. This is because of the slowness of the reaction resulting from
electronic barriers that needed to be overcome [17]. This loss is defined as the portion
of voltage, lost to enable ions to flow from one electrode to another [26–28]. It can be
determined by Equation (9).

Vactivation = −
[
ξ1 + ξ2T + ξ3T

(
ln
(

C∗O2

))
+ ξ4T(ln(I))

]
(9)

where the factors ξ1 − ξ4 are coefficients for activation loss voltage varied due to load
current, I, at actual temperature, T(K), and oxygen concentration, C∗O2

.
The value of C∗O2

depends on the partial pressure of oxygen P∗O2
and the actual

temperature.
C∗O2=

[P∗O2
/(5.08× 106)]e(498.15/T) (10)

The second category of losses is the ohmic voltage loss. It has resulted from resistance
to electron transfer through cell electrodes and the resistance to proton flow in the solid
polymer membrane.

Vohmic = Velectronic
ohmic + Vproton

ohmic = IRc + IRm (11)

where the value of electronic resistance, Rc, is unknown. It is considered approximately
constant over the cell operating conditions. The value of proton membrane resistance, Rm,
depends on the membrane characteristics; specific resistivity, ρm (ohm.cm), area A (cm2),
and thickness l (cm). For Nafion membrane, the thickness considered maybe [115:5 mil
(127 µm)] [26,27,41].

Rm = ρm l /A (12)

The value of ρm can be determined using an empirical expression as follows [41]:

ρm =
181.6[1 + 0.03

(
I
A

)
+ 0.062

(
T

303

)2
·
(

I
A

)2.5[
λ− 0.634− 3

(
I
A

)
e(4.18[T−303]/T)

] . (13)
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The adjustable variable λ, reflects the effective water content of the membrane. It may
be 14 under ideal, 100% relative humidity conditions to 22 and 23 under supersaturated
conditions [41].

The third voltage loss of PEM fuel cell is the concentration loss, Vconcentraion. It takes
place at a high limiting current (Imax) where the reduction of concentration is a result of the
difficulty in transporting sufficient reactant to electrode surface [26–28].

Vconcentraion = −b× ln((Jmax − J)/Jmax) (14)

where b is the unknown parametric coefficient.
The output voltage of the PEM fuel cell is determined by Equation (15). If fuel cells,

ncells, are connected in series to obtain the desired voltage, the resulted stack voltage will
be the summation of the output of all cells, as follows [19,27]:

Vcell = ENernst − (Vactivation + Vohmic + Vconcentraion) (15)

Vstack = ncell ×Vcells. (16)

3. Determination of PEMFC Parameter by COA
3.1. Coyote Optimization Algorithm (COA)

Figure 2 shows the flow chart of COA that is developed for solving the parameter
estimation problem of the PEM fuel cell. The total population of coyotes is divided into
a number of packs, NP ε N* packs. Each pack contains NC ε N* coyotes. The number of
the coyote in each pack is considered as a static value. The total number population can
be obtained by multiplying both NP and NC. The solution to the optimization problem
depends on the social conditions of the coyote. Each coyote can represent a possible
solution to the problem based on its social conditions, soc. The social conditions of the
coyote characterize the control variables (X) of a stated global optimization model [42].

COA is a d-dimensional environment representing the space of decision variables.
The social condition soc, of cth coyote that belongs to the Pth pack at tth instant of time,
is socP,t

C . It can be written as:

socP,t
C = X = (x1, x2, x31, . . . .., xd). (17)

The evaluation of coyote’s social conditions determines the objective function, f itP,t
C ,

which reveals the adaptation of coyotes to environmental conditions.
COA is achieved starting from the initialization of the global population of coyotes,

packs with NC coyotes. The preliminary social conditions are designated arbitrarily for
each coyote cth of Pth at instantaneous tth and jth dimension as follows:

socP,t
C,j = LBj + rj ×

(
UBj − LBj

)
(18)

where, LBj and UBj represent the lower and upper bounds of the decision variable jth of
the search space, d. The value of the real random number rj lies in the range [0,1], which is
generated using uniform probability.

The evaluation of the coyotes’ adaptive corresponding to the current decision variables
is determined.

f itP,t
C = f (socP,t

C ) (19)

The diversity of coyotes occurs due to leaving a pack and joining another one.
The probability of a coyote leaving its pack or evicted from a pack is Pe. It depends
on NC and given as follows:

Pe = 0.005 N2
C. (20)

The number of NC that makes Pe > 1 is limited to 14 coyotes inside the pack.
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The best social adapted to the environment, alpha, is only one for the global population.
It represents the best solution to the optimization problem at tth instant of time of Pth pack.

alphaP,t =
{

socP,t
C

∣∣∣argC={1,2,...,NC} min f
(

socP,t
C

) }
(21)
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The COA as swarm intelligence facilitates the distribution of social situations and
relations all info from the total population. COA, formerly, calculates the cultural tendency
of the pack,

cultP,t
j =


OP,t

(NC+1)
2 ,j

, NC is odd

OP,t
NC
2 ,j

+OP,t
(NC+1)

2 ,j

2 otherwise

(22)

where OP,t represents the ranked decision variables (i.e., social conditions) of all coyotes in
the pth pack at tth instant for every j in the search space of control variables d. The cultural
tendency of the pack represents the median social conditions of all coyotes from that
defined pack.

The birth of a coyote, as well as the death, affects the size of the population. For the
purpose of retaining the pack size static, the developed COA tool calculates the ages of all
coyotes within a pack as ageP,t

C ∈ N. Further, the birth of an updated coyote is denoted by
a mixture of the social circumstances of two parents in a pack, that is selected arbitrarily,
as follows:

PupP,t
j =


socP,t

r1,j , randj < Ps or j = j1
socP,t

r2,j, randj ≥ (Ps + Pa) or j = j2
Rj, Otherwise

(23)

where r1 and r2 represent the two random parameters of coyotes within the Pth pack.
j1 and j2 are arbitrary dimensions of the optimization model. Ps and Pa represent, re-
spectively, the scatter and association probabilities, specified by Equations (24) and (25).
Rj represents an arbitrary number that lies in the control variable bound of the jth di-
mension. Note that the values of the real random number r and j lie in the array [0.1],
where they are produced by uniform probability.

Ps = 1/d (24)

Pa = (1− Ps)/2 (25)

Top reserve the population size as a static one, the birth and the death of specified
coyote are treated by the following stages (Algorithm 1):

Algorithm 1. Solution steps of COA

Step1: Calculate the group worse modified to the environment than the pups, w and the number
of the coyote in this collection, ϕ.
Step2: Check if ϕ is one then go directly to step3, else if ϕ is larger than 1 goes directly to step4,
else the pub should die.
Step3: This step involves that each pub survives while the only coyote on behalf of w is supposed
to have died.
Step4: The pub in this step survives while the oldest coyote in w dies. In the case of two or more
coyotes have similar ages, the individual with fewer ages dies.

The interaction between all coyotes in the global population in general and that inside
each pack especially aid the cultural exchanging. The intelligence of coyotes and the
sufficient organization assistance them to appraise their social circumstances considering
the finest one inside the pack, alphaP,t, and the cultural tendency of the pack, cultP,t.
This can be achieved by taking two factors δ1 and δ2 into account when a coyote updates its
social conditions. The influence δ1 is occupied as the change from an arbitrary coyote (Cr1)
within the pack to the alpha coyote in a similar pack. Further, the pack influence (δ2) is the
change from an arbitrary coyote (Cr2) of a pack to the cultural tendency of the same pack.

δ1 = alphaP,t − socP,t
Cr1 (26)

δ2 = cultP,t − socP,t
Cr2 (27)
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The new social condition of a coyote is updated as follows:

new_socP,t
C = socP,t

C + r1δ1 + r2δ2 (28)

where, r1 and r2 are random numbers within the range [0,1], which generated using uniform
probability.

The evaluation of the new social condition results in a new value of the objective function.

new_ f itP,t
C = f

(
new_socP,t

C

)
(29)

At the next (t + 1)th instant of time, the coyotes decide if the new social condition
is better than the older or not. If new_ f itP,t

C is less than f itP,t
C (for minimization problem),

then the decision is that the new social conditions are the best at that instant. Equation (30)
explains this decision.

socP,t+1
C =

{
new_socP,t

C , new_ f itP,t
C < f itP,t

C
socP,t

C otherwise
(30)

The global solution to the problem is that the social conditions of a coyote that best
adapted itself to the environment.

3.2. Parameter Optimization of PEM Fuel Cell

The optimization of the proposed problem aims to identify the unknown parameter
of the electrochemical model for PEMFCs. The optimized model must be accurate as
possible to converge with the actual model. The set of control variables (x) of the parameter
estimation problem is represented by x = {ξ1, ξ2, ξ3, ξ4, Rc, λ, and b}. It is important to
optimize these seven parameters affecting Equations (9)–(14) to obtain the stack output
voltage of the modelled PEMFCs. The calculated stack voltage is required to converge
with the experimental values of the actual stack. To realize the convergence, the sum of
square error (SSE) between the measured and modelled stack voltage must be minimized.
The Coyote optimization algorithm as a metaheuristic optimization algorithm is used to
minimize the objective function of the problem.

SSE = ∑n
k=1[Vmeasured(k)−Vstack(k)]

2 (31)

where n represents the number of real voltages at dissimilar load current. The problem can
be stated as an optimization problem, as follows:

OF = min(SSE(x)) (32)

subject to
ξmin

i ≤ ξi ≤ ξmax
i f or i = 1, 2, 3 and 4

Rmin
c ≤ Rc ≤ Rmax

c

λmin ≤ λ ≤ λmax

bmin ≤ b ≤ bmax

(33)

All control variables are preserved within the lower and upper boundaries as pre-
sented in Equation (33).

4. Results and Discussion

To validate the efficiency of the proposed COA, two practical cases of 250 W PEM
stack [26,27] and NedStack PS6 [43–45] have been studied. The proposed algorithm is veri-
fied by means of the data in the literature [26,27,44]. The parameters, technical, and working
circumstances of the tested stacks are given in Table 1. Further, Table 2 shows the lower
and upper bounds of the decision variables of the model at two different operating condi-
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tions, (operating condition #1: 1/1 bar and 343.15 K) for both stacks (250 W and NedStack
PS6) and (operating condition #2: 3/5 bar and 353.15 k) for 250 W stack. The simulation
results have been compared to other literature works [18–22]. Moreover, four competitive
methods; SSA [46], SCA [47], MFO [48], and PSO [16] have been implemented to test the
effectiveness of COA. For a fair comparison, all of populations are set to 100 with 400
iterations. All simulation results were carried out using the MATLAB R2016b software on
a PC with Intel (R) Core (TM) i3- CPU M370@2.4 GHz 3 GB (RAM).

Table 1. Technical data and operating conditions of PEM fuel cell stack.

250 W Stack NedStack PS6

Technical data

Stack Parameter Value Value
Number of cells in a stack, ncells 24 65

Active cell Area (cm2) 27 240
Nafion membrane thickness l 127 µm 178 µm

Maximum current density Jmax (A cm−2) 0.86 1.2
Rated power (W) 250 6000

Operating conditions

Pa (bar) 1–3 1–3
Pc (bar) 1–5 1–5

Stack temperature T (K) 343.15–353.15 343.15–353.15
Relative humidity in anode RHa 1 1

Relative humidity in cathode RHc 1 1
Voltage (V) 15.09 60–32

Maximum Current (A) 22.1 225
Reactants H2 and Air H2 and Air

Table 2. Lower and upper bounds of PEM stack decision variables of two studied cases.

FC 250 W FC NedStack PS6

Parameter
Bound #1 Bound #2 343.15 K, 1/1 Bar

Lower Upper Lower Upper Lower Upper

ξ1 −0.952 −0.944 −1.1996 −0.8532 −1.1997 −0.8532
ξ2 0.001 0.005 0.001 0.005 0.001 0.005
ξ3 7.4 × 10−5 7.8 × 10−5 3.6 × 10−5 9.8 × 10−5 3.6 × 10−5 9.86 × 10−5

ξ4 −1.98 × 10−4 −1.88 × 10−5 −2.6 × 10−4 −9.54 × 10−5 −26 × 10−5 −9.54 × 10−5

λ 14 23 10 24 13 23
Rc 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008
b 0.016 0.5 0.0136 0.5 0.0136 0.05

Herein, the optimization techniques aim to minimize the square deviation between
measured V-I data and the estimated data by the stack model. This optimization process
results in extracting the optimal values of the decision variables (ξ1, ξ2, ξ3, ξ4, Rc, λ and b)
of the PEM stack model. These variables are used to obtain an accurate model of the PEM
fuel cells stack. The simulation results for the two studied cases are explained as follows:

4.1. Case 1: 250 W PEM Stack

Table 3 clarifies the extracted optimal decision variables using the proposed algorithm,
COA compared to existing literature, and other four competitive methods at 343.15 K and
1/1 bar. In our problem, it is anticipated to lessen the variance between the output voltages
of the proposed optimization model with respect to the measured values at dissimilar
current values. As noticed from Table 3, the ranking of SSE is COA followed by PSO [16],
HGA [18], HADE [25], MVO [27], SSA [46], SCA [47], and MFO [48].
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Table 3. Optimal decision variables obtained with different method compared to COA for 250 W proton exchange membrane
fuel cell (PEMFC) at operating conditions #1.

Operating Condition 1/1 Bar and T = 343.15 and Boun#1 of Decision Variables

PEMFC
Parame-

ter

HGA Hybrid
Genetic

Algorithm [18]
HADE [25] MVO [27] SSA [46] SCA [47] MFO [48]

Particle
Swarm Opti-

mization
(PSO) [16]

Proposed
COA

ξ1 −0.94495 −0.944 −0.9447 −0.94915082 −0.944 −0.952 −0.944 −0.94400281
ξ2 3.018 × 10−3 3.078 × 10−3 3.049 × 10−3 2.93 × 10−3 2.96 × 10−3 2.98 × 10−3 2.96 × 10−3 2.90 × 10−3

ξ3 7.4 × 10−5 7.80 × 10−5 7.78236 ×
10−5 7.49 × 10−5 7.80 × 10−5 7.80 × 10−5 7.80 × 10−5 7.40 × 10−5

ξ4 −1.88 × 10−4 1.88 × 10−4 −1.644 ×
10−4

−1.39 ×
10−4

−1.36 ×
10−4

−1.42 ×
10−4

−1.42 ×
10−4

−1.42 ×
10−4

λ 23 23 16.021 23 23 23 23 23
Rc 1.0 × 10−4 1.0 × 10−4 1.204 × 10−4 3.62 × 10−4 1.53 × 10−4 1.00 × 10−4 1.00 × 10−4 1.00 × 10−4

b 0.029145 0.03267 0.02369 0.01939 0.02217 0.02013 0.02013 0.02013
SSE 16.608 15.6669 15.1316 0.318438868 0.347078342 0.292582747 0.292582749 0.292571646

Hybrid genetic algorithm (HGA); hybrid adaptive differential evolution algorithm (HADE); Multi-verse optimizer (MVO); Sine Cosine
Algorithm (SCA); moth-flame optimization (MFO); coyote optimization algorithm (COA).

At operating condition #2 (353.15 K and 3/5 bar), the comparison of the simulation
results shows that COA has the ability to estimate an accurate model of PEM 250 w stack
with lower SSE (0.6691) compared to the others, Table 4. The value of SSE with COA is
less than HABC by 91.64%, HADE by 91.62%, and 81.33% compared to MOV. Moreover,
it is noticed from Figure 3a that the convergence of the objective function occurred quickly
smoothly after about 27 iterations. The polarization (I-V) curve is shown in Figure 3b with
the effect of different losses. The activation loss, as noticed, has a large value compared
to the concentration loss which has been recorded as the lower value. Figure 4 shows
the polarization curve (V-I curve) of the 250 W PEM fuel cell stack at different operating
conditions and two boundaries of decision variables (bound #1 and bound#2). The figure
shows the best agreement of the model curve with measured values. The power of the
stack model is plotted and compared to the measured value, as presented in Figure 5.

Table 4. Optimal decision variables obtained with different method compared to COA for PEMFC at
operating conditions #2.

Operating Condition 3/5 Bar and T = 353.15 and Bound #2 of Decision Variables

PEMFC
Parameter HABC [28] HADE [25] MVO [27] Proposed COA

ξ1 −0.8540 −0.8532 −0.918163 −1.1449
ξ2 2.8498 × 10−3 2.810093 × 10−3 3.212993 × 10−3 3.0118 × 10−3

ξ3 8.3371 × 10−5 8.092 × 10−5 8.70306 × 10−5 3.6000 × 10−5

ξ4 −1.2940 × 10−4 −1.287 × 10−4 −1.80253 × 10−4 −1.4470 × 10−4

λ 14.2873 14.0448 15.1921 24.0000
Rc 1.0000 × 10−4 1.0000 × 10−4 4.22329 × 10−4 1.0000 × 10−4

b 3.40 × 10−2 3.35374 × 10−2 1.80021 × 10−2 2.0856 × 10−2

SSE 8.0047 7.9908 3.5846 0.6691
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At four working settings, two for examining the proposed model and the other
ones for legalizing the model, a set of the polarization curves is built. Figure 6 clarifies the
polarization curves (V-I curves) at (3/5 bar and 353.15 k/2.5/3 bar and 343.15 k/1.5/1.5 bar
and 343.15 k/1/1 bar and 343.15 k). The results obtained show the effectiveness of the
proposed algorithm in estimating an accurate model for the PEM fuel stack.
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4.2. Case 2: 6000 W NedStack PS6 Stack

In the second case, Nedstack PS6 PEM stack, 65 fuel cells are in series with a rated
power of 6 kW. The detailed technical characteristics are explained in Table 1. As procedures
carried out for the first case study, the results obtained show that the best value of SSE over
the 400 iterations is via the proposed COA. The best fitness is 2.10941 which is lower than the
corresponding SSE obtained by the selected competitive methods SSA, SCA, MFO, and PSO.
Moreover, the results, also, have been compared to the recent literature IAEO [44] and
CFSO [45]. The results presented in Table 5 emphasize that COA outperforms all reported
methods. The optimal parameters of the generated model using the optimization methods
are presented in Table 5. The generating model used the estimated parameters have been
used to construct the polarization (I-V) curve, as shown in Figure 7. Moreover, the effect of
various losses is shown in Figure 7b. The high closeness between generated model and the
data-set (I-V) confirms the accuracy of the proposed COA. Again, the convergence rate of
COA is compared to others, confirming the effectiveness of the proposed COA to generate
a more precise model of PEM fuel cells stack.

Table 5. The optimal parameters of the generated model using the optimization methods.

PEMFC
Parameter

IAEO
[44] CFSO [45] SSA

[46]
SCA
[47] MFO [48] PSO

[16]
Proposed

COA

ξ1 −0.981 −0.9822 −1.0996 −1.1997 −1.1730 −1.1997 −1.1997
ξ2 3.383 × 10−3 3.595 × 10−3 3.92 × 10−3 3.48 × 10−3 3.98 × 10−3 4.37 × 10−3 3.47 × 10−3

ξ3 7.759 × 10−5 9.481 × 10−5 8.75 × 10−5 3.60 × 10−5 7.67 × 10−5 9.86 × 10−5 3.60 × 10−5

ξ4 −9.54 × 10−5 −9.54 × 10−5 −9.54 × 10−5 −9.54 × 10−5 −9.54 × 10−5 −9.54 × 10−5 −9.54 × 10−5

λ 13 13.465 23 23 23 21.216 21.211
Rc 1.00 × 10−4 1.00 × 10−4 1.00 × 10−4 1.34 × 10−4 1.18 × 10−4 1.00 × 10−4 1.00 × 10−4

b 0.047 0.0136 0.0302 0.0238 0.0248 0.0136 0.0136
SSE 2.176 2.1459 2.30110 2.30928 2.18375 2.10983 2.10941
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5. Conclusions

In this paper, a bio-inspired COA has been introduced for estimating an accurate
model of PEM fuel cells. The algorithm identifies the optimum values of the model
parameters accurately. Two practical cases including 250 W and 6 kW NedStack PS6 PEM
system have been used to analyze the performance of the proposed COA method and
its ability to generate a reliable model of PEM fuel cells stack. In COA the optimization
process is based on the social structure and exchanging experiences among the coyotes.
COA has only two parameters, the number of packs and the number of coyotes per pack
that defines the population size, NP and Nc. No control parameters are required for COA.
The features of COA are; rapidly, smoothly, and steadily convergence; no required efforts
are needed to adjust the control variable of the algorithm as compared to other algorithms.
The simulation results including the extracting parameters of the PEM stack and the
minimum deviation between the generated model and the measured data point (I-V) are
compared to the well-known optimizers. According to the numerical results obtained,
COA has the ability and stability to estimate the global optimal parameters of the PEM
fuel cell stack with minimal SEE compared to other algorithms. Well agreements between
the estimated model using COA and the measured data ensure the effectiveness of COA
and the accuracy of the PEM fuel cell stack model. The low value of the SSE emphasizes
that COA is an effective and reliable technique in modeling PEM fuel. Thus, the COA is
suggested to solve more complicated and large engineering optimization problems.
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