
applied
sciences

Article

Improvement for Convolutional Neural Networks in Image
Classification Using Long Skip Connection

Hong Hai Hoang * and Hoang Hieu Trinh

����������
�������

Citation: Hoang, H.H.; Trinh, H.H.

Improvement for Convolutional

Neural Networks in Image

Classification Using Long Skip

Connection. Appl. Sci. 2021, 11, 2092.

https://doi.org/10.3390/app

11052092

Academic Editor: Manuel Armada

Received: 1 February 2021

Accepted: 22 February 2021

Published: 26 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam;
hieudaic@gmail.com
* Correspondence: hai.hoanghong@hust.edu.vn; Tel.: +84-093-449-3466

Abstract: In this paper, we examine and research the effect of long skip connection on convolutional
neural networks (CNNs) for the tasks of image (surface defect) classification. The standard popular
models only apply short skip connection inside blocks (layers with the same size). We apply the
long version of residual connection on several proposed models, which aims to reuse the lost spatial
knowledge from the layers close to input. For some models, Depthwise Separable Convolution is
used rather than traditional convolution in order to reduce both count of parameters and floating-
point operations per second (FLOPs). Comparative experiments of the newly upgraded models and
some popular models have been carried out on different datasets including Bamboo strips datasets
and a reduced version of ImageNet. The modified version of DenseNet 121 (we call MDenseNet 121)
achieves higher validation accuracy while it has about 75% of weights and FLOPs in comparison to
the original DenseNet 121.

Keywords: convolutional neural network; long skip connection; depthwise separable convolution

1. Introduction

Wood in general and bamboo in particular have become one of the most popular
materials today due to their environmental friendliness. Because of its popularity, product
quality requirement becomes more important and can be a crucial aspect in the industrial
production line. Many studies in the field of defect detection and classification, in regard of
digital image processing, aim to minimize or replace human vision and decision methodolo-
gies with artificial techniques [1]. Recent image processing-based methods could deal with
defect classification at a decent performance level but they were limited to detecting simple,
distinctive defects from the background. Silvén, O [2] used self-organizing map (SOM)
for discriminating between sound wood and defects. Qi, X. [3] proposed an algorithm by
combination with Blob analysis algorithm and image preprocessing approach to detect the
defects. Haindl, M. [4] used fast multispectral texture defect detection method based on the
underlying three-dimensional spatial probabilistic image model. Xiansheng [5] provided
an online method of bamboo defect inspection and classification. Wang, X. [6] proposed a
new surface grading approach by integrating the color and texture of bamboo strips based
on Gaussian multi-scale space.

Recent studies in the deep learning field have proved that most problems in machine
vision that were difficult in the traditional computer vision methods, were solved using
convolutional neural network (CNNs). Krizhevsky et al. [7] first introduced CNN with
AlexNet that trained with the difficult ImageNet dataset, solved the classification task with
top-1 and top-5 error rates of 37.5% and 17.0%, which was by far better than previous works.
Simonyan and Zisserman [8] proved that CNNs had to have a deep network of layers
in order for this hierarchical representation of visual data to work. However, stacking
multiple convolution layers can cause the problem of vanishing gradient, making the
model difficult to learn. ResNet [9] and Highway Networks [10] introduced the idea that
vanishing gradient problem could be tackled by by-passing the signal from layer to layer

Appl. Sci. 2021, 11, 2092. https://doi.org/10.3390/app11052092 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11052092
https://doi.org/10.3390/app11052092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052092
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2092?type=check_update&version=3

Appl. Sci. 2021, 11, 2092 2 of 14

by connections. Deeper architectures were created using skip connections and achieved
better accuracy. DenseNet [11] utilized these connections by creating short paths between
every layer in its architecture. Skipping effectively simplifies the network, using fewer
layers in the initial training stages. This accelerates learning by reducing the impact of
vanishing gradients, as there are fewer layers to propagate through. The network then
gradually restores the skipped layers as it learns the feature space. Towards the end of
training, when all layers are expanded, it stays closer to the manifold and thus learns
faster. Xception [12] and MobileNet v1 [13] presented Separable Convolutional layer,
which significantly reduced computational cost, comparing to traditional Convolutional
layer, with only a small decrease in accuracy.

In this paper, we study effect of long skip connection in several convolution neural
networks while performing image classification tasks. The models with the long connection
are proved to be more robust to converge, have better performance than its counterpart,
and can be applied to every model. For DenseNet and ResNet, we change traditional
convolution by Depthwise Separable Convolution for the purpose of reducing parameters
and floating-point operations per second (FLOPs). We observe the long skip connections
accelerate the convergence of the learning process, while performing slightly better in
comparison with tested models.

This paper is organized in the following context: Section 2 shows the works related
to our network. Our modified network is shown in Section 3. Section 4 presents the
experimental results and analysis. The discussion, conclusions and further work are
detailed in the last two sections.

2. Related Works

Skip connection has become a standard in today’s convolutional architectures. Short
skip connections are used along with consecutive convolutional layers that do not change
the dimension inside blocks of layers until a convolution with stride equal to two or pooling
layers; while long skip connections usually exist in the architectures that are symmetrical.

Highway networks used learned gating mechanisms (as a first form of skip connec-
tion) to regulate information flow, inspired by Long Short-Term Memory (LSTM) [14]
recurrent neural networks. The gating mechanisms allowed neural networks to have paths
for information to follow across different layers (“information highways”), using and
spreading knowledge from previous layers. The idea was explained again in ResNet that:
the deeper layers are identity mapping, and the other layers are learned from the shallower
layers. By this idea, ResNet’s authors created a deep residual learning architecture with
152 layers and won ILSVRC 2015 with an incredible error rate of 3.6%. Another popular
model that utilized the effect of skip connection is DenseNet. This architecture heavily
used feature concatenation so as to ensure maximum information flow between layers in
the network. This was achieved by connecting via concatenation of all layers directly with
each other, as opposed to ResNet. The DenseNet’s authors claimed that their idea led to an
enormous amount of feature channels on the last layers of the network, to more compact
models, and extreme feature reusability.

U-Net [15] performed long skip connections between layers in encoder and decoder;
while the encoder did the convolution work, the decoder did the deconvolution (transpose
convolution), which is opposed to the first path. By introducing skip connections in the
encoder–decoder architecture, fine-grained details can be recovered in the prediction. Even
though there was no theoretical justification, symmetrical long skip connections worked
incredibly effectively in dense prediction tasks (medical image segmentation).

For the task of improving a model’s computational performance, Depthwise Separable
Convolution was first introduced in Xception as an Inception [16] module and placed
throughout the deep learning architecture. Depthwise Separable Convolution is made
by a Depthwise Convolution (channel-wise DK × DK spatial convolution) followed by
a pointwise convolution (1 × 1 convolution) to change the dimension. With DK × DK
equals 3 × 3, Depthwise Separable Convolution lowers computation effort, with only a

Appl. Sci. 2021, 11, 2092 3 of 14

small reduction in accuracy. MobileNet adopts the idea and built network architecture that
even outperforms SqueezeNet [17] and AlexNet while the multi-adds and parameters were
much fewer. MobileNet v2 [18] introduced two new features to the base architecture of the
first version, which were linear bottlenecks between the layers, and shortcut connections
between the bottlenecks. The latest MobileNet (v3) [19] family member used h-swish
instead of sigmoid function [20] and mobile-friendly Squeeze-and-Excitation blocks [21],
together with model architecture auto searching. The two later versions of MobileNet
family achieved about 75% accuracy and less than 5 ms latency (running on Pixel4 Edge
TPU mobile).

Recent model architectures have focused on balancing accuracy and latency; Mnas-
Net [22] was the first to introduce automated neural architecture search approach for
designing mobile models using reinforcement learning. EfficientNet [23] uniformly scaled
each dimension (width, depth and resolution) with a fixed set of scaling coefficients,
achieving much better accuracy and efficiency than previous CNNs.

3. Methodology

Consider x0 as input image, passed through a convolutional network, L is number of
layers in the network, while Hl is the non-linear transformation of lth layer. Output of lth is
xl .

3.1. Skip Connection

Traditional feed-forward convolutional networks connect the output of the lth layer as
input to the (l + 1)th layer, which gives rise to the following layer transition: xl = Hl(xl−1).
The ResNet’s authors added a skip connection that bypasses the non-linear transformations
with a function as identity as shown in Figure 1:

xl = Hl(xl−1) + xl−1 (1)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 15

a Depthwise Convolution (channel-wise × spatial convolution) followed by a
pointwise convolution (1x1 convolution) to change the dimension. With × equals 3 × 3, Depthwise Separable Convolution lowers computation effort, with only a small re-
duction in accuracy. MobileNet adopts the idea and built network architecture that even
outperforms SqueezeNet [17] and AlexNet while the multi-adds and parameters were
much fewer. MobileNet v2 [1818] introduced two new features to the base architecture of
the first version, which were linear bottlenecks between the layers, and shortcut connec-
tions between the bottlenecks. The latest MobileNet (v3) [19] family member used h-swish
instead of sigmoid function [20] and mobile-friendly Squeeze-and-Excitation blocks [21],
together with model architecture auto searching. The two later versions of MobileNet fam-
ily achieved about 75% accuracy and less than 5 ms latency (running on Pixel4 Edge TPU
mobile).

Recent model architectures have focused on balancing accuracy and latency;
MnasNet [22] was the first to introduce automated neural architecture search approach
for designing mobile models using reinforcement learning. EfficientNet [23] uniformly
scaled each dimension (width, depth and resolution) with a fixed set of scaling coeffi-
cients, achieving much better accuracy and efficiency than previous CNNs.

3. Methodology

Consider as input image, passed through a convolutional network, is number
of layers in the network, while is the non-linear transformation of layer. Output of

 is .

3.1. Skip Connection
Traditional feed-forward convolutional networks connect the output of the lth layer

as input to the (+ 1) layer, which gives rise to the following layer transition: =(). The ResNet’s authors added a skip connection that bypasses the non-linear trans-
formations with a function as identity as shown in Figure 1: = () + (1)

An advantage of ResNet was that the gradient can flow directly through the identity
function from early, close to input layers to the subsequent layers.

(a) Traditional convolution (b) Residual connection, using element-wise addition

(c) Dense connections, using concatenate

Figure 1. Simple representation of types of convolutions from layer to layer, note that layers have the same height and
width.

Figure 1. Simple representation of types of convolutions from layer to layer, note that layers have the same height and width.

An advantage of ResNet was that the gradient can flow directly through the identity
function from early, close to input layers to the subsequent layers.

Appl. Sci. 2021, 11, 2092 4 of 14

3.2. Dense Connections

Huang et al. [11] introduced dense connections that connected every layer in feed-
forward direction. Different from ResNet, DenseNet did not sum the output feature maps
of the layer with the incoming feature maps but concatenated them instead. Consequently,
the equation for the lth layer:

xl = Hl([x0, x1, . . . , xl−1]) (2)

where ([x0, x1, . . . , xl−1]) is the concatenation of output feature map of layers 0, 1, . . . , l − 1.
Since this grouping of feature maps cannot be done when the sizes of them are

different, DenseNet is divided into Dense Blocks, where the dimensions of the feature
maps remain constant within a block, but the number of filters changes between them.
Huang et al. [11] also created Transition Layers, which stay between blocks and take care
of the downsampling by applying a Batch Normalization (BN), a 1 × 1 convolution and a
2 × 2 pooling layers.

Another important feature of DenseNet is the growth rate. As defined in [11], the lth

layer had k0 + k × (l − 1) input feature map; where k0 was the number of feature maps at
input layer, and k was the growth rate.

3.3. Depthwise Separable Convolution

Srivastava et al. [10] and Huang et al. [11] proposed Separable Convolutions layer
(“s-conv” for short), which performed first a Depthwise Spatial Convolution (which acts on
each input channel separately) followed by a pointwise convolution which mixes together
the resulting output channels.

A standard 2D convolutional layer takes DH × DW × M as input feature map I and
produces a Dh × Dw × N output feature map O where DW and DH are the spatial width
and height of a input feature map, M is the number of input depth, Dw and Dh are the
spatial width and height of a output feature map and N is the number of output depth.

Kernel K performs convolution on input feature map (with zero padding and stride
one), has size DK × DK × M × N, where DK is the spatial dimension of the kernel
(assumed to be square) and M is the number of input channels and N is the number of
output channels as defined. Normal convolutions have the computational cost of:

Lconv2d = DK × DK × M × N × Dh × Dw (3)

The computational cost depends multiplicatively on the number of input channels
M, the number of output channels N, the kernel size DK × DK and the feature map size
Dh × Dw.

Depthwise Separable Convolution splits a kernel into 2 separate kernels that do two
convolutions: the Depthwise Spatial Convolution and the pointwise convolution. Depth-
wise Spatial Convolution is the channel-wise DK × DK spatial convolution. Pointwise
convolution is the 1× 1 convolution to change the dimension. Separable convolutions have
the computational cost:

Lseparable conv2d = DK × DK × M × Dh × Dw + M × N × Dh × Dw (4)

Performing division, the computational reduction is:

Lseparable conv2d

Lconv2d
=

1
N

+
1

DK
2 (5)

3.4. Formatting of Mathematical Components

DenseNet [11], U-Net [15] and V-Net [24] have showed that convolutional networks
can be significantly deeper, more accurate, and simple to train if they contain shortcut
connections between layers close to the input and ones close to the output.

Appl. Sci. 2021, 11, 2092 5 of 14

Inspired by these ideas, we first create bottlenecked block with skip connection, dense
connectivity and growth rate equaled to 32 similar to DenseNet’s architecture and connect
every block to eaxh other in feed-forward fashion. We add longer skip connections to
pass features from upper layers (blocks) to lower layers (blocks). Generally, the tth block
receives the feature maps of all early blocks n0, n1, . . . , nt−1. The function of the tth layer is
presented as follows:

nt = Hl,nt

(
xl,nt−1

)
+

t−1

∑
i=0

ni (6)

where (t − 1)th block has l layer.
We use 3 × 3 separable convolution layer instead of 3 × 3 normal convolution, as it

reduces number of parameters as well as FLOPs, thus lowering computational effort.ơ

3.5. Bottlenecked Layers

It has been shown in [9,16] that a 1 × 1 convolution can be presented as bottleneck
layer before each 3 × 3 convolution to reduce the number of input feature maps, therefore
improving computational performance. We design our building blocks as this method,
stacking 1 × 1 conv, 3 × 3 separable-conv, then 1 × 1 conv, where 1 × 1 conv(s) function
to reducing and restore dimensions, while 3 × 3 s-conv(s) do the convolution with lower
input/output dimensions.

3.6. Upstream and Pooling Layers

An important aim of convolution networks is to downsample layers in which feature
maps sizes change. To deal with the blocks’ depth difference, we add 1 × 1 conv to match
block to block depth. Upstream2D and MaxPooling2D layers are added on the connections
between blocks as shown in Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 15

DenseNet [11], U-Net [15] and V-Net [24] have showed that convolutional networks
can be significantly deeper, more accurate, and simple to train if they contain shortcut
connections between layers close to the input and ones close to the output.

Inspired by these ideas, we first create bottlenecked block with skip connection,
dense connectivity and growth rate equaled to 32 similar to DenseNet’s architecture and
connect every block to eaxh other in feed-forward fashion. We add longer skip connec-
tions to pass features from upper layers (blocks) to lower layers (blocks). Generally, the

 block receives the feature maps of all early blocks , , … , . The function of the
 layer is presented as follows: = , , + (6)

where (− 1) block has l layer.

We use 3 x 3 separable convolution layer instead of 3 × 3 normal convolution, as it
reduces number of parameters as well as FLOPs, thus lowering computational effort.ơ

3.5. Bottlenecked Layers
It has been shown in [9] and [16] that a 1 × 1 convolution can be presented as bot-

tleneck layer before each 3 × 3 convolution to reduce the number of input feature maps,
therefore improving computational performance. We design our building blocks as this
method, stacking 1 × 1 conv, 3 × 3 separable-conv, then 1 × 1 conv, where 1 × 1
conv(s) function to reducing and restore dimensions, while 3 × 3 s-conv(s) do the con-
volution with lower input/output dimensions.

3.6. Upstream and Pooling Layers
An important aim of convolution networks is to downsample layers in which feature

maps sizes change. To deal with the blocks’ depth difference, we add 1 × 1 conv to
match block to block depth. Upstream2D and MaxPooling2D layers are added on the con-
nections between blocks as shown in Figure 2.

Figure 2. Connection between 2 blocks with upstream and pooling layers (called Add block). BN
denotes Batch Normalization and the normal line represents long skip connection between blocks
while dash line states that there could be additional block(s) between block F and K.

3.7. M-DenseNet Architecture
Figure 3 illustrates the simple M-DenseNet architecture. Similar to DenseNet, we cre-

ate dense connection between layers in each block, then add transition layer(s) to perform
downsampling. However, we change all 3 × 3 conv layers in DenseNet to s-conv layer,
then add Add block as shown in Table 1.

Figure 2. Connection between 2 blocks with upstream and pooling layers (called Add block). BN
denotes Batch Normalization and the normal line represents long skip connection between blocks
while dash line states that there could be additional block(s) between block F and K.

3.7. M-DenseNet Architecture

Figure 3 illustrates the simple M-DenseNet architecture. Similar to DenseNet, we
create dense connection between layers in each block, then add transition layer(s) to
perform downsampling. However, we change all 3 × 3 conv layers in DenseNet to s-conv
layer, then add Add block as shown in Table 1.

Appl. Sci. 2021, 11, 2092 6 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 15

(a) Proposed model (b) DenseNet block

Figure 3. An overview of model architecture. Note that the skip connections are created between blocks (layers with dif-
ferent shapes). Our model can be considered as a larger version of connection of DenseNet with separable convolution
instead of normal 2D convolution.

Table 1 shows different configuration of the M-DenseNet. Blocks are shown in
bracket with number of repetitions. Upsampling2d with 1 × 1 conv2d helps add blocks
match dimension. Introduced initially before the Block 1, a convolution with 64 output
channels, 7 × 7 kernel size and 2 strides are applied on the input image. The block archi-
tecture, as shown in Figure 2, follows the idea of Deeper Bottleneck Architectures [11].
Add block (m - n) means that we create long connection between block m and block n,
block 0 is the output feature map of the first MaxPooling2D layer and block n is the output
feature map of Transition Layer nth.

Table 1. MDenseNet’s architectures.

Name Size M-DenseNet121 M-DenseNet169 M-DenseNet201

Separable-Conv2D 112 × 112 7 × 7 s-conv, stride = 2

MaxPool2D 56 × 56 3 × 3 max pool, stride = 2

Block 1 56 × 56
1 × 1 3 × 3 − × 6

Transition Layer 1
56 × 56 1 × 1 conv 28 × 28 2 × 2 average pool, stride 2

Add block (0–1) 56 × 56 upsampling2d(size = 2), 1 × 1 conv, maxpool2d

Block 2 28 × 28
1 × 1 3 × 3 − × 12

Figure 3. An overview of model architecture. Note that the skip connections are created between blocks (layers with
different shapes). Our model can be considered as a larger version of connection of DenseNet with separable convolution
instead of normal 2D convolution.

Table 1. MDenseNet’s architectures.

Name Size M-DenseNet121 M-DenseNet169 M-DenseNet201

Separable-Conv2D 112 × 112 7 × 7 s-conv, stride = 2
MaxPool2D 56 × 56 3 × 3 max pool, stride = 2

Block 1 56 × 56
[

1 × 1 conv
3 × 3 s − conv

]
× 6

Transition Layer 1 56 × 56 1 × 1 conv
28 × 28 2 × 2 average pool, stride 2

Add block (0–1) 56 × 56 upsampling2d(size = 2), 1 × 1 conv, maxpool2d
Block 2 28 × 28

[
1 × 1 conv

3 × 3 s − conv

]
× 12

Transition Layer 2 28 × 28 1 × 1 conv
14 × 14 2 × 2 average pool, stride 2

Add block (0-2) 56 × 56 upsampling2d(size = 4), 1 × 1 conv, maxpool2d
Add block (1-2) 28 × 28 upsampling2d(size = 2), 1 × 1 conv, maxpool2d

Block 3 14 × 14

[
1 × 1 conv

3 × 3 s − conv

]
×

24

[
1 × 1 conv

3 × 3 s − conv

]
× 32

[
1 × 1 conv

3 × 3 s − conv

]
×

48

Transition Layer 3 14 × 14 1 × 1 conv
7 × 7 2 × 2 average pool, stride 2

Add block (0-3) 56 × 56 upsampling2d(size = 8), 1 × 1 conv, maxpool2d
Add block (1-3) 28 × 28 upsampling2d(size = 4), 1 × 1 conv, maxpool2d
Add block (2-3) 14 × 14 upsampling2d(size = 2), 1 × 1 conv, maxpool2d

Block 4 7 × 7

[
1 × 1 conv

3 × 3 s − conv

]
×

16

[
1 × 1 conv

3 × 3 s − conv

]
× 32

[
1 × 1 conv

3 × 3 s − conv

]
×

32
Global AvgPool2D

Dense (num_classes, SoftMax)

num_classes: number of classes.

Appl. Sci. 2021, 11, 2092 7 of 14

Table 1 shows different configuration of the M-DenseNet. Blocks are shown in bracket
with number of repetitions. Upsampling2d with 1 × 1 conv2d helps add blocks match
dimension. Introduced initially before the Block 1, a convolution with 64 output channels,
7 × 7 kernel size and 2 strides are applied on the input image. The block architecture, as
shown in Figure 2, follows the idea of Deeper Bottleneck Architectures [11]. Add block
(m-n) means that we create long connection between block m and block n, block 0 is the
output feature map of the first MaxPooling2D layer and block n is the output feature map
of Transition Layer nth.

4. Experiments and Results Analysis
4.1. Case Study on the Bamboo Strips Dataset
4.1.1. Build Dataset

The Bamboo images are taken by using high speed Area Color camera (BASLER-
acA1920–150uc, ~200 frames per second) with a lens of 8 mm focal length (TAMRON),
a frame grabber and a PC. The camera is fixed above the bamboo strip and set focus on
the surface. Because of the importance of keeping light in an undisturbed environment,
a square shaped LED light is fixed above the bamboo strips. The type of lights, with the
addition of a black box as shown in Figure 4 below, are effective against reflection and
shadow, as well as the disturbing light from the environment.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15

Transition Layer 2
28 × 28 1 × 1 conv 14 × 14 2 × 2 average pool, stride 2

Add block (0-2) 56 × 56 upsampling2d(size = 4), 1 × 1 conv, maxpool2d

Add block (1-2) 28 × 28 upsampling2d(size = 2), 1 × 1 conv, maxpool2d

Block 3 14 × 14
1 × 1 3 × 3 −× 24 1 × 1 3 × 3 −× 32

1 × 1 3 × 3 − × 48

Transition Layer 3
14 × 14 1 × 1 conv 7 × 7 2 × 2 average pool, stride 2

Add block (0-3) 56 × 56 upsampling2d(size = 8), 1 × 1 conv, maxpool2d

Add block (1-3) 28 × 28 upsampling2d(size = 4), 1 × 1 conv, maxpool2d

Add block (2-3) 14 × 14 upsampling2d(size = 2), 1 × 1 conv, maxpool2d

Block 4 7 × 7
1 × 1 3 × 3 −× 16 1 × 1 3 × 3 −× 32

1 × 1 3 × 3 − × 32

Global AvgPool2D

Dense (num_classes, SoftMax)

num_classes: number of classes.

4. Experiments and Results Analysis
4.1. Case Study on the Bamboo Strips Dataset
4.1.1. Build Dataset

The Bamboo images are taken by using high speed Area Color camera (BASLER-
acA1920--150uc, ~200 frames per second) with a lens of 8 mm focal length (TAMRON), a
frame grabber and a PC. The camera is fixed above the bamboo strip and set focus on the
surface. Because of the importance of keeping light in an undisturbed environment, a
square shaped LED light is fixed above the bamboo strips. The type of lights, with the
addition of a black box as shown in Figure 4 below, are effective against reflection and
shadow, as well as the disturbing light from the environment.

Typical bamboo strips have 2 cm width, so in order to improve production speed, we
recorded images of five parallel strips over the conveyor. To deal with lens distortion, we
calibrated the camera and obtain its matrix together with distortion coefficients, by the
help of OpenCV library [25]. The images are then split into five equals parts (removing
unwanted areas), containing each bamboo strip with similar height and width, as de-
scribed in Figure 5.

Figure 4. Camera and light system.

Typical bamboo strips have 2 cm width, so in order to improve production speed, we
recorded images of five parallel strips over the conveyor. To deal with lens distortion, we
calibrated the camera and obtain its matrix together with distortion coefficients, by the
help of OpenCV library [25]. The images are then split into five equals parts (removing
unwanted areas), containing each bamboo strip with similar height and width, as described
in Figure 5.

We build a Bamboo strips dataset (about 25,000 images), which contains seven classes
that are classified manually. The dataset can be accessed at https://github.com/hieuth133
/Bamboo, accessed on 24 January 2021. The images shape is 260 × 500 × 3 and the dataset
contains seven classes: one for good bamboo strips, five classes contain non-qualified
bamboo strips images (detailed in Section 3.1), and the last one is background (images
of conveyor). Example of bamboo defect images are shown in Figure 6. Images are
cropped to 224 × 224 × 3 with per-pixel mean subtracted. Because the number of images
containing defect is minimal compared to the good bamboo strips images, we upsample
the defect bamboo classes by using image augmentation. Using Keras ImageDataGen-
erator library [26], we generate new images by horizontal and vertical flipping, rotating
(±2 degree), shifting height and width, changing brightness. Both original and generated
images are used together to form the Bamboo dataset. Figure 7 points out the distribution
of number of images from seven classes in percentages.

https://github.com/hieuth133/Bamboo
https://github.com/hieuth133/Bamboo

Appl. Sci. 2021, 11, 2092 8 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15

Figure 4. Camera and light system.

Figure 5. Initial image to 5 divided images (from top to bottom).

We build a Bamboo strips dataset (about 25,000 images), which contains seven classes
that are classified manually. The dataset can be accessed at
https://github.com/hieuth133/Bamboo, 24 January 2021. The images shape is 260 × 500 ×3 and the dataset contains seven classes: one for good bamboo strips, five classes contain
non-qualified bamboo strips images (detailed in Section 3.1), and the last one is back-
ground (images of conveyor). Example of bamboo defect images are shown in Figure 6.
Images are cropped to 224 × 224 × 3 with per-pixel mean subtracted. Because the num-
ber of images containing defect is minimal compared to the good bamboo strips images,
we upsample the defect bamboo classes by using image augmentation. Using Keras Im-
ageDataGenerator library [27], we generate new images by horizontal and vertical flip-
ping, rotating (± 2 degree), shifting height and width, changing brightness. Both original
and generated images are used together to form the Bamboo dataset. Figure 7 points out
the distribution of number of images from seven classes in percentages.

(a) (b) (c) (d) (e)

Figure 6. Example of non-qualified bamboo strips class images, from left to right: (a) stick with
inner side, (b) stick with outer skin, (c) cracked, (d) defective cut, (e) worm eaten.

Figure 5. Initial image to 5 divided images (from top to bottom).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15

Figure 4. Camera and light system.

Figure 5. Initial image to 5 divided images (from top to bottom).

We build a Bamboo strips dataset (about 25,000 images), which contains seven classes
that are classified manually. The dataset can be accessed at
https://github.com/hieuth133/Bamboo, 24 January 2021. The images shape is 260 × 500 ×3 and the dataset contains seven classes: one for good bamboo strips, five classes contain
non-qualified bamboo strips images (detailed in Section 3.1), and the last one is back-
ground (images of conveyor). Example of bamboo defect images are shown in Figure 6.
Images are cropped to 224 × 224 × 3 with per-pixel mean subtracted. Because the num-
ber of images containing defect is minimal compared to the good bamboo strips images,
we upsample the defect bamboo classes by using image augmentation. Using Keras Im-
ageDataGenerator library [27], we generate new images by horizontal and vertical flip-
ping, rotating (± 2 degree), shifting height and width, changing brightness. Both original
and generated images are used together to form the Bamboo dataset. Figure 7 points out
the distribution of number of images from seven classes in percentages.

(a) (b) (c) (d) (e)

Figure 6. Example of non-qualified bamboo strips class images, from left to right: (a) stick with
inner side, (b) stick with outer skin, (c) cracked, (d) defective cut, (e) worm eaten.

Figure 6. Example of non-qualified bamboo strips class images, from left to right: (a) stick with inner
side, (b) stick with outer skin, (c) cracked, (d) defective cut, (e) worm eaten.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15

Figure 7. Bamboo dataset structure.

4.1.2. Training Model

We evaluate the M-DenseNet on our Bamboo strips dataset, as shown in Figure 8.

Figure 8. Training and testing method for Bamboo image classification.

We choose batch size of 32 for 30 epochs and stochastic gradient descent (SGD), with
learning rate equal to 10 , divided by 10 at epoch 10 and 20, weight decay = 10 , mo-
mentum = 0.9, and Nesterov momentum is applied. Training time is about 3 hours on
Tesla V100-SXM2 with 16GB of VRAM, and computation capability is 7.0. Table 2 shows
the results of M-DenseNet(s), DenseNet(s) and ResNet(s) trained on Bamboo dataset. All
models’ accuracies are qualified for bamboo industry (>= 95%), and M-DenseNet utilizes
parameters more efficient than other models, which appears in Figure 9 and image pre-
diction as shown in Figure 10. Model accuracy is defined as an average number of items
correctly identified as either truly positive or truly negative out of the total number of
items:

Stick with outter
skin of bamboo

13%

Cracked part
17%

Worm eaten
17%

Defective cut
11%

Background
12%

Stick with inner
side of bamboo

11%

Good
19%

Dataset Structure

Stick with outter skin of bamboo Cracked part
Worm eaten Defective cut
Background Stick with inner side of bamboo
Good

Figure 7. Bamboo dataset structure.

Appl. Sci. 2021, 11, 2092 9 of 14

4.1.2. Training Model

We evaluate the M-DenseNet on our Bamboo strips dataset, as shown in Figure 8.
We choose batch size of 32 for 30 epochs and stochastic gradient descent (SGD), with

learning rate equal to 10−3, divided by 10 at epoch 10 and 20, weight decay = 10−6, mo-
mentum = 0.9, and Nesterov momentum is applied. Training time is about 3 hours on
Tesla V100-SXM2 with 16GB of VRAM, and computation capability is 7.0. Table 2 shows
the results of M-DenseNet(s), DenseNet(s) and ResNet(s) trained on Bamboo dataset. All
models’ accuracies are qualified for bamboo industry (≥95%), and M-DenseNet utilizes pa-
rameters more efficient than other models, which appears in Figure 9 and image prediction
as shown in Figure 10. Model accuracy is defined as an average number of items correctly
identified as either truly positive or truly negative out of the total number of items:

∑k
i=1

tpi+tni
tpi+tni+ f pi+ f ni

k
(7)

where k is number of classes, “t” is true, “f ” is false, “p” is positive and “n” is negative.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15

Figure 7. Bamboo dataset structure.

4.1.2. Training Model

We evaluate the M-DenseNet on our Bamboo strips dataset, as shown in Figure 8.

Figure 8. Training and testing method for Bamboo image classification.

We choose batch size of 32 for 30 epochs and stochastic gradient descent (SGD), with
learning rate equal to 10 , divided by 10 at epoch 10 and 20, weight decay = 10 , mo-
mentum = 0.9, and Nesterov momentum is applied. Training time is about 3 hours on
Tesla V100-SXM2 with 16GB of VRAM, and computation capability is 7.0. Table 2 shows
the results of M-DenseNet(s), DenseNet(s) and ResNet(s) trained on Bamboo dataset. All
models’ accuracies are qualified for bamboo industry (>= 95%), and M-DenseNet utilizes
parameters more efficient than other models, which appears in Figure 9 and image pre-
diction as shown in Figure 10. Model accuracy is defined as an average number of items
correctly identified as either truly positive or truly negative out of the total number of
items:

Stick with outter
skin of bamboo

13%

Cracked part
17%

Worm eaten
17%

Defective cut
11%

Background
12%

Stick with inner
side of bamboo

11%

Good
19%

Dataset Structure

Stick with outter skin of bamboo Cracked part
Worm eaten Defective cut
Background Stick with inner side of bamboo
Good

Figure 8. Training and testing method for Bamboo image classification.

Table 2. Accuracy and floating-point operations per second (FLOPs) achieve by M-DenseNet in
comparison with the other models.

Model Parameter
(106)

FLOPs
(106)

Accuracy on
Validation Set

(%)

DenseNet121 7.05 14.97 96.73
DenseNet169 12.66 27.76 98.16
DenseNet201 18.34 39.90 97.83

ResNet50 23.50 47.00 96.37
ResNet101 42.00 85.00 96.58

MDenseNet121 5.51 10.83 99.46
MDenseNett169 10.42 20.50 99.46
MDenseNet201 15.71 30.94 99.49

Numbers in bold represent best result.

Appl. Sci. 2021, 11, 2092 10 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15

∑ ++ + + (7)

where k is number of classes, “t” is true, “f” is false, “p” is positive and “n” is negative.

Table 2. Accuracy and floating-point operations per second (FLOPs) achieve by M-DenseNet in
comparison with the other models.

Model
Parameter

()
FLOPs
()

Accuracy on Validation set
(%)

DenseNet121 7.05 14.97 96.73

DenseNet169 12.66 27.76 98.16

DenseNet201 18.34 39.90 97.83

ResNet50 23.50 47.00 96.37

ResNet101 42.00 85.00 96.58

MDenseNet121 5.51 10.83 99.46

MDenseNett169 10.42 20.50 99.46

MDenseNet201 15.71 30.94 99.49
Numbers in bold represent best result.

Figure 9. Comparison of accuracy and FLOPs between M-DenseNet, DenseNet and ResNet.

DenseNet121

DenseNet169

DenseNet201

MDenseNet121

MDenseNet169

MDenseNet201

ResNet50
ResNet101

96%

97%

97%

98%

98%

99%

99%

100%

100%

0 10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y

FLOPs (10^6)

DenseNet

MDenseNet

ResNet

Figure 9. Comparison of accuracy and FLOPs between M-DenseNet, DenseNet and ResNet.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15

Figure 10. Image prediction final result.

4.2. Case Study on the Reduced Version of ImageNet
We also test the M-DenseNet and DenseNet families without/with long skip connec-

tion and s-conv. We use another dataset, which is a reduced version of ImageNet [27] with
100 classes and about 500 images in each class. The dataset is also accessible via the same
github link above (Section 4.1.1). All models are trained by the same technique with extra
augmentation [28–30] and normalization [31]; batch size is 32, Adam optimizer, 60 epochs
and learning rate is 10 .

Table 3 presents the value of accuracy and FLOPs in comparison between DenseNet
and M-DenseNet. By observation, models with long skip connection converge faster, as
shown in Figure 11 and has a better overall result. Parameters and FLOPs of M-DenseNet
family equal roughly 80% of original DenseNet, while the accuracy increases about 3–5%.

Table 3. Accuracy and FLOPs achieved by M-DenseNet in comparison with DenseNet.

Model
Parameter

()
FLOPS
()

Accuracy on Validation set
(%)

DenseNet121 7.14 14.11 73.72

DenseNet169 12.80 25.30 74.54

DenseNet201 18.51 36.57 75.65

M-DenseNet121 5.50 10.83 78.56

M-DenseNet169 10.41 20.50 78.86

M-DenseNet201 15.71 30.94 79.42

Numbers in bold represent best result.

Figure 11. Comparison between DenseNet121 and M-DenseNet121 in terms of model validation accuracy from epoch 0 to
30.

Figure 10. Image prediction final result.

4.2. Case Study on the Reduced Version of ImageNet

We also test the M-DenseNet and DenseNet families without/with long skip connec-
tion and s-conv. We use another dataset, which is a reduced version of ImageNet [27] with
100 classes and about 500 images in each class. The dataset is also accessible via the same
github link above (Section 4.1.1). All models are trained by the same technique with extra
augmentation [28–30] and normalization [31]; batch size is 32, Adam optimizer, 60 epochs
and learning rate is 10−3.

Table 3 presents the value of accuracy and FLOPs in comparison between DenseNet
and M-DenseNet. By observation, models with long skip connection converge faster, as
shown in Figure 11 and has a better overall result. Parameters and FLOPs of M-DenseNet
family equal roughly 80% of original DenseNet, while the accuracy increases about 3–5%.

Appl. Sci. 2021, 11, 2092 11 of 14

Table 3. Accuracy and FLOPs achieved by M-DenseNet in comparison with DenseNet.

Model Parameter
(106)

FLOPS
(106)

Accuracy on
Validation set

(%)

DenseNet121 7.14 14.11 73.72
DenseNet169 12.80 25.30 74.54
DenseNet201 18.51 36.57 75.65

M-DenseNet121 5.50 10.83 78.56
M-DenseNet169 10.41 20.50 78.86
M-DenseNet201 15.71 30.94 79.42

Numbers in bold represent best result.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15

Figure 10. Image prediction final result.

4.2. Case Study on the Reduced Version of ImageNet
We also test the M-DenseNet and DenseNet families without/with long skip connec-

tion and s-conv. We use another dataset, which is a reduced version of ImageNet [27] with
100 classes and about 500 images in each class. The dataset is also accessible via the same
github link above (Section 4.1.1). All models are trained by the same technique with extra
augmentation [28–30] and normalization [31]; batch size is 32, Adam optimizer, 60 epochs
and learning rate is 10 .

Table 3 presents the value of accuracy and FLOPs in comparison between DenseNet
and M-DenseNet. By observation, models with long skip connection converge faster, as
shown in Figure 11 and has a better overall result. Parameters and FLOPs of M-DenseNet
family equal roughly 80% of original DenseNet, while the accuracy increases about 3–5%.

Table 3. Accuracy and FLOPs achieved by M-DenseNet in comparison with DenseNet.

Model
Parameter

()
FLOPS
()

Accuracy on Validation set
(%)

DenseNet121 7.14 14.11 73.72

DenseNet169 12.80 25.30 74.54

DenseNet201 18.51 36.57 75.65

M-DenseNet121 5.50 10.83 78.56

M-DenseNet169 10.41 20.50 78.86

M-DenseNet201 15.71 30.94 79.42

Numbers in bold represent best result.

Figure 11. Comparison between DenseNet121 and M-DenseNet121 in terms of model validation accuracy from epoch 0 to
30.
Figure 11. Comparison between DenseNet121 and M-DenseNet121 in terms of model validation accuracy from epoch 0 to 30.

Testing usage with other models: We make modifications to other models, similar to
what we have done to create MDenseNet in Section 3.7. The models are EfficientNet [23]
and MobileNet v1, v2, v3 [13,18,19]. We use a reduced version of ImageNet and training
technique the same as that explained in Section 4.2. Below is the detail of comparison.

Figures 12 and 13 point out that our modifying models perform better than the original
ones with small decrease in FLOPs (6-3% for MobileNet and 2-1% for EfficientNet). This
proves the effectiveness of the long skip connections to performance of CNN.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

Testing usage with other models: We make modifications to other models, similar to
what we have done to create MDenseNet in Section 3.7. The models are EfficientNet [23]
and MobileNet v1, v2, v3 [13,18,19]. We use a reduced version of ImageNet and training
technique the same as that explained in section 4.2. Below is the detail of comparison.

Figures 12 and 13 point out that our modifying models perform better than the orig-
inal ones with small decrease in FLOPs (6-3% for MobileNet and 2-1% for EfficientNet).
This proves the effectiveness of the long skip connections to performance of CNN.

Figure 12. Comparison between MobileNet and (M) MobileNet (V1–V3, right to left, respectively).

Figure 13. Comparison between EfficientNet and (M) EfficientNet (B0–B4, left to right, respectively).

1.96 1.95
1.92

1.80

1.76
1.75

1.70

1.75

1.80

1.85

1.90

1.95

2.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Va
lid

at
io

n
lo

ss

FLOPs (10^6)

MobileNet V1-3 (M)MobileNet V1-3

1.95 1.90
2.09

1.77
1.85

1.63
1.49 1.53 1.56 1.54

0.00

0.50

1.00

1.50

2.00

2.50

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Va
lid

at
io

n
lo

ss

FLOPs (106)

EfficientNetB0-4 (M)EfficientNetB0-4

Figure 12. Comparison between MobileNet and (M) MobileNet (V1–V3, right to left, respectively).

Appl. Sci. 2021, 11, 2092 12 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

Testing usage with other models: We make modifications to other models, similar to
what we have done to create MDenseNet in Section 3.7. The models are EfficientNet [23]
and MobileNet v1, v2, v3 [13,18,19]. We use a reduced version of ImageNet and training
technique the same as that explained in section 4.2. Below is the detail of comparison.

Figures 12 and 13 point out that our modifying models perform better than the orig-
inal ones with small decrease in FLOPs (6-3% for MobileNet and 2-1% for EfficientNet).
This proves the effectiveness of the long skip connections to performance of CNN.

Figure 12. Comparison between MobileNet and (M) MobileNet (V1–V3, right to left, respectively).

Figure 13. Comparison between EfficientNet and (M) EfficientNet (B0–B4, left to right, respectively).

1.96 1.95
1.92

1.80

1.76
1.75

1.70

1.75

1.80

1.85

1.90

1.95

2.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Va
lid

at
io

n
lo

ss

FLOPs (10^6)

MobileNet V1-3 (M)MobileNet V1-3

1.95 1.90
2.09

1.77
1.85

1.63
1.49 1.53 1.56 1.54

0.00

0.50

1.00

1.50

2.00

2.50

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Va
lid

at
io

n
lo

ss

FLOPs (106)

EfficientNetB0-4 (M)EfficientNetB0-4

Figure 13. Comparison between EfficientNet and (M) EfficientNet (B0–B4, left to right, respectively).

4.3. Ablation Study

We conducted an ablation study to point out the effectiveness of long skip connection
to the performance of the models. We used EfficientNet B0 and three modified models
based on EfficientNet B0 for testing.

The configuration for training and dataset is the same as that explained in Section 4.2.
Figure 14 shows the validation loss while training 4 models in 60 epochs. Models with
more long skip connections perform better than ones with less long connections.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 15

4.3. Ablation Study
We conducted an ablation study to point out the effectiveness of long skip connection

to the performance of the models. We used EfficientNet B0 and three modified models
based on EfficientNet B0 for testing.

The configuration for training and dataset is the same as that explained in Section
4.2. Figure 14 shows the validation loss while training 4 models in 60 epochs. Models with
more long skip connections perform better than ones with less long connections.

Figure 14. Validation loss comparison between EfficientNet B0 and our modification based on EfficientNet B0 (3 models);
EfficientNet B0 is the base model; (M) EfficientNet B0 is our modification model, add blocks are added that connect all
blocks similar to DenseNet (Figure 3.b); (M) EfficientNet B0-1 has only connections between consecutive blocks (Block N
- Block N+1); (M) EfficientNet B0-2 has connections between consecutive blocks and blocks separated by 1 block (Block N
– Block N+1; Block N – Block N+2).

5. Discussion
As noted above, the modification adds to the model and turns it into a larger version

of DenseNet. The upgrade seems to be small but it led to notable consequences. We pre-
sent a few discussions and experiments to prove the efficiency of our proposed method.

Feature reuse: Generally, the feature maps close to the input detect small or fine-
grained detail, whereas feature maps close to the output of the model capture more gen-
eral features. The connection between blocks encourages layers to learn both small detail
and general nature of the object. The ablation study also proves the effect of skip connec-
tions that is more connections results in better performance.

Adaptability: The method of adding long skip connections has the ability to fit well
to other models, from lightweight one like MobileNet family to well-designed Efficient-
Net family. Comparative experiments show that the modified models converge faster and
have better performance.

Difficulty: In order to perform long skip connection between layers having different
size, we have to equal the shape of two layers (detail in Section 3.6). This task can consume
large GPU memory capacity and is unable to work with small size GPU, as the shape of
feature map of the long skip connection layer is very large.

6. Conclusions
In this paper, we have proposed a modification to improve the performance of CNNs

by using the effect of long skip connections. It creates long connections between blocks of
layers with different sizes of feature map. In our experiment, the models with long skip
connections tend to converge faster, without overfitting. The MDenseNet 121 model
achieves higher validation accuracy while it has about 75% of weights and FLOPs in com-
parison to the original DenseNet 121. Adding long skip connections also helps MobileNets
and EfficientNets families to improve their performances (tested with a reduced version
of ImageNet).

Figure 14. Validation loss comparison between EfficientNet B0 and our modification based on EfficientNet B0 (3 models);
EfficientNet B0 is the base model; (M) EfficientNet B0 is our modification model, add blocks are added that connect all
blocks similar to DenseNet (Figure 3.b); (M) EfficientNet B0-1 has only connections between consecutive blocks (Block N -
Block N+1); (M) EfficientNet B0-2 has connections between consecutive blocks and blocks separated by 1 block (Block N –
Block N+1; Block N – Block N+2).

Appl. Sci. 2021, 11, 2092 13 of 14

5. Discussion

As noted above, the modification adds to the model and turns it into a larger version
of DenseNet. The upgrade seems to be small but it led to notable consequences. We present
a few discussions and experiments to prove the efficiency of our proposed method.

Feature reuse: Generally, the feature maps close to the input detect small or fine-
grained detail, whereas feature maps close to the output of the model capture more general
features. The connection between blocks encourages layers to learn both small detail and
general nature of the object. The ablation study also proves the effect of skip connections
that is more connections results in better performance.

Adaptability: The method of adding long skip connections has the ability to fit well to
other models, from lightweight one like MobileNet family to well-designed EfficientNet
family. Comparative experiments show that the modified models converge faster and have
better performance.

Difficulty: In order to perform long skip connection between layers having different
size, we have to equal the shape of two layers (detail in Section 3.6). This task can consume
large GPU memory capacity and is unable to work with small size GPU, as the shape of
feature map of the long skip connection layer is very large.

6. Conclusions

In this paper, we have proposed a modification to improve the performance of CNNs
by using the effect of long skip connections. It creates long connections between blocks of
layers with different sizes of feature map. In our experiment, the models with long skip
connections tend to converge faster, without overfitting. The MDenseNet 121 model achieves
higher validation accuracy while it has about 75% of weights and FLOPs in comparison to the
original DenseNet 121. Adding long skip connections also helps MobileNets and EfficientNets
families to improve their performances (tested with a reduced version of ImageNet).

The models with long skip connections have benefits in comparison to their counter-
parts, as it enhances feature reuse throughout the models, encourage models to learn both
the fine details (coming from layers close to input) and the more general details (coming
from layers close to output) of the objects. Moreover, the proposed modification is highly
adaptable to many models, from lightweight to heavily parameterized models. As ad
limitation, we experience difficulty in training big models, which is a result of the large
shape of the feature map in the skip connection.

We will try to control the amount of knowledge when performing long skip connection
in further experiments. In future work, we will explore this architecture with deeper layers,
while maintaining its performance to apply to different tasks such as segmentation or
object detection.

Author Contributions: Supervision: H.H.H.; conceptualization: H.H.T.; methodology: H.H.H. and
H.H.T.; validation: H.H.H. and H.H.T.; investigation: H.H.T.; resources: H.H.T. and H.H.H.; writing—
original draft preparation: H.H.T. and H.H.H.; writing—review and editing: H.H.H. and H.H.T.;
project administration: H.H.H.; funding acquisition: H.H.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by Vietnam Ministry of Education and Training under project
number B2020-BKA-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MDPI Research Data Policies.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 2092 14 of 14

References
1. Czimmermann, T.; Ciuti, G.; Milazzo, M.; Chiurazzi, M.; Roccella, S.; Oddo, C.M.; Dario, P. Visual-Based Defect Detection and

Classification Approaches for Industrial Applications—A SURVEY. Sensors 2020, 20, 1459. [CrossRef] [PubMed]
2. Silvén, O.; Niskanen, M.; Kauppinen, H. Wood inspection with non-supervised clustering. Mach. Vis. Appl. 2003, 13, 275–285.

[CrossRef]
3. Qi, X.; Li, X.; Zhang, H. Research of paper surface defects detection system based on blob algorithm. In Proceedings of the IEEE

International Conference on Information and Automation (ICIA), Yinchuan, China, 26–28 August 2013.
4. Haindl, M.; Grim, J.; Mikeš, S. Texture Defect Detection. In Computer Analysis of Images and Patterns; Kropatsch, W.G., Kampel, M.,

Hanbury, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4673, pp. 987–994.
5. Xiansheng, Q.; Feng, H.; Qiong, L.; Xin, S. Online defect inspection algorithm of bamboo strip based on computer vision. In

Proceedings of the IEEE International Conference on Industrial Technology 2009, Gippsland, Australia, 10–13 February 2009.
6. Wang, X.; Liang, D.; Deng, W. Surface grading of bamboo strips using multi-scale color texture features in Eigenspace. Comput.

Electron. Agric. 2010, 73, 91–98. [CrossRef]
7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.
8. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
10. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway Networks. In Proceedings of the ICML Deep Learning Workshop, Lille,

France, 6–11 July 2015.
11. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
12. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
13. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
14. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
15. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
16. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015,

arXiv:1512.00567.
17. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size. arXiv 2016, arXiv:1602.07360.
18. Mark, S.; Andrew, H.; Menglong, Z.; Andrey, Z.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June
2018; pp. 4510–4520.

19. Andrew, H.; Mark, S.; Grace, C.; Chen, B.; Mingxing, T.; Weijun, W.; Yukun, Z.; Ruoming, P.; Vijay, V.; Quoc, V.L.; et al. Searching
for MobileNetV3. arXiv 2019, arXiv:1905.02244.

20. Chigozie, E.N.; Winifred, I.; Anthony, G.; Stephen, M. Activation Functions: Comparison of Trends in Practice and Research for
Deep Learning. arXiv 2018, arXiv:1811.03378v1.

21. Jie, H.; Li, S.; Samuel, A.; Gang, S.; Enhua, W. Squeeze-and-Excitation Networks. arXiv 2019, arXiv:1709.01507v4.
22. Mingxing, T.; Bo, C.; Ruoming, P.; Vijay, V.; Mark, S.; Andrew, H.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture Search

for Mobile. arXiv 2019, arXiv:1807.11626v3.
23. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019.
24. Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.

arXiv 2016, arXiv:1606.04797.
25. OpenCV. Available online: https://opencv.org/ (accessed on 13 June 2020).
26. Keras. Available online: https://github.com/keras-team/keras (accessed on 13 June 2020).
27. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 22–24 June 2009.
28. Terrance, D.; Graham, W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552v2.
29. Ekin, D.; Barret, Z.; Dandelion, M.; Vijay, V.; Le, Q.V. AutoAugment: Learning Augmentation Policies from Data. arXiv 2019,

arXiv:1805.09501v3.
30. Ekin, D.; Barret, Z.; Jonathon, S.; Le, Q.V. RandAugment: Practical automated data augmentation with a reduced search space.

arXiv 2019, arXiv:1909.13719v2.
31. Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex industrial problems.

IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [CrossRef]

http://doi.org/10.3390/s20051459
http://www.ncbi.nlm.nih.gov/pubmed/32155900
http://doi.org/10.1007/s00138-002-0084-z
http://doi.org/10.1016/j.compag.2010.04.008
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://opencv.org/
https://github.com/keras-team/keras
http://doi.org/10.1109/23.589532

	Introduction
	Related Works
	Methodology
	Skip Connection
	Dense Connections
	Depthwise Separable Convolution
	Formatting of Mathematical Components
	Bottlenecked Layers
	Upstream and Pooling Layers
	M-DenseNet Architecture

	Experiments and Results Analysis
	Case Study on the Bamboo Strips Dataset
	Build Dataset
	Training Model

	Case Study on the Reduced Version of ImageNet
	Ablation Study

	Discussion
	Conclusions
	References

