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Abstract: This paper proposes a new switching adaptive fuzzy controller and applies it to vibration
control of a vehicle seat suspension equipped with a semi-active magnetorheological (MR) damper.
The proposed control system consists of three functioned filters: (1) Filter 1: a model of interval
type 2 fuzzy to compensate disturbances; (2) Filter 2: a ‘switching term’ to evaluate the magnitude
of disturbance; and (3) Filter 3: a group of adaptation laws to enhance the robustness of control
input. These filters play a role of powerful shields to improve control performance and guarantee
the stability of the applied system subjected to external disturbances. After embedding a PID
(proportional-integral-derivative) model into Riccati-like equation, main control parameters are
updated based on the adaptation laws. The proposed controller is then synthesized in two different
cases: high disturbance and small disturbance. For the high disturbance, a special type of sliding
surface function, which relates to an exponential function and its t-norm, is used to increase the energy
of control system. For the small disturbance, the energy from the modified t-norm of the sliding
surface is neglected to reduce the energy consumption with maintaining the desired performance.
To demonstrate the effectiveness of the proposed controller, a vehicle seat suspension installed
with controllable MR damper is adopted to reflect the robustness against external disturbances
corresponding to road excitations. It is validated from computer simulation that the proposed
controller can provide better vibration control performance than other existing robust controllers
showing excellent control stability with well-reduced displacement and velocity at the position of
the seat.

Keywords: switching adaptive control; fuzzy model; sliding mode control; prescribed sliding surface;
vibration control; semi-active seat suspension; external disturbance

1. Introduction

Modern intelligent controls remain as the ‘heart’ of many devices, especially in in-
dustrial machines, automobiles, home appliances, robotics, etc. In this research, due to
the flexibility in handling the disturbances, the adaptive control is chosen as a powerful
tool in the development of the intelligent controllers. A composite adaptive control for
robotic was presented in [1] in which the controller used the lower-bounded matrices of
the predicted errors to develop the adaptation laws. Adaptive control with fuzzy model
for tracking control was studied in [2] where the tan-type barrier Lyapunov (TBL in short)
function was used for the design of the adaptive laws showing better control performance
than the log-type BL. Prescribed performance was used to design adaptive control with
command-filter in [3] in which the finite time method was applied as main tool for the
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filter. To enhance the robustness of the controller, a fuzzy system is frequently employed to
approximate the unknown linear function. The prescribed performance was embedded
into an adaptive fuzzy control in [4] presenting a new transformed error function-based
arc-tanh-type function. This function was an inverse hyperbolic tangent function and set
following the arc-tanh function to improve its performance. An application of the sliding
mode control for the design of adaptive control was presented in [5] where an integral
sliding mode controller coupled with a dual-layer adaptive scheme was utilized. A decou-
pling control using adaptive fuzzy model was developed in [6] in which the main function
related to the main control input was analyzed to the second element. Another control
methodology used in the design of adaptive model is PID (proportional-integral-derivative)
controller. A hybrid PID control integrating with the genetic algorithm and particle swarm
optimization was presented in [7]. However, because of large number of iterations, the
proposed control proposed in [7] has large time delay in practice. A combination between
interval type 2 fuzzy (IT2F in short) model and PID control was described in [8] where the
role of IT2F was a feedforward term to compensate the uncertainties and nonlinearities
of the system in the design of PID controller. In this work, grey wolf (GW) optimizer
and artificial bee colony algorithm were used for automatically turning the parameters of
PID. The neural PID control was presented in [9] for minimizing the steady-state error in
which the traditional neural PD control was transformed into a new model of neural PID
control to compensate the uncertainties. A new adaptive law was developed to adapt the
three main parameters of the PID controller considering the signal of dynamic variables
of the system [10], and a neural model associated PID controller was also investigated for
designing adaptive control laws [11].

It is well known that the classical type of PID model is still an important tool in
the design of modern controllers [12]. However, the use of PID-based controller only
may cause the lack of robustness against system uncertainties and disturbances. A new
form of combination among fuzzy model, adaptive control, sliding mode control and PID
model was presented in [13] in which a new form of PID-terminal sliding surface was
proposed using the adaptive fuzzy logic to tune the parameters of the PID gains. An
adaptive PID controller where the adaptation laws include both the hybrid function error
and the gains of the PID controller was also presented in [14]. A composite controller
including adaptive control, sliding mode control, PID and fuzzy model was studied in [15]
in which a new modified Riccati-like equation and PID model were adopted to control
severe disturbances. A new model of adaptive control with prescribed performance of
the sliding surface was presented in [16] so that system state variables are to be stayed
within the defined boundaries. A new form of adaptive control with optimal control was
also investigated in [17] to improve time convergence of the prescribed performance. An
adaptive control with PI model was developed in [18] considering Riccati-like equation,
sliding mode control and fuzzy model to enhance control robustness. It is evident from the
above literature survey that adaptive control remains as a potential controller for various
dynamic systems. In addition, the adaptive control can be easily combined with other
control types such as sliding mode control, optimal control, fuzzy model and PID model
for improving control robustness of many systems subjected to parameter uncertainty and
external disturbance.

Consequently, the main technical contribution of this work is to formulate a new robust
adaptive controller which preserves merits of PID and fuzzy models, sliding mode control
and prescribed performance. More specifically, the following contents are to be carried
out in this work: (1) a new integration of conventional sliding surface and prescribed
sliding surface for switching control is presented, (2) a novel modified Riccati-like equation
with PID parameters is proposed for the design of a new robust control input, (3) a new
selection methodology for system constraints adaptable to the change of magnitude of
disturbance coupled with dynamic motion is proposed and (4) computer simulations
are undertaken to validate the robust stability considering the vibration problem of a
vehicle seat suspension equipped with a semi-active magnetorheological (MR) dampers.
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In the presentation of control performances, a comparison between the proposed controller
and two other existing controllers is made to demonstrate some salient properties of the
proposed controller showing less vibration magnitude and higher stability against external
disturbances (road excitations).

This article is organized as follows. After addressing the research background and
motivation in Introduction, design procedures for the proposed controller are presented in
Section 2 considering the robustness of input control. In Section 3, computer simulations
are carried out for three controllers: the proposed controller and two compared existing
controllers. After discussing on vibration control performances of three controllers, the
conclusion is drawn in Section 4 validating that the proposed controller can provide
better control performance with higher robustness against severe disturbances than two
compared controllers.

2. Design of a New Adaptive Fuzzy Controller
2.1. Robustness of Input Controls

In the proposed control, the fuzzy model is applied as the first module. The fuzzy
model is well explained in [15–18]. Among many types of the fuzzy models, the interval
type 2 fuzzy neural networks (IT2FNN) model is chosen in this work. To fasten the
calculation progress, the clustering method is used to decrease the volume of data. Then,
the rule base of fuzzy model is defined and the jth If-Then rule can be described as follows:

Rj
f : If h1 is Hj

f 1 and . . . and hn is Hj
f n Then g is aj

0 +
n

∑
i=1

aj
ihi (1)

where, Hj
f i(i = 1, . . . , n; j = 1, . . . , m) are fuzzy sets, m is the number of rules, and aj

i are
interval sets. The output is found by:

g f =
gl + gr

2
=

ΞT
l ξ

f
l + ΞT

r ξ
f
r

2
(2)

In Equation (2), ΞT
l =

[
wl

1 wl
2 wl

3 . . . wl
n

]
and ΞT

r =
[
wr

1 wr
2 wr

3 . . . wr
n
]

are the weight-
ing vectors, which symbolize the relation between the rule layer and type-reduction. The
weights firing strength vectors in Equation (2) are given by:

ξ
f
l =

 f
1

n
∑

i=1
f

i

f
2

n
∑

i=1
f

i

f
3

n
∑

i=1
f

i

. . .
f

n
n
∑

i=1
f

i


T

, ξ
f
r =

 f 1
n
∑

i=1
f i

f 2
n
∑

i=1
f i

f 3
n
∑

i=1
f i

. . .
f n

n
∑

i=1
f i


T

In this study, the nth system is used which belongs to a single-input single-output
(SISO in short) system. The governing equation of the system is defined as follows:

.
x∇ = f∇(x∇) + g∇(x∇)u∇(t) + d∇(t) (3)

where, f∇(x∇) ∈ Rn and g∇(x∇) ∈ Rn are two unknown non-linear function vectors,
u∇(t) ∈ R1 is control input, d∇(t) ∈ Rn is an external disturbance vector, |d∇(t)| ≤ δd,
where the value δd ∈ Rn is an upper bound of d∇(t) and x∇ = [x1∇, x2∇, . . . , xn∇]

T =[
x1∇,

.
x1∇, . . . , x1∇

(n−1)
]T
∈ Rn is the state vector. Let a new vector

~
x∇ be

~
x∇ =[

x1∇ x2∇ x3∇ . . . x(n−1)∇

]T
. Then, the system (3) can be rewritten as follows:

.
~
x∇ = S1∇

~
x∇ + ST

2∇ss∇ (4)
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In the above,

S1∇ =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
−k1 −k2 −k3 . . . −kn−1

, S2∇ =


0
0
.
1


The tracking error is then defined as e∇(t) = x1∇ − xd∇, where xd∇ is the desired

value. It is noted that x1∇ is the same as x∇ in Equation (4). The second (prescribed) sliding
surface is defined as follows [16]:

σs∇ =
.
ϕ + cs∇ϕ (5)

In the above, cs∇ > 0. The constant cs∇ is always positive because its design is derived
from the sliding surface of the conventional sliding mode control. It is remarked that
coefficients of the conventional sliding surface are positive to guarantee the stability of
control system. Then, the derivative of Equation (5) is obtained as follows.

.
σs∇ =

..
ϕ + cs∇

.
ϕ = M1∇ + M2∇ + M3∇

(
f∇(x∇) + g∇(x∇)u∇(t) + d∇(t)−

..
xd∇

)
+ cs∇

.
ϕ (6)

In the above,
.
ϕ = 1

2

[ .
λ+

.
e∇(t)

λ+e∇(t)
−

.
λ− .

e∇(t)
λ−e∇(t)

]
,

..
ϕ = M1∇ + M2∇ + M3∇

..
e∇(t), M1∇ =

..
λ(λ+e∇(t))−

( .
λ+

.
e∇(t)

)2

2(λ+e∇(t))
2 , M2∇ = −

..
λ(λ−e∇(t))−

( .
λ− .

e∇(t)
)2

2(λ−e∇(t))
2 , M3∇ =

(
λ+e∇(t)

2(λ+e∇(t))
2 +

λ−e∇(t)
2(λ−e∇(t))

2

)
The lumped uncertainty of system is then defined by:

w∇ = M3∇γ̃ f∇ξ f∇ + M3∇γ̃g∇ξg∇u∇ + M3∇d∇(t) (7)

where, γ f∇ = f∇(x∇)− f ∗∇(x∇), γg∇ = g∇(x∇)− g∗∇(x∇); ξ f∇, ξg∇ are two consequent
membership values of functions f∇(x∇), g∇(x∇), respectively. Using Equations (6) and (7),
the time derivative of Equation (6) is rewritten as follows:

.
σs∇ = M1∇ + M2∇ + M3∇ f ∗∇(x∇) + M3∇g∗∇(x∇)u∇(t)−M3∇

..
xd∇ + cs∇

.
ϕ + w∇ (8)

The relationship between Equation (8) and IT2FNN model is expressed as follows:

.
σs∇ = M1∇ + M2∇ + M3∇θ∗f∇ξ f∇ + M3∇θ∗g∇ξg∇u∇ −M3∇

..
xd∇ + cs∇

.
ϕ + w∇ (9)

where,

θ∗f∇ = arg minθ f∇∈∆θ f∇

[
supx∇∈∆x∇

∣∣ f∇(x∇)− f ∗∇(x∇)
∣∣],

θ∗g∇ = arg minθg∇∈∆θg∇

[
supx∇∈∆x∇

∣∣g∇(x∇)− g∗∇(x∇)
∣∣], ∆θ f∇ =

{
θ f∇ ∈ Rn, ‖θ f∇‖ ≤ Θ f∇

}
,

∆θg∇ =
{

θg∇ ∈ Rn, ‖θg∇‖ ≤ Θg∇
}

, ∆x∇ = {x∇ ∈ Rn, ‖x∇‖ ≤ Θx∇}.

In the above definitions, Θ f∇ , Θg∇, Θx∇ are constant boundaries.
Now, an equivalent controller is determined from Equation (9) based on the assump-

tion
.
σs∇ ≈ 0:

u1 =
1

M3∇ θ̂g∇ξg∇

(
−M1∇ −M2∇ −M3∇ θ̂ f∇ξ f∇ + M3∇

..
xd∇ − cs∇

.
ϕ
)

(10)

The equivalent control term u1 cannot stabilize the system because it cannot com-
pensate the error caused from the fuzzy approximation. In fact, the input control u1 can
be considered as the internal energy of the system. In the physical model, related to the
potential energy, the derivative (9) must less than or equal zero. When this situation is
obtained, the system will be stable. Thus, it can be assumed that the derivative

.
σs∇ is

approximated to be zero to find the original control energy (10). However, in real control
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system, the disturbance or uncertainty always exists and continuously attacks the control
system. To guarantee the robustness and stability of the system, a first new robust control
part u2, which is designed as a similar form to PID controller, can be added as follows:

u2 =
1

M3∇ θ̂g∇ξg∇

 −
n−1
∑

i=1
P(n−1)ixi∇ + 1

2 M3∇Γξz∇
~
x∇PS2ST

2 P
~
x∇T + KP M3∇ST

2 EETPBP+

+KI

∞∫
0

M3∇ST
2 EETPBPdt + KD M3∇ST

2
.
E

.
E

T
PBP

 (11)

The value Γ is the adaptive parameter where its boundary is given by ∆Γ =
{Γ ∈ R, ‖Γ‖ ≤ ΘΓ, σs∇Γξz∇ ≤ ρ}, and ΘΓ is the constant boundary. The matrix P = PT ≥ 0,
in which its result is a solution of Riccati-like equation given by:

PS1 + ST
1∇P + Q− σs∇Γξz∇ PS2∇ST

2∇P + ρPS2∇ST
2∇P− KPξz∇ST

2∇EETPBP−

−KIξz∇
∞∫
0

ST
2∇EETPBPdt− KDξz∇ST

2∇
.
E

.
E

T
PBP = 0 (12)

where, σs∇Γξz∇ ≤ ρ, KPξz∇ ≤ ρ, KIξz∇ ≤ ρ, KDξz∇ ≤ ρ, ρ is the prescribed attenuation
level, Q = QT ≥ 0 and ξz∇ is the consequent membership value of the IT2FNN model.
The error vector E is defined as E =

[ .
e1∇

.
e2∇

]T
=
[

xd∇ − x∇
.
xd∇ −

.
x∇

]T . When
the value ρ = ξz∇(σs∇Γ + KP + KI + KD) satisfied, Riccati-like equation is rewritten by:

PS1∇ + ST
1∇P + Q = 0 (13)

The first robustness control term, u2, is not sufficient for controlling the system under
disturbance. Hence, a second robustness control term, u3, is designed to adapt to two
working scenarios, as follows. Now, the governing Equation (1) can be written following
state-space form as follows:

.
x∇ = f∇(x∇) + g∇(x∇)u∇(t) + d∇(t)AP(x∇(t), t)x∇(t) + BP(x∇(t), t)u∇(t) + CpD∇(t) (14)

where, AP ∈ Rn×n, BP ∈ Rn×m, u∇ ∈ Rm, Cp ∈ Rn×m, D∇ ∈ Rm, and CpD∇(t) ≤ Ds. It is
remarked that Ds is the boundary related to the disturbance; Cp, D∇ are matrix and vector
in a form of the state space derived from the governing equation.

2.2. Formulation of Control Strategy
2.2.1. Proposed Switching Control: High Disturbance Condition

In this case, the disturbance phenomenon generates major effects on the response of
the system. Hence, the control input term, u3, is proposed as follows:

u31 = − 1
M3∇ θ̂g∇ξg∇

(
K0σ2

s∇ + ‖σs∇‖v+εKξ eGξ (−ln‖σs∇‖)σs∇
)

(15)

where, K0 = Z0(γW− In)
−1 ∈ Rm×n is a matrix related the properties of the system

through the matrices AP and BP; Z0 ∈ Rm×n is a chosen Lyapunov matrix; W ∈ Rn×n is
a matrix which is found from solve the Lyapunov function; γ ∈ R, α ∈ R+ are positive
chosen constants; Kξ ∈ Rm×n is a matrix which is defined as Kξ = ZPξ ; the matrices
Z ∈ Rm×n and Pξ ∈ Rn×n are chosen matrices from the constraints system which will be
described in next equations; Gξ ∈ Rn×n is defined as Gξ = vW + εIn, where In is the unit
matrix; v ∈ R, ε ∈ R are two positive constants. The value of Z, W, K0 and Kξ are found
from the system constraints which are defined using the linear matrix inequality (LMI in
short) method as follows:
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
(
APW−WAT

P −AP + BPZ0
) √

ln δdmax
δdmin

BPZ0 Z0ln δdmax
δdmin√

ln δdmax
δdmin

BT
PZT

0 (γW− In)BP 0

Z0ln δdmax
δdmin

0

[
(AP + BPK0)X + X(AP + BPK0)

T+
BPZ + ZTBT

P + δX + Ds

]
 ≤ 0

⇔
(

APW−WAT
P−

−AP + BPZ0

)
(γW− In)BP

[
(AP + BPK0)X + X(AP + BPK0)

T+
+BPZ + ZTBT

P + δX + Ds

]
−

−Z2
0ln2 δdmax

δdmin
(γW− In)BP − ln δdmax

δdmin

[
(AP + BPK0)X + X(AP + BPK0)

T+
+BPZ + ZTBT

P + δX + Ds

]
≤ 0

(16)

where, δdmin, δdmax are positive robustness parameters which are chosen based on the
boundary of disturbance Ds and δdmin ≤ δdmax. From the constraint Equation (16), the
detailed constraints for the robustness control term are derived and given by:

APW−WAT
P −AP + BPZ0 = 0 (17)

(γW− In)BP < 0 (18)

(AP + BPK0)X + X(AP + BPK0)
T + BPZ + ZTBT

P + δX + Ds ≤ 0 (19)

where, X ∈ Rn×n is chosen matrix; δ ∈ R is a positive chosen constant; Pξ = X−1. The
matrix Z0 ∈ Rm×n can be found from the solution of Equation (17). The matrix Z ∈ Rm×n

is also found from Equation (19). To prevent the invalid value of the group (γW− In)
related to the matrix K0, the constant γ is chosen less than 1, and then the group (γW− In)
is calculated from the inverse matrix such as 1/(γW− In). It is noted that the proof of
the proposed LMI (linear matrix inequality) given by Equation (16) can be completed by
utilizing Schur’s complement method associated with an appropriated cost function of the
system (14).

Remark 1. The input control (15) is a new design which does not follow the conventional design
where the disturbance is assumed to be approximately zero. The Equation (16) with the relations
of K0, Z0, and Kξ will guarantee the stability of the system under disturbance. The constraints
Equations (17)–(19) are chosen from the property of Equation (16) which are less than or equal
zero. To solve the constraints, the trial-and-error method is used instead of the optimization method
because of time-consumption.

Now, the total control u∇ of the system is determined as follows:

u∇ = u1 + u2 + u3 (20)

It is noted that the control u2 is the combination of two sliding surfaces ss∇ and σs∇,
and PID controller. From the above equations, Equation (9) can be expressed as follows:

.
σs∇ = M1∇ + M2∇ + M3∇γ̃ f∇ξ f∇ + M3∇γ̃g∇ξg∇u∇ −M3∇

..
xd∇ + cs∇

.
ϕ + w∇ + M3∇ θ̂ f∇ξ f∇ −M1∇−

−M2∇ −M3∇ θ̂ f∇ξ f∇ + M3∇
..
xd∇ − cs∇

.
ϕ−

n−1
∑

i=1
P(n−1)ixi∇ + 1

2 M3∇Γξz∇
~
x∇PS2∇ST

2∇P
~
x

T
∇+

+KP M3∇ST
2∇EETPBP + KI M3∇

∞∫
0

ST
2∇EETPBPdt + KD M3∇ST

2∇
.
E

.
E

T
PBP − K0σ2

s∇−

−‖σs∇‖v+εKξ eGξ (−ln‖σs∇‖)σs∇

(21)

In the above, γ̃ f∇ = θ∗f∇ − θ̂ f∇, γ̃g∇ = θ∗g∇ − θ̂g∇.

Theorem 1. The stability and robustness of the proposed control system are guaranteed if the
main control function designed by Equations (10), (11) and (15), and the following adaptation laws
are utilized.
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.
γ̃ f∇ = −µ1M3∇σs∇ξ f∇ (22)

.
γ̃g∇ = −µ2M3∇σs∇ξg∇u∇ (23)

.
Γ = −µ3M3∇σs∇ξz∇

~
x∇PS2∇ST

2∇P
~
x

T
∇ (24)

.
KP = −µ4

(
M3∇σs∇ST

2∇EETPBP +
1
2

ξz∇
~
x∇ST

2∇EETPBP
~
x

T
∇

)
(25)

.
K I = −µ5

M3∇σs∇

∞∫
0

ST
2∇EETPBPdt +

1
2

ξz∇
~
x∇

∞∫
0

ST
2∇EETPBPdt

~
x

T
∇

 (26)

.
KD = −µ4

(
M3∇σs∇ST

2∇
.
E

.
E

T
PBP +

1
2

ξz∇
~
x∇ST

2∇
.
E

.
E

T
PBP

~
x

T
∇

)
(27)

The proof of Theorem 1 is given in Appendix A. It is noted here that to estimate the
states of the system, the conventional Luenberger observer [19] has been used in this work.

2.2.2. Proposed Switching Control: Small Disturbance Condition

When the disturbance phenomenon has small effects on the response of the system,
the following control u3 is proposed.

u32 = − 1
M3∇ θ̂g∇ξg∇

(
K0σ2

s∇

)
(28)

where, K0 = Z0(W− (γ + 1)In)
−1, Z0 ∈ Rm×n, W ∈ Rn×n with the system constraints are

defined as follows:
APW−WAT

P −AP + BPZ0 = 0 (29)

(AP + BPK0)X + X(AP + BPK0)
T + BPZ + ZTBT

P + δX ≤ 0 (30)

It is noted that constraints (29) and (30) can also be derived by using the Schur’s
complement method like the Equation (16). Using Equations (20) and (21) with a new
updated control (28), the following equation is obtained.

.
σs∇ = M1∇ + M2∇ + M3∇γ̃ f∇ξ f∇ + M3∇γ̃g∇ξg∇u∇ −M3∇

..
xd∇ + cs∇

.
ϕ + w∇ + M3∇ θ̂ f∇ξ f∇ −M1∇−

−M2∇ −M3∇ θ̂ f∇ξ f∇ + M3∇
..
xd∇ − cs∇

.
ϕ−

n−1
∑

i=1
P(n−1)ixi∇ + 1

2 M3∇Γξz∇
~
x∇PS2∇ST

2∇P
~
x

T
∇+

+KP M3∇ST
2∇EETPBP + KI M3∇

∞∫
0

ST
2∇EETPBPdt + KD M3∇ST

2∇
.
E

.
E

T
PBP − K0σ2

s∇

(31)

Theorem 2. The stability and robustness of the proposed control system are guaranteed if the main
control function is designed by Equations (10), (11) and (28), and the adaptation laws are suggested
like Equations (22)–(27). The proof of Theorem 2 can be completed using the same approach as the
proof of Theorem 1 shown in Appendix A.

Remark 2. Definition for probability of switching system was shown in [20]. For all Ωp ∈ (0, 1),
there is a class κ function =(.) such that ∀C > 0, t ≥ t0, |x(t0)| ≤ =(C)

P(|x(t)| ≤ C) ≥ 1−Ωp (32)

The value =(C) is chosen based on the dynamic property of the system. Normally, it is
chosen following maximal displacement/or vibration. The group C is also belonged to the dynamic
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parameters system. The value Ωp is defaulted as 0.2 for small vibration, and 1 for large vibration.
This remark will be used for the switching control.

Remark 3. The fuzzy model-based controller in [21] did not consider disturbance removal in
control design process and hence its robustness could not be guaranteed in severe disturbance case.
On the contrary, the proposed controller (15) associated with LMI (16) shows a close relationship
with the parameters of the system and hence directly solves the disturbance following the desired
boundaries. It is noteworthy that the prescribed performance in the sliding surface (5) also can
improve the response of the system in case of the boundaries are not found exactly.

Remark 4. The similar LMI used in the controller [21] has been applied in [22] where the fuzzy
model is independent with the LMI whose role is to adjust control gains. Therefore, this controller
could not bring robust control and then the convergence time to obtain stable states is long as shown
in [22]. As mentioned in Remark 3, the controller proposed in this study combines the conventional
sliding surface and the prescribed sliding surface to achieve control robustness, which guarantees
the convergence time and anti-affection of the disturbance or uncertainty of the system.

2.2.3. Switching Condition

The third robust control input u3 of both high disturbances and small disturbances is
defined by the following switching condition:

u3 =

{
u31
u32

i f
∣∣ ..x∇(t)∣∣ ≥ max

[ ..
x∇(t)0max

]
and |x(t0)| ≥ =(C)

f
∣∣ ..x∇(t)∣∣ < max

[ ..
x∇(t)0max

]
and |x(t0)| < =(C)

(33)

The block diagram of all elements related to the control design proposed in this work
is shown in Figure 1. The proposed controller shown in Figure 1a includes three main
elements: prescribed sliding surface, modified Riccati equation and LMI method. The
fuzzy model supports the evaluation of the inputs and feedback signals. It is remarked
that the feedback signal is also used as the input of the elements in the proposed controller.
The control process of the proposed controller is shown in Figure 1b. Depending on the
properties of the disturbance system, the switching control u31 or u32 will be chosen for
u3. The output of the prescribed surface of the new modified sliding mode control will be
used as the input of the switching control and adaptation laws. At every single step in the
loop, the output of the system is continuously used as the input for the fuzzy model, main
control, prescribed sliding surface and adaptation laws. It is remarked that the switching
index symbolizing for the choice of control u3 is established based on conditions given by
Equation (33).

3. Simulations for Control Performances
3.1. Dynamic Model and Parameters

In this work, a vehicle seat suspension with MR damper studied in [23] is adopted to
demonstrate the effectiveness of the proposed controller for the robust control performance
against disturbances. Figure 2 shows a 2-DOF (degrees of freedom) model of the vehicle
seat suspension equipped with MR damper where its damping force is represented by FMR
(N). The other variables are defined as follows: m1 is the mass of driver (or passenger),
m1 = 77 (kg); k1 is the stiffness coefficient of torso k1 = 49.340 (N/m), c1 is the damping
coefficient of torso, c1 = 2475 (N.s/m); ms is the mass of the seat, ms = 27 (kg); ks is the
stiffness coefficient of the frame, ks = 17.830 (N/m); cs is the damping coefficient of the
frame, c s= 1500 (N.s/m); x1 is the displacement of the driver (m), xs is the displacement of
the seat (m), x0 is the displacement related excitation (m). More details on this model are
given in [17,23].
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Figure 1. Control strategy of the proposed controller: (a) block diagram, (b) control process.
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Figure 2. Mechanical model of the vehicle seat suspension with magnetorheological (MR) damper.

The dynamic motion equations of the seat suspension system are obtained as follows.

ms
..
xs = −ks(xs − x0)− cs

( .
xs −

.
x0
)
+ k1(x1 − xs) + c1

( .
x1 −

.
xs
)
+ FMR (34)

m1
..
x1 = −k1(x1 − xs) + c1

( .
x1 −

.
xs
)

(35)

The state-space form of Equations (34) and (35) is rewritten as follows.

.
x11 =

.
xs = x22.

x22 = f11(x11, x22, x33, x44) + g11(x11, x22, x33, x44)u∇.
x33 =

.
x1 = x44.

x44 = f22(x11, x22, x33, x44)

(36)

In the above,

f11(x11, x22, x33, x44) = − ks
ms
(x11 − x0)− cs

ms

(
x22 −

.
x0
)
+ k1

ms
(x33 − x11) +

c1
ms
(x44 − x22),

g11(x11, x22, x33, x44) =
1

ms
, u∇ = FMR, f22(x11, x22, x33, x44) = − k1

m1
(x33 − x11)− c1

m1
(x44 − x22)

It is noted that x11, x22, x33, x44 are variables related to xs and x1 of the system which
are pointed out in both Figure 2 and Equation (36). The value of u∇ = FMR is converted to
the input signal to generate the magnetic field for MR damper. This can be solved by using
the following equation [23].

FMR = (ca + cbV)(x44 − x22) + k0(x33 − x11) + (αa + αbV) (37)

Thus, the voltage to be applied to MR damper is found from Equation (37) as follows:

V =
FMR − [ca(x44 − x22) + k0(x33 − x11) + αaφ]

cb(x44 − x22) + αbφ
(38)

In the above, k0 is the linear spring stiffness, k0 = 0 (N/m), ca is the viscous damp-
ing coefficient, ca = 990 (N·s/m); cb is the viscous damping coefficient influenced by V,
cb = 3.095 (Ns/m V); αa is the stiffness with non-voltage, αa = 545 (N/m); αb is the stiff-
ness influenced by voltage V, αb = 620 (N/m V); φ is the positive parameter of hysteresis
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loop, φ = 4. It is noted that the voltage V is directly related to the damping force of MR
damper [23].

In this work, computer simulation is carried out with three controllers: the proposed
controller, Compared Controller 1 [23], and Compared Controller 2 [24]. The compared
controllers are chosen based on its similarity of control structure [23] and switching control
logic [24]. In this simulation study, the input excitation force of the model is chosen as
similar properties to real conditions, which have complicated road disturbances. The
random step wave road and bump road shown in Figure 3 are used. Control parameters
for three controllers used in this simulation are given in Tables 1–3. These values are
appropriately chosen based on both the real seat suspension of a passenger car and the
maximum damping force of MR damper [23]. It is noted that in the Compared Controller
1, the equations for coding program include Equations (14) and (15) and adaptation laws
Equations (20)–(27), while in the Compared Controller 2, the Equations (14) and (28) and
adaptation laws Equations (20)–(27) are used for coding program.

Figure 3. Random step wave road excitation.

Table 1. Parameters of the seat suspension for the proposed controller.

Parameter Value

Initial value of prescribed performance λ(0) 0.5
Infinity value of prescribed performance λ∞ 0.001

Exponential value of prescribed performance l 0.00047
Maximum damping force 1000 N

Parameters of sliding surface [k1, k2] [1, 20]
Constant of prescribed surface cs 5000

Riccati’s parameter Γ 10
Riccati’s matrix Q [−2 0; 0 − 2]

Observer matrix Qob [1 0; 0 1]
Observer matrix Wob [30; 10]

Constants of adaptation laws (µ1 − µ6) 10
Initial state for proposed control

[
0.035 2.5

]
Initial state for observer

[
0.035 2.5

]
Robustness parameter γ 0.00001
Robustness parameter v 1
Robustness parameter ε 1
Robustness parameter δ 0.5
Disturbance matrix Ds

[
2 2; 2 2

]
Robustness matrix W

[
1 1; 1 1

]
Constant of switching condition =(C) 0.001 m

Constant of switching condition Ωp 0.8
Acceleration maximum value

max
[ ..
x∇∇(t)0max

] 0.01 m/s2
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Table 2. Parameters of the seat suspension for Compared Controller 1 [23].

Parameter Value

Parameters of sliding surface [k1, k2] [1, 0.02]
Constant of PID KP 10
Constant of PID KI 150
Constant of PID KD 50

Maximum damping force 1000 N
Riccati’s parameter Γ 0.01

Riccati’s matrix Q [−2 0; 0 − 2]
Observer matrix Q0 [1 0; 0 1]
Observer matrix W0 [30; 10]

Constants of adaptation laws (µ1 − µ6) 700
Initial state for proposed control

[
0.035 2.5

]
Initial state for observer

[
0.035 2.5

]
Table 3. Parameters of the seat suspension for Compared Controller 2 [24].

Parameter Value

Maximum damping force 1000 N
Observer matrix Q0 [1 0; 0 1]
Observer matrix W0 [30; 10]

Robustness parameter γ 0.00001
Robustness parameter v 1
Robustness parameter ε 1
Robustness parameter δ 0.1

Robustness vector y0
[
−67170 −3.975.103 ]

Robustness matrix L
[

5.10−8 6.10−10; 5.10−5 1.10−6 ]
Robustness matrix Gd

[
1 1; 1 1

]
Initial state for control

[
0.035 2.5

]
Initial state for observer

[
0.035 2.5

]
3.2. Results and Discussions

The purpose of the simulation is to prove the robustness of the proposed controller.
To achieve this goal, both the displacement and velocity at the seat position subjected to
road excitation are investigated and compared with two existing controllers; Compared
Controller 1 and Compared Controller 2. Figures 4–6 present vibration control performance
of the proposed controller, Compared Controller 1 and Compared Controller 2, respectively.
In the results, (a) and (b) represent control responses for a few minutes motion, while (c)
and (c) represent control performance for one minute to observe more detailed profiles
of the displacement and velocity components at the seat position. It is clearly seen from
the results that the proposed controller provides the best vibration control performance in
terms of the magnitudes of the displacement and velocity. Specifically, the maximum peak
of the displacement is identified by 0.00441 (m) by activating the proposed controller, while
it is extremely high in the Compared Controllers 1 and 2. It is also understood from the
signal profiles of the enlarged view (d) that both the proposed controller and Compared
Controller 1 follow the model of adaptive fuzzy PID control showing the switching motion.
This behavior can be expected from both the prescribed sliding surface and the choice of
robustness function, given by Equations (15) and (28), respectively. On the other hand, it is
clearly seen from the results of Compared Controller 2 that vibration control performance is
not good exhibiting unstable motion. In fact, the constraints functions in the input control
of the Compared Controller 2 are not sufficient to capture the control energy to overcome
the imposed disturbance.
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Figure 4. Displacement and velocity of the seat system using the proposed controller: (a,b) general
view, (c,d) enlarged view.

Figure 5. Cont.
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Figure 5. Displacement and velocity of the seat system of the Compared Controller 1: (a,b) general
view, (c,d) enlarged view.

Figure 6. Displacement and velocity of seat system of the Compared Controller 2: (a,b) general view,
(c,d) enlarged view.



Appl. Sci. 2021, 11, 2244 15 of 19

Figure 7 presents control input which corresponds to the damping force generated
from MR damper by each controller. It is clearly seen that the control input of the proposed
controller has been well applied to the system with the switching logic associated with the
prescribed sliding surface. In other words, the variation of energy is changed in the pro-
posed controller following the magnitude of the excitation. In addition, it is identified that
the energy consumption of the proposed controller is less than the Compared Controllers 1
and 2. To analyze the robustness of the proposed controller associated with the switching
logic, both the prescribed performance and switching index are shown in Figures 8 and 9.
It is identified from Figure 8a that the values of the proposed controller always belong to
the setup boundaries of the prescribed model shown in Figure 8b. The switching index
of the switching control functions is shown in Figure 9. This figure indicates that the
switching function of the proposed controller is efficient to reject the disturbances with
the fast response time. This result also shows the variation of the switching function (33),
which points out the change of the input control taking account for the magnitude of
disturbance. In Figure 9, the index value 1 indicates the state with high disturbance, while
the index value 0.2 denotes the small disturbance. It is noteworthy that the symmetric
state in control with the switching index is clearly viewed in Figure 7a. In addition, it is
noted that the minimum value of damping force shown in Figure 7a is not zero. This value
indicates the switching function (34) calculated from Equations (15) and (28). The results
shown in this section are quite self-explanatory justifying that the proposed adaptive fuzzy
controller can be effectively applied to several control systems subjected to severe external
disturbances.

Figure 7. Cont.
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Figure 7. Damping force control: (a) proposed controller, (b) Compared Controller 1, (c) Compared
Controller 2.

Figure 8. Prescribed performance of the proposed controller: (a) general view, (b) enlarged view.
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Figure 9. Switching index of the proposed controller: (a) general view, (b) enlarged view.

4. Conclusions

In this study, a new switching adaptive controller was proposed and applied to
vibration control of a semi-active vehicle seat suspension system featuring MR damper. To
formulate the switching controller, the interval type 2 fuzzy model was used. Basically,
the proposed controller has two sliding surfaces: one is conventional surface for the initial
states of the system and the other is the prescribed surface for the objective performance.
Based on these two sliding surfaces, the main input of the equivalent controller and robust
controller were separately designed and combined to ensure the stability and robustness
against disturbances. In the design of the proposed controller, adaptation laws were
determined based on Lyapunov stability. In order to demonstrate the effectiveness of the
proposed controller, two other existing controllers were adopted from the references and
their vibration control performances were compared. From the comparative investigation,
it has been demonstrated that the proposed controller always provides better performance
than the compared existing controllers in both high and small disturbance environments.

It is finally remarked that an experimental realization of the proposed controller will
be undertaken in near future. In this experimental test, several excitation frequencies
mimicking various road conditions are to be seriously considered for the evaluation of the
ride comfort of the vehicle seat.
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Appendix A

Proof of Theorem 1. To prove the above theorem, a Lyapunov function candidate is
proposed as follows:

L∇ =
1
2

σ2
s∇ +

1
2

~
x∇P

~
x

T
∇ +

1
2µ1

γ̃2
f∇ +

1
2µ2

γ̃2
g∇ +

1
2µ3

Γ2 +
1

2µ4
K2

P +
1

2µ5
K2

I +
1

2µ6
K2

D (A1)
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The derivative of Equation (A1) with respect to time is obtained as:

.
L∇ = σs∇

.
σs∇ + 1

2

.
~
x∇P

~
x

T
∇ + 1

2
~
x∇P

.
~
x

T

∇ + 1
µ1

γ̃ f∇
.
γ̃ f∇ + 1

µ2
γ̃g∇

.
γ̃g∇ + 1

µ3
Γ

.
Γ + 1

µ4
KP

.
KP+

+ 1
µ5

KI
.
K I +

1
µ6

KD
.
KD

(A2)

Substituting Equation (21) into Equation (A2) yields the following.

.
L∇ =

[
M3∇σs∇γ̃ f∇ξ f∇ + 1

µ1
γ̃ f∇

.
γ̃ f∇

]
+
[

M3∇σs∇γ̃g∇ξg∇u∇ + 1
µ2

γ̃g∇
.
γ̃g∇

]
+

+

[
M3∆Γξz∇σs∇

~
x∇PS2∇ST

2∇P
~
x

T
∇ + 1

µ3
Γ

.
Γ
]
+

[
KP M3∇ST

2∇EETPBP + 1
2 KPξz∇

~
x∇ST

2∇ EETPBP
~
x

T
∇+

+ 1
µ4

KP
.
KP

]
+

+

[
KI M3∇

∞∫
0

ST
2∇EETPBPdt + 1

2 KIξz∇
~
x∇

∞∫
0

ST
2∇EETPBPdt

~
x

T
∇ + 1

µ5
KI

.
K I

]
+

+

[
KD M3∇ST

2∇
.
E

.
E

T
PBP + 1

2 KDξz∇
~
x∇ST

2∇
.
E

.
E

T
PBP

~
x

T
∇ + 1

µ6
KD

.
KD

]
+

+

[
σs∇w∇ −

(
K0σ3

s∇ + ‖σs∇‖v+εKξ eGξ (−ln‖σs∇‖)σ2
s∇

)
− 1

2 ρ
~
x∇PS2∇ST

2∇P
~
x

T
∇ − 1

2
~
x∇Q

~
x

T
∇

]
(A3)

It is noted that Equation (20) is used in finding Equation (A3). Now, substituting
Equations (22)–(27) into Equation (A3) yields the following.

.
L∇ ≤ σs∇w∇ −

(
K0σ2

s∇ + ‖σs∇‖v+εKξ eGξ (−ln‖σs∇‖)σs∇

)
− 1

2 ρ
~
x∇PS2∇ST

2∇P
~
x

T
∇ − 1

2
~
x∇Q

~
x

T
∇

≤
[
− 1

2
~
x∇Q

~
x

T
∇ −

(√
K0σs∇ − w∇√

K0

)2
+

w2
∇

K0

]
− 1

2 ρ
~
x∇PS2∇ST

2∇P
~
x

T
∇ ≤ − 1

2
~
x∇Q

~
x

T
∇ +

w2
∇

K0

(A4)

The above equation cannot be used for the conclusion of stability. Hence, it needs to
be integrated from t = 0 to t = T;

L∇(0)− L∇(T) +
1

K0

T∫
0

w2
∇dt ≥ 1

2

T∫
0

~
x∇Q

~
x

T
∇dt (A5)

where,

L∇(0) = 1
2 σ2

s∇(0) +
1
2

~
x∇(0)P

~
x

T
∇(0) +

1
2µ1

γ̃2
f∇(0) + 1

2µ2
γ̃2

g∇(0) + 1
2µ3

Γ2(0) + 1
2µ4

K2
P(0)+

+ 1
2µ5

K2
I (0) +

1
2µ6

K2
D(0)

The value L∇(T) is always positive, and thus Equation (A5) is determined by

L∇(0) +
1

K0

T∫
0

w2
∇dt ≥ 1

2

T∫
0

~
x∇Q

~
x

T
∇dt ≥ 0 (A6)

This completes the proof. �
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