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Abstract: We studied a single atom trapped in an optical tweezer interacting with a thermal bath
of ultracold atoms of a different species. Because of the collisions between the trapped atom and
the bath atoms, the trapped atom undergoes changes in its vibrational states occupation to reach
thermal equilibrium with the bath. By using Monte Carlo simulations, we characterized the single
atom’s thermalization process, and we studied how this can be used for cooling. Our simulations
demonstrate that, within known experimental limitations, it is feasible to cool a trapped single atom
with a thermal bath.
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1. Introduction

One of the current goals in physics is to fully understand the thermodynamics of
quantum systems [1]. The understanding of how open quantum systems behave thermody-
namically is especially important, as it could be the key to unveil how classical mechanics
emerges from the quantum, and will help the development of quantum technologies. The
paradigmatic model of open quantum systems is the spin-boson model [2,3], i.e., a system in
which a single two-level particle interacts with a thermal bath of harmonic oscillators. In
this work, we considered an experimentally implementable extension of such a celebrated
model: a single atom trapped in a harmonic potential interacting with a bath of ultracold
atoms of a different species.

Ultracold atoms are highly controllable and versatile systems that can be used to
simulate a large variety of quantum phenomena [4,5]. Optical tweezers are emerging as one
of the most promising and powerful tools for quantum simulations with cold atoms [6–8],
and have been recently proposed as a platform to study quantum thermodynamics and
implement single atom engines [9]. In the latter system, a single atom interacts with a
thermal bath and undergoes various thermodynamic cycles. One or more of the strokes
of these engines involves the thermalization of the single atom with a bath of atoms of a
different species. With an eye to such quantum engines, we simulated the interaction of a
single atom in an optical tweezer with a thermal gas of atoms trapped in a macroscopic
trap. The thermalization process studied here could also be used as an alternative method
to cool single trapped atoms and bring them to the ground state of their tweezer potential,
which can currently be accomplished only with laser cooling [10].

The article is organized as follows. In Section 2, we describe our system and provide
the theory that we have used to simulate our system. In Section 3, we provide the results
of a Monte Carlo simulation where we show how the thermalization rates vary and how
the trapped atom interacts with a bath of atoms undergoing evaporative cooling. Section 4
is devoted to the conclusions.
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2. The System

The system under study is pictorially represented in Figure 1. A single atom is
trapped in an optical tweezer and interacts with a cloud of thermal atoms. Our aim was
characterizing how the interaction with the bath leads to the thermalization of the single
atom, meaning that it reaches the Gibbs state G(T) = 1/Z ∑n e−En/kBT , with Z the partition
function, En the energy of the nth level, kB the Boltzmann’s constant and T the temperature
of the bath. Therefore, in the following, we refer to the the temperature of the single atom TA
as the temperature associated with G(TA).

For a single atom in an optical tweezer, when the trap depth is significantly greater
than the temperature of the atom, we can approximate the tweezer as a three-dimensional
harmonic trap. Since optical tweezers are produced with a single beam, they are character-
ized by a strong anisotropy, with the axial direction of propagation of the beam providing a
weaker confinement than the radial directions. In addition, we consider the bath as made of
thermal bosonic atoms. After a collision with the bath atom, the trapped atom can undergo
a change in the vibrational level it occupies. Which level it goes to depends on the overlap
of the initial and the final wavefunctions. If the atom changes its vibrational state from
n = (nx, ny, nz) to m = (mx, my, mz), the relative rate is given by [11,12],

γn,m = C
∫

dt
∫

d~kd~k′n(~k)(n(~k′) + 1)|T(n, m, k, k′)|2e
(

k2
2mB
− k′2

2mB
+αh̄ω

)
t. (1)

where C is a constant common to all the rates,~k and~k′ are the wavevectors of the bath
atom before and the after the collision, mB is the mass of the bath atom, ω is the tweezer
radial trapping frequency, α = (nx −mx) + ηy(ny −my) + ηz(nz −mz), ηy/ηz is the aspect
ratio of the trap, n(~k) is the number of bath atoms with wave-vector~k, and T(n, m, k, k′) is
the overlap between the initial and the final wavefunctions of both the trapped atom and
the bath atom. In Equation (1), it is assumed that the bath atom is a free particle during
the collision. The above integrals for an isotropic trap were solved in References [11,12].
Including the trap anisotropy, we find:

γn,m =C̃e1/2α′δ
px

∑
lx=0,kx=0

py

∑
ly=0,ky=0

pz

∑
lz=0,kz=0

[
∏

j=x,y,z
Cmj ,nj ,lj

Cmj ,nj ,kj
Γ
(
qj + 1/2

)
V(α′, δ)1+qx+qy+qz

]
,

(2)

where C̃ is a constant common to all rates, α′ = αmB/mS, with mS the mass of the trapped
atom,

δ =
mS
mB

h̄ω(1 + ηy + ηz)

kBTB
, (3)

where TB is the bath temperature, Γ is the Gamma function and qj = mj + nj − lj − k j, pj =
min(mj, nj),

Cm,n,l =
(−1)l

√
m!n!

l!(m− l)!(n− l)!
, (4)

and

V(α′, δ)i = 2

√
δ

π
Γ(1/2− i)

(
−|α′|δ

2
√

δ(1 + δ/4)

)i

× Ki

(
|α′|
√

δ(1 + δ/4)
)

.

(5)
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Ki(x) denotes the modified Bessel function and i is a positive integer. Once we calculate the
above rates, at each collision, the probability to jump from state n to m can be calculated as

pn→m =
γn,m

∑v γn,v
. (6)

In the above calculations, we assume that the trapped atom interacts with a uniform
density bath. This is a valid assumption for systems where the trapped atom is confined to
a smaller volume compared to the trap of the bath atoms.

Figure 1. Pictorial representation (not to scale) of the system under study: a single atom (red sphere)
is trapped in an optical tweezer (yellow beam) and is immersed in a bath of atoms of a different
species (blue cloud).

To account for the finite trap depth, we restrict our calculations to a suitably chosen
(nmax

x , nmax
y , nmax

z ) such that nmax
x , ηynmax

y , ηznmax
z � kBTA/(h̄ω). Here, TA is the initial

temperature of the single atom. For the simulations in this article, we first calculate the
pn→m for all the level combinations for each bath temperature TB. The second step is to
perform Monte Carlo simulations where the atom jumps between the levels according to
the probabilities pn→m.

3. Results

We first explore how the rate of thermalization for the trapped atom changes with
respect to various parameters. Second, we simulate what happens when the trapped atom
is interacting with a bath undergoing evaporative cooling. To illustrate a specific case, in
our simulations we use 87 Rb and 41 K as the bath atoms and the single atom, respectively,
similar to what was done in [9].

We are interested in the rate at which the trapped atom thermalizes with the bath
atoms. We ran the Monte Carlo simulations to know how many elastic collisions it takes for
the radial and axial vibrational states of the trapped atom to thermalize with the bath. To
calculate the thermalization time constant, τ, we multiplied the number of collisions with
the time between collisions, which is given by

τcol = 1/(4πa2nBv̄), (7)

where nB is the density of bath atoms, a is the heteronuclear s-wave scattering length
between the bath and the trapped atom, v̄ =

√
8kBTB/(πµ) is the mean velocity at bath

temperature (TB), and µ is the reduced mass between the bath atom and the single atom.
For the simulations, we consider bath temperatures in the range 0.1 µK–10 µK, and the
atomic density in the bath to be ∼1012 cm−3. These parameters can be produced in current
experimental setups [13]. For the interspecies scattering length that sets the strength of
the interaction between the trapped atom and the bath, we have chosen a = 160a0, which
can be achieved exploiting one of the KRb heteronuclear Feshbach resonances [14]. Unless
specified otherwise, we have set ω = 100 kHz, ηy = 0.98 and ηz = 0.105, which are
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realistic values for tweezers experiments [10]. As ωx ' ωy, from here, we refer to either
of them as the radial frequency ωr and we identify the radial direction with both x and
y. The results of our simulations for various parameters are shown in Figure 2, where we
report mean values and standard deviations of the mean of τ obtained with 6 repetitions of
5000 trajectories each.
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Figure 2. The variation of thermalization time constants of radial and axial vibrational levels of the
trapped atom with respect to (a) the trapping frequency, (b) the starting temperature of the trapped
atom, and (c) temperature of the bath. The red circles are for radial direction and the blue triangles
are for the axial direction. Here a = 160a0, nB = 7.7× 1012 cm−3, ω/(2π) = 100 kHz for (b,c),
TB = 4 µk, and TB = 0.1 µk for (a,b) respectively. TA = 8 µk and TA = 10 µk for (a,c) respectively.
For all the data points ηy = 0.98 and ηz = 0.105.

As expected, from Figure 2a we can note that, because the trapping frequency is
low in the axial direction (denoted by z), the time required for thermalization is higher
than in the radial direction (denoted by r). The thermalization time does not show a
strong dependence on the trapping frequency within the parameters of interest because
the conditions h̄ω ∼ kBTB and h̄ηzω � kBTB do not change substantially for the radial and
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the axial directions, respectively. In Figure 2b, we keep TB constant at 0.1 µk and vary the
starting temperature of the trapped atom, TA. Here, τ increases for both directions as the
initial TA increases, but the increase is rather contained. For this figure panel, there are no
datapoints for radial direction below TA = 1 µk as the probability to be in nx = ny = 0
state is practically 100% and, hence, further cooling is not possible. Figure 2c shows the
variation of the thermalization time with respect to the bath temperature, where TA = 10 µk
for all points. Here we find that, as the bath temperature is reduced, the thermalization
time required for the radial direction increases. This is because, according to Equation (7),
the time between collisions increases when the bath temperature decreases. The axial
direction does not show such a simple behavior, the thermalization time remains initially
fairly constant until TB ' 1 µk, when it has a minimum, and then increases below such
temperature. This is because although the time between collisions increases, the number of
collisions required to cool the single atom reduces as pm→n/pn→m increases, where n < m.
The above results tell us that (as expected) the thermalization of the axial direction is by
far the limiting factor in all the conditions we have explored. Additionally, we have found
that in order to effectively cool the trapped atom, there exists an optimal bath temperature
that minimizes the axial thermalization time and therefore could be used to speed up the
entire thermalization process.

In Figure 3 we show the results of a Monte Carlo simulation where the trapped atom
is immersed in a bath whose temperature is decreasing due to evaporative cooling. In
evaporative cooling, the temperature, the number of atoms, and the trapping frequency of
the bath atoms reduce continuously. As we need to calculate pn→m for each TB, we consider
the change in these parameters in step-wise manner. The figure shows how the average
vibrational state of the trapped atom changes as we move along the evaporation ramp. The
length of the ramp has been chosen to ensure TA ' TB at every time. An alternative, faster
approach is shown in Figure 4a,b. In this case, the radial vibration levels are able to follow
the bath temperature because of the fast thermalization with the bath. The axial direction
is always lagging behind as the time taken for the thermalization of the axial direction
is higher compared to timescales of evaporation. In order for the axial direction to catch
up, we then add a waiting time. This allows enough time for all the degrees of freedom
of the trapped atom to thermalize with the bath atoms and reach TA = TB. Notably, with
this second method, we are able to sensibly reduce the evaporation time compared to the
first ramp.

To further speed up the thermalization, i.e., to increase the axial direction’s thermal-
ization rate, one could either increase the density of the bath or increase the scattering
length. Both of these strategies also lead to an increase in the harmful three-body collision
rate, as shown in Figure 5a,b. We convert the three-body loss rate to total probability of
loss during the evaporation of the bath for our case, which is shown in Figure 5a. The
three-body loss rate here is calculated as τloss = 4πh̄a4n2

B/mB [15]. In Figure 5b, we show
the effect of change in scattering length to τ and the loss probability, 1− e−τ/τloss , due to
three-body collisions during thermalization time.
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Figure 3. Trapped atom interacting with a bath that is continuously undergoing evaporative cooling.
(a) Radial and axial mean vibrational occupation numbers are shown by red solid and blue dashed
lines, respectively. Here, the final occupation numbers are 〈n′r〉 = 0.00 and 〈n′z〉 = 0.46, meaning that
the atom always ends up in the ground state of the radial direction. (b) The temperature and the
atomic density of the bath atoms are shown by red solid and blue dashed lines, respectively. Here,
ω/(2π) = 100 kHz, a = 160a0, ηy = 0.98, and ηz = 0.105 for all graphs.
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Figure 4. Trapped atom interacting with a bath that is undergoing fast evaporative cooling for three
seconds. (a) Radial and axial mean vibrational occupation numbers are shown by red solid and
blue dashed lines, respectively. Here, the final occupation numbers are 〈n′r〉 = 0.00 and 〈n′z〉 = 0.23,
meaning that the atom always ends up in the ground state of the radial direction. (b) The temperature
and the atomic density of the bath atoms are shown by red solid and blue dashed lines, respectively.
(c) The red dashed line shows the change in the trapping frequency of the bath ( fB) and the blue solid
line shows the variation in the bath atom number. Here, ω/(2π) = 100 kHz, a = 160a0, ηy = 0.98,
and ηz = 0.105 for all graphs.
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Figure 5. Three-body loss during thermalization. (a) The red dashed line shows the percentage
of times the trapped atom will be lost due to three-body collisions during the evaporative cooling
shown in Figure 4. (b) Effect of change in scattering length on (i) thermalization time (red dashed)
and (ii) the percentage of times the single atom will be lost due to a three-body collision during one
thermalization period (blue solid). Here, TB = 1 µk and nB = 10× 1012 cm−3 for (b).

4. Conclusions

In conclusion, we investigated the thermalization of an atom trapped in an optical
tweezer interacting with a thermal gas of ultracold atoms of a different species. We
discussed the theory we used to understand how collisions between a trapped atom and
the bath atoms translate into changes in the trapped atom’s vibrational levels. With the
help of a Monte Carlo simulation, we have shown how these changes lead to the trapped
atom’s cooling if the bath is at a lower temperature compared to the trapped atom. For
parameters of practical interest, we found that the cooling rate in the radial direction
is two orders of magnitude faster than the cooling rate in the axial direction. We have
also shown the dependence of these cooling rates on the bath temperature, the tweezer’s
trapping frequency, and the single atom’s starting temperature. Finally, we simulated
a bath undergoing evaporative cooling and demonstrated that the trapped atom can be
sympathetically cooled. We have shown that this could be an efficient scheme for cooling
the single trapped atom, also considering three-body losses that limit the final efficiency.

Besides the implementation of single atom quantum engines, this kind of system is a
promising approach to studying out-of-equilibrium physics [13]. The system studied here
could be modified to obtain a pristine realization of several instances of the spin-boson
model or other open quantum system models like the Caldeira–Leggett model [16]. There
are several additional exciting avenues that could be explored as extensions of this work.
One could be to investigate the thermalization process in non-Markovian regimes, where
the number of bath atoms is small or the scattering length is large. Another could be
to increase the thermalization times inspired by the recents works in References [17,18].
Alternatively, one could study a system in which the bath is realized with a pure Bose–
Einstein condensate. The heat capacity of a Bose–Einstein condensate vanishes, making
the feedback from the single atom significant. An exotic system could be realized with a
partially condensed cloud, where two phases coexist and quantum and thermal fluctuations
compete, or by trapping a single ion in the tweezer. Additionally, the use of squeezed states
in the bath could lead to interesting quantum features that could boost the thermalization
rate [19–21].



Appl. Sci. 2021, 11, 2258 8 of 8

Author Contributions: All authors have equally contributed. All authors have read and agreed to
the published version of the manuscript.

Funding: All authors are supported by the Leverhulme Trust Research Project Grant UltraQuTe
(grant number RGP-2018-266). A.M. is supported by the Erasmus programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [CrossRef]
2. Leggett, A.J.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system.

Rev. Mod. Phys. 1987, 59, 1–85. [CrossRef]
3. Weiss, U. Quantum Dissipative Systems, 4th ed.; World Scientific: Singapore, 2012.
4. Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153–185. [CrossRef]
5. Schäfer, F.; Fukuhara, T.; Sugawa, S.; Takasu, Y.; Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical

lattices. Nat. Rev. Phys. 2020, 2, 411–425. [CrossRef]
6. Kaufman, A.M.; Lester, B.J.; Reynolds, C.M.; Wall, M.L.; Foss-Feig, M.; Hazzard, K.R.A.; Rey, A.M.; Regal, C.A. Two-particle

quantum interference in tunnel-coupled optical tweezers. Science 2014, 345, 306–309. [CrossRef] [PubMed]
7. Endres, M.; Bernien, H.; Keesling, A.; Levine, H.; Anschuetz, E.R.; Krajenbrink, A.; Senko, C.; Vuletic, V.; Greiner, M.; Lukin, M.D.

Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 2016, 354, 1024–1027. [CrossRef] [PubMed]
8. de Léséleuc, S.; Lienhard, V.; Scholl, P.; Barredo, D.; Weber, S.; Lang, N.; Büchler, H.P.; Lahaye, T.; Browaeys, A. Observation

of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 2019, 365, 775–780. [CrossRef]
[PubMed]

9. Barontini, G.; Paternostro, M. Ultra-cold single-atom quantum heat engines. New J. Phys. 2019, 21, 063019. [CrossRef]
10. Kaufman, A.M.; Lester, B.J.; Regal, C.A. Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State. Phys. Rev. X

2012, 2, 041014. [CrossRef]
11. Zoller, P.; Maciej, I.; Cirac, J.I.; Lewenstein, M.; Cirac, J.I.; Zoller, P. Master equation for sympathetic cooling of trapped particles.

Phys. Rev. A 1995, 51, 4617–4627. [CrossRef]
12. Papenbrock, T.; Salgueiro, A.N.; Weidenmüller, H.A. Rate equations for sympathetic cooling of trapped bosons or fermions. Phys.

Rev. A At. Mol. Opt. Phys. 2002, 65, 436011–436014. [CrossRef]
13. Muñoz, J.M.; Wang, X.; Hewitt, T.; Kowalczyk, A.U.; Sawant, R.; Barontini, G. Dissipative Distillation of Supercritical Quantum

Gases. Phys. Rev. Lett. 2020, 125, 020403. [CrossRef] [PubMed]
14. Thalhammer, G.; Barontini, G.; De Sarlo, L.; Catani, J.; Minardi, F.; Inguscio, M. Double Species Bose-Einstein Condensate with

Tunable Interspecies Interactions. Phys. Rev. Lett. 2008, 100, 210402. [CrossRef] [PubMed]
15. Fedichev, P.O.; Reynolds, M.W.; Shlyapnikov, G.V. Three-Body Recombination of Ultracold Atoms to a Weakly Bound s Level.

Phys. Rev. Lett. 1996, 77, 2921–2924. [CrossRef] [PubMed]
16. Caldeira, A.O.; Leggett, A.J. Influence of Dissipation on Quantum Tunneling in Macroscopic Systems. Phys. Rev. Lett. 1981,

46, 211–214. [CrossRef]
17. Dann, R.; Tobalina, A.; Kosloff, R. Shortcut to Equilibration of an Open Quantum System. Phys. Rev. Lett. 2019, 122, 250402.

[CrossRef] [PubMed]
18. Pancotti, N.; Scandi, M.; Mitchison, M.T.; Perarnau-Llobet, M. Speed-Ups to Isothermality: Enhanced Quantum Thermal

Machines through Control of the System-Bath Coupling. Phys. Rev. X 2020, 10, 031015. [CrossRef]
19. Scully, M.O.; Zubairy, M.S.; Agarwal, G.S.; Walther, H. Extracting Work from a Single Heat Bath via Vanishing Quantum

Coherence. Science 2003, 299, 862–864. [CrossRef] [PubMed]
20. Dillenschneider, R.; Lutz, E. Energetics of quantum correlations. EPL (Europhys. Lett.) 2009, 88, 50003. [CrossRef]
21. Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett.

2014, 112, 030602. [CrossRef] [PubMed]

http://doi.org/10.1080/00107514.2016.1201896
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1038/s42254-020-0195-3
http://dx.doi.org/10.1126/science.1250057
http://www.ncbi.nlm.nih.gov/pubmed/24968938
http://dx.doi.org/10.1126/science.aah3752
http://www.ncbi.nlm.nih.gov/pubmed/27811284
http://dx.doi.org/10.1126/science.aav9105
http://www.ncbi.nlm.nih.gov/pubmed/31371563
http://dx.doi.org/10.1088/1367-2630/ab2684
http://dx.doi.org/10.1103/PhysRevX.2.041014
http://dx.doi.org/10.1103/PhysRevA.51.4617
http://dx.doi.org/10.1103/PhysRevA.65.043601
http://dx.doi.org/10.1103/PhysRevLett.125.020403
http://www.ncbi.nlm.nih.gov/pubmed/32701314
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://www.ncbi.nlm.nih.gov/pubmed/18518587
http://dx.doi.org/10.1103/PhysRevLett.77.2921
http://www.ncbi.nlm.nih.gov/pubmed/10062086
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.122.250402
http://www.ncbi.nlm.nih.gov/pubmed/31347905
http://dx.doi.org/10.1103/PhysRevX.10.031015
http://dx.doi.org/10.1126/science.1078955
http://www.ncbi.nlm.nih.gov/pubmed/12511655
http://dx.doi.org/10.1209/0295-5075/88/50003
http://dx.doi.org/10.1103/PhysRevLett.112.030602
http://www.ncbi.nlm.nih.gov/pubmed/24484127

	Introduction
	The System
	Results
	Conclusions
	References

