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Abstract: In environmental studies, it is important to assess how regulatory standards for air
pollutants affect public health. High ozone levels contribute to harmful air pollutants. The EPA
regulates ozone levels by setting ozone standards to protect public health. It is thus crucial to assess
how various regulatory ozone standards affect non-accidental mortality related to respiratory deaths
during the ozone season. The original rollback approach provides an adjusted ozone process under a
new regulation scenario in a deterministic fashion. Herein, we consider a statistical rollback approach
to allow for uncertainty in the rollback procedure by adopting the quantile matching method so
that it provides flexible rollback sets. Hierarchical Bayesian models are used to predict the potential
effects of different ozone standards on human health. We apply the method to epidemiologic data.

Keywords: hierarchical model; mortality; ozone regulatory standard; risk assessment; stochastic
rollback

1. Introduction

Regulating high ozone levels is essential as exposure to ozone can affect the risk of
respiratory diseases or related deaths. Tropospheric ozone, also known as ground-level
ozone, is one of the main harmful air pollutants that can cause adverse health effects.
Many areas in the United States have been observed to exceed the current ozone National
Ambient Air Quality Standards (NAAQS). Elevated ozone concentrations have also been a
growing concern for rapidly developing nations where emissions of ozone precursors have
been risen from expanding transportation networks [1]. Recently, U.S. EPA promulgated
a new ozone NAAQS as 0.070 ppm (parts per million) and this change has prompted
studies on the effects of the new ozone standard [2–4]. To investigate how different ozone
NAAQS affect public health and welfare can be of great interest in epidemiologic studies,
toxicological studies, or controlled human exposure studies. Based on the reviews of the
air quality criteria for ozone (O3) and related photochemical oxidants and the NAAQS
for O3, a modification in the current ozone regulatory standards provides the required
protection for public health and welfare (see also [5,6]). Bell et al. [7,8] disapproved of the
EPA’s scientific reviews reporting that designations based on air quality data from 2006
to 2008 would be effective in air quality data to take effect in 2010 for the 2007 8-h ozone
standard. Therefore, it would be interesting to investigate whether the current regulations
are sufficiently stringent to prevent respiratory-related mortality or not.

To assess how changes in the ozone regulations affect mortality, ground-level ozone
must be adjusted by strengthening the air quality standards. Although rollback functions,
namely, air quality adjustment procedures proposed by the EPA [9], can be useful for
adjusting the ozone process, it cannot introduce sufficient variability in the rollback
adjustment as the adjustment is deterministic and the EPA regulatory standards are
based on the average of three consecutive years’ AQI values. Thus, we consider a
parametric rollback approach with quantile matching method to allow for uncertainty in
the rollback procedure
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To conduct the risk assessment, we consider hierarchical Bayesian models that provide
uncertainty quantification for relevant parameters to predict the potential effects of different
regulatory ozone standards. We also describe some variations in the results under different
modeling assumptions. We analyze databases from the National Morbidity, Mortality,
and Air Pollution Study [10] that is designed to study the public health effects of air
pollutants. The Health Effects Institutes began this study with researchers from Johns
Hopkins and Harvard University in 1996. The NMMAPS database contains 108 U.S. urban
areas from 1987 to 2000 where one can build a multisite time-series model of ozone and
mortality simultaneously with meteorology information such as temperature or dew point
and air pollution (O3, PM10, SO2, NO2, and CO) (see also [11]).

The focus of this paper is on statistical approaches to describe how the new ozone
regulations affect mortality. We shall describe our results that mortality decreases as limits
of acceptable ozone level get lower through the statistical rollback approach.

2. Statistical Rollback Approach

The rollback transformation [9] is one of the methods to adjust current ozone processes
to follow new ozone regulatory standards. There are two main conditions to consider
in air quality data. The first one is baseline conditions characterized by unadjusted air
quality data monitored at fixed locations during recent years. The other one is attainment
conditions generated by fitting an air quality adjustment procedure (AQAP) to the baseline.
QQ-plots of high ozone levels in 1992 under baseline conditions against low ozone levels
in 1999 under attainment conditions are shown in Figure 1. The figure exhibits different
behaviors at high quantiles.
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Figure 1. QQ-plots of high ozone levels in 1992 under baseline conditions against low ozone levels in 1999 under attainment
conditions at six different locations.

2.1. Quantile Matching Approach

Suppose that current ozone level, denoted by x, is a random variable having a
distribution function Fθ. We assume that adjusted ozone level corresponding to x under a
new scenario follows the same distribution with different parameters, Fθ∗ , and there exists
a mapping m such that a random variable m(x) has the distribution function Fθ∗ . Thus,
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the adjusted ozone level can be obtained using m(x). That is, θ∗ is the adjusted model
parameter based on the relationship between current levels and adjusted levels under the
new scenario. Moreover, let F(x; θ) and G(z; γ) be the ozone distribution functions based
on the baseline condition and attainment condition, respectively, (e.g., G ≺ F). That is,
m(x) = F−1

θ∗
(Fθ(x)) or m(x) = G−1(F(x)). Note that F and G can be estimated by baseline

and attainment years’ ozone data, respectively. Attainment year based on its AQI values or
the condition G ≺ F is required. G may require adjustment based on ρ(s) = x(b)

x(s) , where
x(b) is current design values and x(s) is design values under scenario s.

Let fθ be a density function of current ozone levels x. Then adjusted rollback values z
corresponding to x are obtained as follows:

1. Based on current ozone levels x = {xi}n
i=1, estimate parameters θ (i.e., θ̂).

2. Compute qx
i , the quantile of xi such that

qx
i =

∫ xi

−∞
fθ̂(z)dz,

for i = 1, . . . , n.
3. Estimate parameters θ∗ under new scenario (i.e., θ̂

∗).
4. Determine the corresponding zi satisfying

qx
i =

∫ zi

−∞
f
θ̂
∗(z)dz,

for i = 1, . . . , n.
5. {zi}n

i=1 are adjusted (rollback) values of x.

We extend this approach through the Bayesian framework by putting prior
distributions of parameters, π(θ). By generating samples from posterior distribution,
π(θ|x) ∝ fθπ(θ), we can generate rollback ensembles in the same fashion.

In general, the distribution of x can be expressed as a mixture of the form

f (x) =
{

(1− w)h(x|θ1) x < u
wg(x|θ2) x ≥ u

,

where u is a threshold, h can be any parametric distribution such as Weibull, truncated
Gamma or Gaussian distribution, and g is a Generalized Pareto distribution (GPD) with
parameters θ2 = (σ, ξ).

The quantile matching approach is simple and straightforward but causes various
problems in adjusting multiple ozone processes in large dimensions. Now we consider
more feasible approaches in the next section.

2.2. Weibull Approach in Rollback

Let yt(c) denote hourly (or daily average, daily maximum, daily 8-h maximum) ozone
level for each time t and city c and y∗t (c) denote rollbacked process corresponding to
baseline process yt(c). That is,

y∗t = γ(yt)
η ,

where we omit city index for simplicity. We fit yt to a parametric distribution such as
Weibull distribution.

We obtain following information for each year i and each city c:

(AQIi(c), κi(c), δi(c)),

where κ and δ are weibull parameters. Note that γ and η are functions of κ and δ.
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Now we consider a model of the form

E
(

κi(c)
δi(c)

)
=

[
g1(AQIi(c); θ1)
g2(AQIi(c); θ2)

]
and Cov

(
κi(c)
δi(c)

)
= Σ(c).

For example, we consider a simple linear model:

E
(

κi(c)
δi(c)

)
=

[
1 AQIi(c) 0 0
0 0 1 AQIi(c)

]
α1(c)
β1(c)
α2(c)
β2(c)


and

Cov
(

κi(c)
δi(c)

)
= Σ(c) =

[
σ11(c) σ12(c)
σ21(c) σ22(c)

]
.

For new standard regulation AQI∗, we can obtain κ∗(c) and δ∗(c) for each city c using

κ∗(c) = α1(c) + β1(c)AQI∗ and δ∗(c) = α2(c) + β2(c)AQI∗.

It is observed that Σ(c) introduces some uncertainty in κ∗(c) and δ∗(c). In general,
hierarchical structures for (α1(c), β1(c), α2(c), β2(c)) can be considered. Usually, δ provides
a better fit based on ACLV1. Thus, we may need to adopt the relationship between κ and δ:

δ =
ACLV1

log(n)1/κ
,

where
ACLV1 = TAQI × CLV1

AQI
.

Otherwise, we may select an average value or baseline value of κ or δ.
Let PAQIs(c) be the 4th largest 8-h daily maximum concentration of zt, which is

δ∗
( xt

δ

)κ/κ∗

.

Then,

y∗t =
TAQIa(c)
PAQIs(c)

zt.

2.3. Log-Normal Approach in Rollback

Let yt be a baseline process and y∗t be rollbacked process. Assume that

y∗t = γ(yt)
η ,

where yt ∼ logNormal(µ, σ2). That is,

log yt ∼ N(µ, σ2) and log y∗t ∼ N(λ + ηµ, η2σ2),

where λ = log γ.
Similarily, we fit yt to a log-normal distribution for each time t and city c. It is observed

that yt can be any covariate in the risk model (e.g., daily average, daily maximum, and daily
8-h maximum). Then, can obtain following information for each year i and each city c:

(AQIi(c), µi(c), σi(c)).
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Now we consider a simple linear model:

E
(

µi(c)
σi(c)

)
=

[
1 AQIi(c) 0 0
0 0 1 AQIi(c)

]
α3(c)
β3(c)
α4(c)
β4(c)


and

Cov
(

µi(c)
σi(c)

)
= Σ(c) =

[
σ33(c) σ34(c)
σ43(c) σ44(c)

]
.

For new standard regulation AQI∗, we can determine µ∗(c) and σ∗(c) for each city
c using

λ + ηµ = α3(c) + β3(c)AQI∗ and ησ = α4(c) + β4(c)AQI∗,

where µ and σ are estimated based on baseline year. In general, the following relationship
is considered:

log
TAQI
AQI

+ µ + σΦ−1
(

1− n−1
)
= λ + ηµ + ησΦ−1

(
1− n−1

)
.

It is observed that η = κ/κ∗ and λ = log γ = log(δ∗)− κ
κ∗ log(δ) = log(δ∗)− η log(δ).

Furthermore, well-fitted models of µ(c) and δ(c) can provide a good estimation based on
following relationships

λ + ηµ = α3(c) + β3(c)AQI∗ and λ = log(δ∗)− η log(δ).

That is,

η̂ =
α3(c) + β3(c)AQI∗ − log(δ∗)

µ− log(δ)

and
λ̂ = log(δ∗)− η̂ log(δ).

We can estimate one parameter (e.g., δ∗ or µ∗) first and then tune other parameter
(e.g., κ∗ or σ∗) to make rollbacked AQI set to be new standard regulation AQI∗ based on
the range of the parameter. In the 8-h daily maximum rollback, we can directly solve the
following equation by plugging in estimated parameters of δ∗ or µ∗:

AQI∗ = γ(AQI)η ,

where η = κ/κ∗ and γ = δ∗/δ
κ

κ∗ . That is,

κ̂∗ =
κ log AQI

δ

log AQI∗
δ∗

.

Furthermore, the following empirical relationships can be useful.

daily 1-h maximum = 2.5× daily average

and
daily 8-h maximum = 1.33× daily average.

As previous approaches (except for the 8-h maximum covariate) do not guarantee
rollbacked values satisfying exact new standard regulation AQI∗, hourly scale rollback
will be more appropriate for adjustment after rollback. Notice that EPA standard regulation
is based on the average of three consecutive years’ AQI values.



Appl. Sci. 2021, 11, 2388 6 of 12

3. Application to NMMAPS Data
3.1. Statistical Modeling

We apply an overdispersed Poisson model in generalized linear models (see [8,12]) to
the NMMAPS data. Denote Yc

t by the number of daily non-accidental deaths in community
c on day t. The Poisson process with intensity function µc

t can be expressed as

Yc
t ∼ Poisson(µc

t ) with Var(Yc
t ) = φcµc

t , (1)

where the parameter φc describes overdispersion for community c. Note that all
overdispersed Poisson models are assumed to be mutually independent over time. We
can also model the intensity function µc

t with some essential covariates such as ozone
levels at different lags, seasonality, long-term trends, weather, and co-pollutants for three
age groups (<65, 65–74, and ≥75 year). Natural cubic splines are useful tools for getting
smoothing functions of time to account for seasonality and long-term trends in which
influenza epidemics, for example, can affect mortality. The interaction term between
smoothing functions of time and age-specific indicators (<65, 65–74, and ≥75 years) is
considered as it can adjust the possible seasonal mortality patterns by age group. We also
control for some potential covariates related to weather by smoothing functions of dew
point, average dew points of the previous three days, temperature, the average temperature
of the previous three days as follows:

log µc
t = βcxc

t + αcDOWt + γc
1ns(time, 7/year) + γc

2ns(Tc
t , 6) (2)

+ γc
3ns(Tc

t−1,t−3, 6) + γc
4ns(Dc

t , 3) + γc
5ns(Dc

t−1,t−3, 3) (3)

+ interaction terms for age groups and time, (4)

where µc
t is the expected number of deaths, xc

t is the average daily O3 concentrations of the
current and the previous day in community c on the day t, DOWt is the days of the week
(categorical) on day t. We define ns(time, 7/year), ns(Tc

t , 6), ns(Tc
t−1,t−3, 6), ns(Dc

t , 3) and
ns(Dc

t−1,t−3, 3) as the natural cubic spline function of time with 7 degrees of freedom per
year, temperature with 6 degrees of freedom, the average temperature of the previous three
days with 6 degrees of freedom, dew point with 3 degrees of freedom and the average dew
points of the previous three days with 3 degree of freedom, respectively. The last term in (4)
indicates the interaction terms of age-specific indicators and natural cubic spline functions
of time.

Relative mortality rates associated with exposure to ozone over the past few days
can be estimated in a specific community by constrained or unconstrained distributed-lag
models as daily ozone levels are readily available. Those models can be more flexible in
the sense that they can be more suitable for exploring the time lag between exposures to
ozone and deaths than single-lag models (see [7]).

For example, the constrained distributed-lag models (CDL) and unconstrained
distributed-lag models (UDL) can be expressed as

βcxc
t = βc

0xt + βc
1 x̄c

t:t−3 + βc
2 x̄c

t:t−6 or βcxc
t =

6

∑
j=0

βc
j x

c
t−j, (5)

respectively.
The national average relative mortality rate caused by ozone effects can be estimated

through a Bayesian hierarchical model in which both variability within-community and
across-community can be accounted. The national average relative rate will be estimated
by integrating estimates for the relative rate from the distributed-lag models for each
specific community. Through the two-stage model, first, variation across communities is
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considered over the short-term ozone effects. The national average relative rate is then
estimated. The ozone effects O3 on mortality is modeled for each community c as follows:

β̂
c|βc, Σ̂c ∼ MVN(βc, Σ̂c), (6)

where βc is the true relative rate in a specific community, β̂
c

is its estimate, and Σ̂c is
the estimated covariance matrix corresponding to β̂

c
. We put the multivariate normal

distribution on βc,
βc|µ, Ω ∼ MVN(µ, Ω), (7)

where µ is the true national average relative rate and Ω is the true covariance matrix of
relative rate in a specific community, βc. Note that there are still several sensitivity issues
related to the modeling: (1) co-pollutant such as PM10 can be included as a potential
confounder; (2) days with high temperatures can be excluded to control for the effects of
heat waves; (3) the degrees of freedom (df) in the smooth functions of time needs to be
specified to control for long-term trends and seasonality; and (4) various ozone exposure
metrics such as daily average, 1-h maximum, and 8-h maximum can be considered (see [7]).

3.2. Inferences

Estimating the impact of new ozone regulatory standards on the total nonaccidental
deaths is not achieved through the national average relative rate µ as the rollback
adjustment is applied to each community separately. Instead, we directly calculate
the expected total nonaccidental deaths of the original and adjusted (rollbacked) ozone
process, respectively.

Denote gc by a rollback function for community c, which adjusts observed ozone
concentrations to meet new ozone regulation standards. Our focus is then on the difference
in expected nonaccidental deaths between before and after rollback transformation. Let
E[log(µc

t )] = xc
t β̂

c
+ Mc

t θ̂
c, where Mc

t is the design matrix of covariates except for ozone
(i.e., DOWt, ns(time, 7/year), ns(Tc

t , 6), and ns(Dc
t , 6), etc.), and xc

t is the design matrix of
unconstrained (or constrained) distributed-lag ozones for community c (see [7]). If the
amount of ozone reduction r is the same for each community c, then the reduction ratio
of the expected total death is 1 − exp

(
−rβ̂

c
)

for each community c at time t. Thus,
the reduction rate of the national expected total death is 1− exp(−rµ̂) at time t. As the µ is
obscure, the reduction rate of the national expected total death can be better estimated by
weighting mean effects across the 98 cities, where weights are proportional to populations.

For simplicity, the unconstrained distributed-lag model is only considered here
although the constrained distributed-lag models can be also readily applied via
reparameterization. Let zt be rollbacked ozone concentrations of xt for community c (i.e.,
zc

t = gc(xc
t )). After the rollback transformation, the expected total deaths for community c

during the ozone season is as follows

∑
t∈TO3

exp

(
6

∑
j=0

β jgc(xc
t−j) + Mc

t θ̂
c
)

, (8)

where TO3 is the set of time indices for the ozone season. The log ratio of national expected
death before and after the rollback transformation during ozone season can be expressed as

log ∑
c∈C

∑
t∈TO3

wc,t exp

(
6

∑
j=0

β j(zc
t−j − xc

t−j)

)
, (9)
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where C is the set of indices of communities in NMMAPS data and wc,t is the weight of
community c at time t,

wc,t =
exp

(
∑6

j=0 β jxc
t−j + Mc

t θ̂
c
)

∑c∈C ∑t∈TO3
exp

(
∑6

j=0 β jxc
t−j + Mc

t θ̂
c
) . (10)

We can estimate the posterior distribution of the log ratio in (9) through the MCMC
approach. As π(β|Y) can be approximated by π(β|β̂) and a prior distribution of (µ, Ω) well,
we can generate β from the posterior distribution π(β|Y). One of the efficient algorithms
in application is TLNISE (two level Normal independent sampling estimation) algorithm
(see [13]). Without a Bayesian approach, restricted maximum likelihood (REML) method
can provide similar estimates.

Finally, with samples from π(β|Y) the posterior distribution of the log ratio of national
expected death in (9) can be estimated as follows

log
∑c∈C ∑t∈TO3

exp
(

∑6
j=0 β

(i)
j zc

t−j + Mc
t θ̂

c
)

∑c∈C ∑t∈TO3
exp

(
∑6

j=0 β
(i)
j xc

t−j + Mc
t θ̂

c
) , (11)

where β(i) indicates each sample from π(β|Y) or π(β|β̂) for i = 1, . . . , N.

4. Results

We investigate how the rollback transformation predicts that ozone series change
under new ozone regulation standards possibly affecting public health. The transformation
is based on the current AQI and new regulation standards in the attainment years. Figure 2
shows Q-Q plots of ozone levles under new regulation standards against the current AQI
using various rallback functions and statistical rollbacks. A common AQI is applied to all
cities (common rollback) or a different AQI is applied to each city (city-specific rollback).

The regular meteorological model in the NMMAPS is based on nonlinear functions
mainly consisting of temperature and dewpoint at lag 0 and the average of them at
lags 13. However, meteorological confounding in a distributed-lag model for ozone may
exist at lags 46 so that we account for temperature and dewpoint at lag 0 through 6
in the “distributed-lag” meteorological model through nonlinear splines with 4 and
3 df, respectively.

We use the reduction rate of the expected total death to assess the effect of the proposed
new ozone regulatory. Posterior means and 95% credible intervals for total mortality per
1000 deaths are shown in Tables 1 and 2. They are based on unconstrained distributed-lag
models with a common rollback and city-specific rollback approach, respectively. Most
credible intervals have positive lower limits in the common rollback approach except for
Weibull rollback at level 75 regularization, providing good evidence that there are reduced
rates. As expected, the mortality rate decreases as lower regulation increases. Similar
results are observed in CDL. The ranges of the estimated reduction rates are approximately
0.94–1.9 for 75 ppb, 1.47–2.9 for 70 ppb and 4.9–5.0 for 60 ppb for all models and rollback
functions. Statistical rollbacks tend to show similar results as quadratic rollbacks for
overall regularization levels. The ranges of the estimated reduction rates are roughly
1.0–2.0 for 75 ppb, 1.4–2.8 for 70 ppb and 2.4–4.8 for 60 ppb for all rollback functions
in the city-specific rollback approach. Posterior variances of the relative risks for each
specific city vary with rollback functions. Rather than we include daily average ozone
concentration as a covariate, we include daily maximum ozone concentration and daily
8-h maximum ozone concentration so that they reduce the mortality rate more in Table 3.
We also conduct statistical inference with simple MLE and pooled MLE and then compare
them with Bayesian inference. Both MLE and pooled MLE give a slightly higher reduction
rate than one based on the Bayesian inference in Table 4. Several issues associated with high
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temperature on the mortality reduction. These are investigated by presenting mortality
reduction with and without high temperaturein Table 5.

Several issues associated with high temperature on the mortality reduction. These
are investigated by presenting mortality reduction with and without high temperature in
Table 5.
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Figure 2. Q-Q plots based on various rallback functions (left) and statistical rollbacks (right) based on ozone data in New
York (top) and Detroit (bottom) during 2003.
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Table 1. Posterior means and 95% confidence intervals of total mortality reduction per 1000 deaths (1998–2000):
common rollback.

Model Reg. Prop. Prop. w/ BG Quadratic Weibull Stat.W Stat.LN

level 75 1.87 1.09 0.95 –0.62 0.98 0.94
(1.07, 2.62) (0.62, 1.53) (0.54, 1.35) (–1.18, –0.11) (0.52, 1.37) (0.49, 1.33)

CDL level 70 2.86 1.66 1.46 0.60 1.51 1.47
(1.65, 4.09) (0.95, 2.39) (0.84, 2.08) (0.10, 1.09) (0.88, 2.14) (0.83, 2.10)

level 60 4.92 2.86 2.51 2.98 2.61 2.54
(2.84, 7.02) (1.64, 4.09) (1.43, 3.61) (1.53, 4.30) (1.48, 3.75) (1.46, 3.65)

level 75 1.91 1.11 0.98 –0.62 1.03 0.98
(1.15, 2.72) (0.66, 1.59) (0.58, 1.39) (–1.17, –0.07) (0.63, 1.44) (0.59, 1.40)

UDL level 70 2.92 1.70 1.49 0.59 1.58 1.52
(1.66, 4.14) (0.97, 2.41) (0.84, 2.10) (0.10, 1.09) (0.92, 2.18) (0.85, 2.13)

level 60 5.01 2.92 2.56 3.05 2.79 2.60
(2.93, 7.19) (1.66, 4.23) (1.49, 3.70) (1.73, 4.38) (1.72, 3.93) (1.56, 3.78)

Table 2. Posterior means and 95% confidence intervals of total mortality reduction per 1000 deaths (1998–2000):
city-specific rollback.

Model Reg. Prop. Prop. w/ BG Quadratic Weibull Stat.W Stat.LN

level 75 1.96 1.20 0.98 –0.52 1.02 0.99
(1.06, 2.92) (0.61, 1.79) (0.51, 1.46) (–1.33, 0.25) (0.54, 1.51) (0.50, 1.48)

CDL level 70 2.75 1.66 1.38 0.44 1.42 1.39
(1.47, 4.02) (0.87, 2.46) (0.74, 2.03) (–0.36, 1.26) (0.78, 2.09) (0.75, 2.05)

level 60 4.62 2.76 2.40 2.67 2.56 2.49
(2.64, 6.69) (1.58, 4.06) (1.36, 3.52) (1.38, 3.99) (1.52, 3.70) (1.45, 3.62)

level 75 1.96 1.19 0.98 –0.51 1.01 0.99
(0.93, 2.91) (0.52, 1.79) (0.45, 1.46) (–1.36, 0.36) (0.49, 1.49) (0.50, 1.48)

UDL level 70 2.78 1.69 1.40 0.45 1.44 1.41
(1.50, 3.96) (0.88, 2.42) (0.74, 1.99) (–0.42, 1.23) (0.79, 2.08) (0.74, 2.03)

level 60 4.81 2.88 2.50 2.79 2.62 2.58
(2.66, 7.05) (1.55, 4.26) (1.36, 3.70) (1.41, 4.31) (1.49, 3.84) (1.44, 3.79)

Table 3. Posterior means and 95% confidence intervals of total mortality reduction per 1000 deaths (1998–2000): city-specific
rollback and CDL model.

Covariate Reg. Prop. Prop. w/ BG Quadratic Weibull Stat.W Stat.LN

Daily level 75 1.96 1.20 0.98 –0.52 1.02 0.99
Ave (1.06, 2.92) (0.61, 1.79) (0.51, 1.46) (–1.33, 0.25) (0.54, 1.51) (0.50, 1.48)

level 60 4.62 2.76 2.40 2.67 2.56 2.49
(2.64, 6.69) (1.58, 4.06) (1.36, 3.52) (1.38, 3.99) (1.52, 3.70) (1.45, 3.62)

Daily level 75 2.32 1.91 1.66 2.48 2.12 2.09
Max (1.54, 3.14) (1.26, 2.59) (1.09, 2.27) (1.62, 3.40) (1.59, 2.79) (1.55, 2.73)

level 60 6.19 5.10 4.25 5.13 4.87 4.59
(4.11, 8.31) (3.33, 6.87) (2.79, 5.75) (3.41, 6.91) (3.38, 6.35) (3.09, 6.06)

Daily level 75 2.10 1.61 1.36 1.90 1.56 1.52
8 h Max (1.26, 2.92) (0.96, 2.23) (0.79, 1.94) (1.13, 2.67) (0.96, 2.15) (0.94, 2.12)

level 60 5.53 4.23 3.43 4.34 3.67 3.55
(3.37, 7.50) (2.52, 5.76) (1.99, 4.69) (2.52, 5.91) (2.26, 4.94) (2.14, 4.81)
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Table 4. Posterior means and 95% confidence intervals of total mortality reduction per 1000 deaths (1998–2000): city-specific
rollback and CDL model.

Covariate Reg. Prop. Prop. w/ BG Quadratic Weibull Stat.W Stat.LN

Bayesian level 75 1.96 1.20 0.98 –0.52 1.02 0.99
(1.06, 2.92) (0.61, 1.79) (0.51, 1.46) (–1.33, 0.25) (0.54, 1.51) (0.50, 1.48)

level 60 4.62 2.76 2.40 2.67 2.56 2.49
(2.64, 6.69) (1.58, 4.06) (1.36, 3.52) (1.38, 3.99) (1.52, 3.70) (1.45, 3.62)

MLE level 75 2.23 1.31 1.09 –0.30 1.21 1.19
(1.14, 3.21) (0.62, 1.91) (0.54, 1.58) (–1.15, 0.48) (0.66, 1.70) (0.64, 1.69)

level 60 5.07 2.93 2.52 3.03 2.56 2.52
(3.00, 7.28) (1.65, 4.29) (1.42, 3.68) (1.69, 4.37) (1.49, 3.73) (1.39, 3.69)

Pooled level 75 1.92 1.16 0.95 –0.50 1.15 1.10
MLE (1.79, 2.05) (1.09, 1.24) (0.89, 1.02) (–0.61, –0.38) (1.08, 1.22) (1.04, 1.18)

level 60 4.65 2.78 2.40 2.69 2.49 2.44
(4.37, 4.92) (2.62, 2.93) (2.27, 2.54) (2.48, 2.88) (2.38, 2.62) (2.32, 2.59)

Table 5. Posterior means and 95% confidence intervals of total mortality reduction per 1000 Deaths (1998–2000): without
high temperature (>85).

Prop. Prop. w/ BG Quadratic Weibull Stat.W Stat.LN

With High Temp 1.96 1.20 0.98 –0.52 1.02 0.99
(1.06, 2.92) (0.61, 1.79) (0.51, 1.46) (–1.33, 0.25) (0.54, 1.51) (0.50, 1.48)

Without High Temp 1.39 0.83 0.67 –0.47 0.75 0.71
(0.33, 2.41) (0.15, 1.46) (0.15, 1.17) (–1.36, 0.45) (0.22, 1.26) (0.18, 1.22)

5. Concluding Remarks

As the rollback approach provides an adjusted ozone process in a deterministic
manner, we introduce a statistical rollback approach based on the quantile matching
method to allow for uncertainty and thus provide flexible rollback sets. The proposed
methods are applied to epidemiologic data (NMMAPs) and we assess the impact of new
ozone regulation standards on public health under various settings. Another possible
model is to consider different time lags in the Poisson process model with constrained or
unconstrained distributed lags together. Using respiratory deaths rather than nonaccidental
deaths may also provide useful results. One of the issues that need to be addressed is
collinearity between ozone and temperature, for example. Other studies revealed strong
effects in the Northeast and Industrial Midwest, less strong but still significant effects in
the Southeast and possibly Southern California. Thus, we can also consider a regional or
spatial structure in the method. Finally, the parametric rollback approach using quantile
matching may allow uncertainty in ozone process itself, which can be extended to a fully
Bayesian framework.
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