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Abstract: The inability to move the muscles of the face on one or both sides is known as facial paraly-
sis, which may affect the ability of the patient to speak, blink, swallow saliva, eat, or communicate
through natural facial expressions. The well-being of the patient could also be negatively affected.
Computer-based systems as a means to detect facial paralysis are important in the development of
standardized tools for medical assessment, treatment, and monitoring; additionally, they are expected
to provide user-friendly tools for patient monitoring at home. In this work, a methodology to detect
facial paralysis in a face photograph is proposed. A system consisting of three modules—facial
landmark extraction, facial measure computation, and facial paralysis classification—was designed.
Our facial measures aim to identify asymmetry levels within the face elements using facial landmarks,
and a binary classifier based on a multi-layer perceptron approach provides an output label. The
Weka suite was selected to design the classifier and implement the learning algorithm. Tests on
publicly available databases reveal outstanding classification results on images, showing that our
methodology that was used to design a binary classifier can be expanded to other databases with
great results, even if the participants do not execute similar facial expressions.

Keywords: computerized assessment; face alignment; facial paralysis detection; facial symmetry

1. Introduction

The face plays an important role in visual communication. By looking at the face,
a person can automatically extract many nonverbal messages, such as the identity, intent,
and emotion of others [1]. Facial paralysis is known as the inability to move the muscles of
the face on one or both sides. This inability can result from nerve damage due to congenital
conditions; trauma; or disease, such as stroke, brain tumor, or Bell’s palsy. The problem
can affect one or both sides of the face, with the noticeable drooping of the features and
problems with speaking, blinking, swallowing saliva, eating, or communicating through
natural facial expressions. These physical signs of facial paralysis can provide information
to the clinician concerning the state of the patient [2].

The process of detecting facial paralysis is important in assessing the severity of the
facial nerve and muscle malfunction and in order to record physical improvements when
treating and monitoring the patient. Computer-based automatic facial paralysis detection
is important in developing standardized tools for medical assessment, treatment, and
monitoring and to reduce healthcare costs through the inclusion of automatic processes [2].
Additionally, computer-based systems are expected to provide user-friendly tools, in the
near future, for patient monitoring at home.

Particularly in the field of computer vision, the analysis of facial signs has motivated
a lot of studies on automated facial nerve function assessment from the biomedical visual
capture of the face. The visual capture of the face extends from traditional images and
video to infrared (thermal imaging) and also depth images (stereo photogrammetry). A few
methods based on the use of images perform a process for feature extraction that consists
of detecting the face region in the image and later extracting key points (also known as
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facial landmarks) based on a specific model. There are some publicly available models,
also known as shape predictors, that extract facial landmarks using Haar cascades. The
68 points predictor proposed by Matthews and Baker in [3] is widely known and employed
in the field of facial analysis. In the literature, some authors create their own shape predictor
to extract facial landmarks with a better performance of the task [4]. In a common approach,
the extraction of facial landmarks is a crucial step, because these key points are used to
compute other measures, such as the distances, angles, and areas between the landmarks.
In the facial analysis process, those measures are fed into a classifier to train it and to detect
facial nerve damage, and, later, its severity.

To achieve the automatic classification of facial nerve damage, it is necessary for a
clinical practitioner to evaluate a set of facial images to label them as healthy or unhealthy
faces. With annotated data, any classifier could be trained using the extracted facial mea-
sures and the labels to detect facial nerve damage in a new image. Although a variety of
automated facial nerve function assessment solutions have been proposed, their outcomes
fall into two main categories: (1) non-semantic numerical values quantifying static, dy-
namic, and synkinetic facial features; (2) semantic grade of facial nerve function designed
by the clinician [5]. Most existing solutions belong to the first category; however, most of
these solutions stay at the method discussion phase, and only a few of them have been
implemented into prototypes—for example, the Emotrics software [6]. Solutions in the
second category aim to quantify the facial nerve function according to a specific facial nerve
grading scale designed by clinicians. To achieve this target, machine learning techniques
should be applied to build a predictive model which is trained on labelled data and capable
of making predictions on new data. Here, the data are facial images from either a healthy
subject or a facial palsy patient, and the prediction is a binary decision (healthy or patient)
or it could be the grade of facial nerve function. Classifiers for these applications are
based on the methods of support vector machine (SVM), artificial neural network (ANN),
k-nearest-neighbor (KNN), or hybrid classifier [5]. For a new subject, a typical system
extracts computational features from the facial data then calls a pre-trained classifier to
map the features to the facial nerve malfunction.

There are some works that use facial landmarks (i.e., facial key points extraction),
before performing facial analysis [6–8]. There are other works that specifically intend to
detect facial paralysis as a binary classification problem. Kim et al. proposed a smartphone-
based automatic diagnosis system that consists of three modules: facial landmark detector,
feature extractor based on facial regions, and a classifier [9]. Three facial movements were
analyzed: resting, smiling, and raising the eyebrows. The system was evaluated on a
private database with 23 facial palsy patients and 13 healthy volunteers. The authors
reported their highest classification accuracy at 88.9%. Hsu et al. proposed a deep learning
solution for the detection of facial palsy using a regular camera [10]. They formulated the
facial palsy identification as an object detection problem and considered the deformation
regions cause by facial palsy, or simply the palsy regions, on a patient’s face as the target
objects. Their proposed solution is a hierarchical network composed of three components:
face detection, facial landmark detection, and local palsy region detection. The authors
reported a 93% of prediction accuracy in their private database. Barbosa et al. proposed
a method to classify facial paralysis in two stages: the discrimination of healthy from
unhealthy subjects, and then, facial palsy classification among unhealthy subjects [11].
They used four facial expressions (at rest, raising the eyebrows, screwing up the nose,
and smiling) to measure symmetry. They built a classification model by combining a rule-
based approach and a machine learning method (hybrid classifier). The authors reported
an up to 98.12% sensitivity in the discrimination among healthy and unhealthy in their
private database.

In this work, we aim to detect facial paralysis in a set of face images, meaning that
we aim to identify if the subject is healthy or a patient (binary classification). In this
methodology, the evaluation of the input image is performed independently of the facial
movement executed by the patient, different from other works which use a set of facial
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gestures to compute symmetry variations between expressions, then they detect facial
paralysis. Our system measures extracted facial landmarks using simple mathematical
operations that keep the implementation uncomplicated but that are still effective. Our
facial measures aim to detect the level of asymmetry between the two sides of the face
and also characterize facial gestures so that the learning algorithm is able to relate each
asymmetry level with the expression found in the image. The proposed measures extract
information from the eyebrows, eyes, nose, and mouth; they are not divided by specific
regions and do not have pre-marked zones, as other authors propose. Our classification
approach is based on a multi-layer perceptron, which provides a label as an output.

The contributions of this research are: a set of facial measures, easily computed from
facial landmarks, for the binary classification of facial paralysis independently of the facial
movement performed by the subject; evaluation using two public image databases; and a
classification model to detect facial paralysis. The remainder of the paper is organized as
follows: Section 2 describes the proposed methodology, Section 3 introduces our findings
and discussion, and finally Section 4 provides concluding remarks.

2. Methodology

The framework of the proposed facial paralysis detection system is shown in Figure 1.
As mentioned before, a typical system starts with the extraction of facial landmarks. How-
ever, it has been established by other authors that the available facial models are not suited
to analyze subjects suffering from facial impairments [9,11,12]. Therefore, we took advan-
tage of the 68 key points shape predictor developed by Guarin et al. and presented in [12].
Their model, called the MEEshape predictor, is publicly available for testing and compar-
ison. A better performance in predicting facial landmarks in patients’ photographs was
observed in preliminary experiments using the MEE shape predictor. This was especially
so if comparing the results with two of the available OpenCV implementations [13]: the
LBF model [14] or the Kazemi model [15].

Figure 1. Framework of the proposed facial paralysis classification system.

2.1. Facial Landmarks Extraction

The process to extract facial landmarks from a face within an input image, preferably
a frontal face photograph, is based on the method and model proposed by Guarin et al.
in [12]. The full facial landmarks extraction process follows as:

1. Convert the color input image to gray scale.
2. Resize the gray image using an scale factor (s f ) of s f = W

nW , where nW = 200 and
nH = H

s f . W and H refer to the size of the input image (width and height, respectively).

3. Detect the face on the resized image using the publicly available dlib libraries.
4. Re-scale the detected face area using s f .
5. Predict the facial landmarks on the re-scaled face area.
6. Store the extracted data for future data processing.

The MEE shape predictor is trained to detect 68 points, but only 51 of them are of
interest in this work. As depicted on Figure 2, the 51 points are reorganized to facilitate the
computation of measures.
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(a) (b)

Figure 2. Facial model adapted from the work proposed by Matthews and Baker [3]. (a) Standard
68 key points model; (b) our 51 key points model.

Since the accuracy of the facial symmetry quantification can be affected by the tilt angle
of the head [16], before computing any symmetry measures tilt correction was performed
using the facial landmarks previously extracted. In this work, the first and last jaw points,
points 48 and 49 in Figure 2b, were used to correct the possible tilt of the head. Here, point
48 is set as the origin of the coordinate plane and the angle between it and point 49 is the
tilt angle to be corrected, with a geometry rotation of the key points. Notice that the angle
between the two points was obtained according to Equation (1):

∠(Pa, Pb) = arctan 2(4x,4y)× 180/π (1)

where4x = Pax − Pbx and4y = Pay − Pby.
The facial landmark rotation process goes as follows:

1. Compute a rotation matrix M. The function getRotationMatrix2D from OpenCV [13]
can be employed using P48 and the angle ∠(P48, P49) between the two jaw points.

2. Rotate the 51 key points using M:

(
Pirx
Piry

)
=

[
M1,1 M1,2 M1,3
M2,1 M2,2 M2,3

]Pix
Piy
1

 (2)

3. Store the rotated data for future data processing.

2.2. Facial Measures Computation

As stated before, in this methodology the evaluation of the input image was performed
aiming to detect a level of asymmetry within the two sides of the face. The proposed
measures extract information from the eyebrows, eyes, nose, and mouth. As depicted on
Figure 3, 34 distances were calculated using the facial key points. Some of those distances
(A to K) were inspired by the work of [17], who aimed to evaluate objective measures from
face photographs with a target other than facial paralysis detection, but they seem to be
a good reference to characterize the healthy human face. Here, distances A to Q were
proposed to detect any level of asymmetry among face sides (or regions), while measures
R to Z were proposed to identify the facial movement executed by the patient; then, the
asymmetry level was computed.



Appl. Sci. 2021, 11, 2435 5 of 11

(a)

(b)

(c)

Figure 3. Facial distances to compute spatial relations between facial landmarks. (a) Distances A
to K; (b) distances L to Q; (c) distances R to Z.

The proposed facial measures aim to identify any level of asymmetry between the left
and right sides of the face, although locating the paralyzed side (or region) of the face is
out of the scope of this work. Most measures were compared and ratios were computed to
obtain a value in the range of [0, 1], where 0 means fairly asymmetric and 1 is assumed to be
closer to a healthy face. Before describing our proposed measures, it is worth noticing that
the angle between two points was computed according to Equation (1), the slope between
points was computed following Equation (3), the Euclidean distance was employed in this
work according to Equation (4), and the perimeter of a close segment was computed using
Equation (5):

m(Pa, Pb) =
∣∣∣ Pay − Pby

Pax − Pbx

∣∣∣ (3)

d(Pa, Pb) =
√
(Pax − Pbx)2 + (Pay − Pby)2 (4)
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S(Ps, . . . , Pl) =
l−1

∑
x=s

d(Px, Px + 1) + d(Ps, Pl) (5)

where S is a close segment, Ps is the start point, and Pl is the last one and represents the
end point within the segment.

In this work, it is assumed that a healthy face is symmetric with respect to the position
of the face elements (e.g., the eyelids, the mouth corners, the eyebrows) independently of
the face gesture. In the case where those elements are not symmetric to each other, it is
assumed that a level of paralysis will be diagnosed. Therefore, 29 symmetry measures
are proposed and described in Table 1; please refer to Figures 2 and 3 if further detail
is required.

Table 1. Proposed symmetry measures.

Feature Face Element Description Formula

f0 Eyebrows Angle |∠(P0, P9)|
f1 Eyebrows Angle |∠(P2, P7)|
f2 Eyebrows Angle |∠(P4, P5)|
f3 Eyebrows Maximum value max(L/M, M/L)
f4 Eyebrows Slope m(P0, P9)
f5 Eyebrows Slope m(P2, P7)
f6 Eyebrows Slope m(P4, P5)
f7 Eyes Angle |∠(P10, P19)|
f8 Eyes Maximum value max(Bl/Br, Br/Bl)
f9 Eyes Maximum value max(D/E, E/D)

f10 Eyes Maximum value max(H/I, I/H)
f11 Eyes Maximum value max(N/O, O/N)
f12 Eyes Maximum value max(Nl/Or, Or/Nl)
f13 Eyes Maximum value max(Nr/Ol , Ol/Nr)
f14 Mouth Angle |∠(P28, P34)|
f15 Mouth Maximum value max(F/G, G/F)
f16 Mouth Maximum value max(Pl/Ql , Ql/Pl)
f17 Mouth Maximum value max(Pu/Qu, Qu/Pu)
f18 Mouth Maximum value max(Vl/A, Vr/A)
f19 Mouth Maximum value max(Pl/W, Ql/W)
f20 Mouth Maximum value max(Pu/W, Qu/W)
f21 Mouth Maximum value max(Wl/W, Wr/W)
f22 Nose Angle |∠(P23, P27)|
f23 Combined Angle |∠(P22, P37)|
f24 Combined Maximum value max(J/K, K/J)
f25 Combined Maximum value max(T/A, U/A)
f26 Combined Maximum value max(R/A, S/A)
f27 Combined Ratio C/A
f28 Combined Ratio X/A

In f19, f20 and f21, W is the distance depicted in Figure 3c, being the perimeter values Wl and Wr calculated as
Wl = S(P28, P29, P30, P31, P37, P38, P39) and Wr = S(P31, P32, P33, P34, P35, P36, P37).

2.3. Multi-Layer Perceptron Classifier

Classification is a long-established problem in machine learning, and the use of
artificial neural networks is fairly common. In this work, we employed the Weka (Waikato
Environment for Knowledge Analysis) [18] suite of machine learning to train a binary
classifier based on the multi-layer perceptron approach. The Weka function known as the
Multilayer Perceptron (MLP) requires at least five parameters to learn: learning rate (L),
momentum (M), training time (N), hidden layers (H), and seed (S). Both, the learning rate
and the momentum are used to update the weights of the connections between nodes.
The training time is the number of epochs to train through. Hidden layers refers to the
number of layers within the MLP and the number of neurons for each. The seed is a
number used to randomly initialize the weights of the connections between nodes. This
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classifier uses backpropagation to learn a multi-layer perceptron to classify instances. For
more information regarding the Weka software, refer to [18].

3. Experiments and Results

There are a number of methodologies aiming to detect facial paralysis in a photograph.
However, collaboration among the research community has been difficult due to the
unavailability of public datasets, mainly because of patient privacy as many patients
would prefer not to share their biometrical data. This situation motivated us to test our
classification system on two different databases that recently became publicly available.
Some remarks on such databases are given here.

First, we used the Massachusetts Eye and Ear Infirmary (MEEI) database, which is
an open source set of facial photographs and videos representing the entire spectrum of
flaccid and nonflaccid facial palsy collected by Greene et al. and introduced in [19]. The
MEEI database was released to serve as a resource for facial palsy education and research.
Initially, to demonstrate the utility of the database the relationship between the level of
facial function and the perceived emotion expression was successfully characterized us-
ing a machine learning-based algorithm [19]. Later, the MEEI database was employed
to develop a novel machine learning algorithm for the fast and accurate localization of
facial landmarks in photographs of facial palsy patients; the improved shape predictor
represents the first step toward an automatic system for computer-aided assessment in
facial palsy [12]. In order to determine an agreement between the facial function evaluation
using high-quality photographs and using in-person evaluation, the MEEI database was
employed. The authors demonstrated that facial symmetry in facial palsy patients can be
monitored using standardized frontal photographs [20]. Recently, the MEEI database was
also employed to compare a clinician evaluation against machine learning–derived auto-
mated assessments in frontal photographs. The authors of [21] concluded that automated
scores predicted more asymmetry in normal patients and less asymmetry in patients with
flaccid palsy and synkinesis compared to clinician grading. Automated assessments hold
promise for the standardization of facial palsy outcome measures and may eliminate the ob-
server bias seen in clinician-graded scales. The database is composed of 480 high-resolution
images from 60 participants, 10 healthy subjects, and 50 patients (25 suffering from flaccid
and 25 from nonflaccid paralysis), each one performing 8 different facial movements: (1) at
rest, (2) eyebrow elevation, (3) light effort eye closure, (4) full effort closure, (5) light effort
smile, (6) full effort smile, (7) pucker, and (8) lip depression. This image database was used
to design our classification system. To the best of our knowledge, there is no other publicly
available database with these characteristics.

Second, the Toronto NeuroFace (TNF) is also a publicly available dataset, collected by
Bandini et al. and introduced in [22], which aims to assess neurological disorders. Similarly
to the MEEI dataset, the Toronto NeuroFace dataset was released to foster the develop-
ment of novel and robust approaches for face alignment and oro-facial assessments that
can be used to track and analyze facial movements in clinical populations suffering from
amyotrophic lateral sclerosis and other neurological diseases. Authors in [22] analyzed
the importance of using algorithms trained with data from the target population in order
to improve the localization of facial landmarks and also the accuracy in face alignment.
The TNF dataset consists of 261 videos, clinical scores per video, and more than 3300 anno-
tated frames of faces from individuals performing oro-facial tasks typical of the clinical
assessment.

To the best of our knowledge, neither the MEEI database or the TNF dataset have
been employed to specifically detect facial paralysis in frontal face photography. It is worth
noticing that both databases intend to facilitate information for the development of clinical
applications; however, they are not equivalent in terms of image quality, lighting, and pose
conditions, and the tasks performed by the participants are not equivalent. In other words,
both databases are not directly comparable for our classification problem, but they were
helpful in the design process.
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As stated before, in Section 2.3, the Weka suite was employed at the design stage of
our MLP classifier. The suite allowed us to analyze the performance of the MLP classifier
parameters—in this case the function named CVParameterSelection was employed [18].
As a result of the analysis, the configuration values were set as learning rate L = 0.2045,
momentum M = 0.1909, training time N = 500, seed S = 0, and hidden layers H = 56.
It might be relevant to mention that the 29 features were selected from a set of symmetry
measures after evaluating the worth of the features using the strategy implemented by the
function named ClassifierAttributeEval [18].

Using the 10-fold cross-validation technique, the MLP classifier was trained with
640 samples computed from the MEEI database. Cross-validation is a statistical method
used to estimate the performance of machine learning models on new data; it is a widely
known technique used to train and evaluate. Later, it was observed that the MLP function
did not perform sequential learning, resulting in a negative impact on the classifier perfor-
mance because the available dataset was unbalanced. That is, there were fewer healthy
samples compared to the unhealthy ones (80 vs. 400). To overcome this situation, the
healthy set was replicated three times with a sample augmentation process. Similar to the
process suggested in [9,16], the healthy images were rotated in two opposite directions,
increasing the amount of available data and also verifying that our algorithm was invariant
to rotation. In previous experiments, it was observed that increasing the amount of healthy
instances by three times is enough to learn and discriminate this class without over fitting.
In the end, the training of the MLP classifier was executed with 640 samples (240 healthy
and 400 unhealthy instances).

In Table 2, the performance of the model for the testing part of the data for each fold
is presented. There, TN stands for true negative (i.e., healthy samples), TP stands for
true positive (i.e., unhealthy samples), and false negative (FN) and false positive (FP) are
incorrectly classified samples. Here, the worst performance is 84.37% for the 1st fold and
the best is 100% for the 5th fold. The average performance of this methodology is 94.06%,
as shown in Table 2. After evaluating our MLP classifier with the original 480 samples,
there is a 99.79% correct classification of the MEEI database, yielding a sensitivity of 99.75%
and a specificity of 100%. The confusion matrix of test on the actual MEEI database is given
in Table 3.

Table 2. Cross-validation results for tests on the MEEI database.

n-Fold TN TP FN FP Accuracy [%]

1 22 32 8 2 84.37
2 24 37 3 0 95.31
3 24 33 7 0 89.06
4 24 38 2 0 96.87
5 24 40 0 0 100
6 23 38 2 1 95.31
7 24 38 2 0 96.87
8 22 38 2 2 93.75
9 24 35 5 0 92.19

10 24 38 2 0 96.87

Average - - - - 94.06

Table 3. Resulting confusion matrix of the test on the actual MEEI database.

Healthy = 0 Unhealthy = 1 Correct Label

80 0 healthy
1 399 unhealthy
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It was already mentioned that the Toronto NeuroFace (TNF) is a database collected
for clinical assessment, and to the best of our understanding and the information provided
by the authors, the subset called Stroke can be used to evaluate our methodology. There are
8 subjects with facial asymmetry and 3 participants without it—in total, 817 asymmetrical
samples and 219 symmetrical ones. It is important to notice that the TNF images refer
to frames extracted from the subjects videos performing oro-facial tasks. Following the
proposed methodology, a 10-fold cross-validation technique was employed to train another
MLP classifier using samples computed from the TNF database. In Table 4, the performance
of the model on the testing part of the data for each fold is presented. Here, the worst
performance was 94.56% for the 5th fold and the best was 98.65% for the 3rd fold. The
average performance of this methodology for the second dataset was 97.22%, as shown in
Table 4. A 98.55% correct classification was found after evaluating the MLP classifier with
the original 1036 samples. The confusion matrix of the test on the actual TNF database
is described in Table 5, which yields a sensitivity of 98.29% and a specificity of 99.54%,
proving that our methodology to design a binary classifier to detect facial paralysis can be
extended to other databases of face photographs with an outstanding performance.

Table 4. Cross-validation results for tests on the TNF database.

n-Fold TN TP FN FP Accuracy [%]

1 66 78 4 0 97.30
2 65 78 4 1 96.62
3 66 80 2 0 98.65
4 65 80 2 1 97.97
5 64 75 6 2 94.56
6 65 79 2 1 97.96
7 66 79 2 0 98.64
8 65 77 5 0 96.60
9 65 78 4 0 97.28

10 64 78 4 1 96.60

Average - - - - 97.22

Table 5. Resulting confusion matrix of the test on the actual TNF database.

Healthy = 0 Unhealthy = 1 Correct Label

218 1 healthy
14 803 unhealthy

Our methodology detects facial asymmetry levels within an image independently
of the gesture performed by the subject, while most of the other methods compute facial
asymmetry levels from a set of different facial gestures from the same subject. If we focus
on the facial paralysis detection systems (i.e., a binary classification) that compute facial
landmarks at some point of their processing, we can put together a summary of three
methodologies, as previously introduced in Section 1; such relation is shown in Table 6.
We observe that a direct comparison of methods in this table is not feasible because of
discrepancies in the goals and metrics used; nonetheless, we include the results of works
closer to ours. Those methods compute facial landmarks at some point of their process
but train their shape predictor model on their own private dataset (e.g., [9–11]). Those
different performance measures obtained from our tests and shown in Table 6 lead us to
suggest that our method exhibits a better performance or, at least, one similar to that of
other approaches.
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Table 6. Relation between the methods and databases used for the performance metrics on classifica-
tion tests, as reported by the authors.

Method Database Sensitivity Specificity Precision Accuracy

Kim et al. [9] * 80.0% - 92.3% 88.9%
Hsu et al. [10] * 88.0% - 93.0% -

Barbosa et al. [11] * 98.12% 94.06% - -
Our methodology MEEI 91.75% 97.92% 98.66% 94.06%
Our methodology TNF 95.72% 99.09% 99.24% 97.22%

* Tested on their private dataset, not available due to patient privacy. Note that test cases cannot be compared in a
straightforward way.

4. Conclusions and Future Work

A methodology to detect facial paralysis in an image, assuming that it can be inter-
preted as a problem of asymmetry levels among face elements, was proposed. The system
consists of a set of 29 facial measures easily computed from predicted landmarks and a
binary classifier based on a multi-layer perceptron approach, which provides a healthy or
unhealthy label as a result. The performance of the methodology was evaluated in two
image databases. In the first one, consisting of 480 images of 60 subjects, the approach
attained a 94.06% correct classification; a performance of 97.22% was reached on the second
database, showing that our methodology to design a binary classifier can be expanded
to other databases with excellent results. Future work can be oriented to more specific
classification tasks on image databases.
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