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Abstract: Bronze mirrors, considered important grave goods, were widely used before glass mirrors
in ancient times. Most excavated bronze artifacts are covered with corrosive materials and lose
their original colors. More importantly, identifying corrosion characteristics and the manufacturing
techniques used for these artifacts are essential for proper artifact preservation. In this study,
Early Iron Age bronze mirrors excavated from the Korean Peninsula were examined to determine
their microstructures, corrosion characteristics, and production techniques using various analytical
methods, such as Micro-Raman spectroscopy and field emission electron probe microanalysis. As
a result, sulfides containing iron suggested chalcopyrite use during production or that the sulfides
originated from copper, iron, and sulfur residual matte. The analysis also detected corrosion layers
with high tin oxide (SnO2) levels and selective corrosion in the α + δ eutectoid phase on the artifact’s
surface. In the corrosive layer, cuprite, malachite, and cassiterite corrosion products were detected,
and nanocrystalline SnO2 was identified as a characteristic of long-term soil erosion. Identifying
these artifacts’ corrosion characteristics and manufacturing techniques is essential and can greatly
contribute to proper artifact preservation.

Keywords: Early Iron Age; bronze mirror; artifact preservation; production techniques; corrosion

1. Introduction

Most currently excavated bronze artifacts are corroded, showing a loss of their original
surface colors and being covered with corrosion products. Prolonged burial of bronze
artifacts leads to erosion, resulting in morphological changes to stable states and forming
various corrosion products. Some representative bronze corrosion products found in
ancient bronze artifacts include cuprite (Cu2O), tenorite (CuO), malachite (Cu2CO3(OH)2),
and paratacamite (Cu2Cl(OH)3). Here, the corrosion products’ type and shape are affected
by various factors, such as the artifact’s composition, manufacturing technique, size,
and burial environment [1]. Furthermore, because of differing conditions, the burial
environment can be inferred based on the corrosion products. However, unlike artificial
corrosion tests, the corrosion characteristics of naturally corroded bronze artifacts do not
appear uniformly. Therefore, data on corrosion characteristics obtained from relics with
known excavation sites can play a crucial role in artifact authenticity, preservation, and
long-term corrosion research.

The Wanju Sinpung ruins and tomb complex (dated approximately 300 to 200 BCE),
excavated from 2010 to 2011, is a site representative of Korea’s early Iron Age that shows
the transition and social development of tombs. As a result, weapons (bronze swords and
arrowheads), tools (chisels and burin), and various bronze artifacts (bronze mirrors) were
discovered [2]. Specifically, bronze mirrors describe the temporal and spatial transition
of Korean bronzeware, which researchers use to explain the development of bronzeware
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manufacturing techniques [3]. In this study, various analytical methods were applied to the
bronze mirrors excavated from the Wanju Sinpung ruins to investigate their microstructures,
corrosion characteristics, and manufacturing processes.

2. Materials and Methods
2.1. Materials

The first bronze mirror (Ga-2) was excavated on the bedrock at the site’s center, with
the mirror side facing upward. From the brim to the upper handle, only a part of the
artifact remained, and its surface had a relatively regular corrosion layer. A second mirror
(Ga-31) was found in scattered pieces, and its surface had a regular layer of black corrosion.
Meanwhile, a third mirror (Ga-35) was found erect in the pit’s left-hand side, with the
mirror side facing toward the tomb’s center. However, two knobs were partially lost.
The left-hand knob had traces of a mold mounted for boring holes during the molding
process; the presence of fine patterns indicated that it was used for ceremonial purposes
(Figure 1) [4].
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2.2. Metallography

Samples were obtained from areas already damaged during excavation, areas that
lacked patterns, or areas that could not be restored. The samples were mounted with an
epoxy resin for metallographic study and polished using silicon carbide grinding pads
(220, 500, 1200, 2000, and 4000 grit) with water- and diamond-water–based suspensions (3
and 1 mm, respectively) on a microcloth pad. The samples were etched with a 3% ferric
chloride (FeCl3 + HCl + ethyl alcohol) solution for 2 to 3 s during the final step. Meanwhile,
the microstructural observation was performed using a metallurgical microscope (Leica,
DM4 M). A brightfield (BF) setting was used to observe the microstructure and secondary
copper, while surface corrosion compounds were observed using the darkfield (DF) setting.

2.3. Inductively Coupled Plasma Atomic Emission Spectroscopy Analysis

Inductively coupled plasma atomic emission spectroscopy (ICP-AES; Perkin Elmer,
Optima 4300 DV) was used for composition analysis. The samples were initially placed in a
25 mL conical flask and dissolved with 2 mL of aqua regia while heated on a heating plate.
After the samples were gradually dissolved at room temperature and complete dissolution
was verified, the solution was transferred to a volumetric flask to obtain 50 g of dissolved
sample. The solution was then diluted with a 1000 ppm BDH Spectrosol solution, and
1 mL of aqua regia was added to match a sample matrix. The results were quantified by
obtaining the average value of three analyses for various elements, namely copper (Cu), tin
(Sn), lead (Pb), arsenic (As), silver (Ag), cobalt (Co), iron (Fe), nickel (Ni), antimony (Sb),
and zinc (Zn).

2.4. SEM and EDS Analysis

A scanning electron microscope (SEM; TESCAN, MIRA LMH) and an energy disper-
sive spectrometer (EDS; Perkin Elmer, Waltham, MA, USA, Optima 4300 DV) were used
for cross-sectional observation. The samples were coated in platinum (Pt) to enhance their
surface conductivity before being subjected to backscattered electron image (BSEI) analysis
to obtain clearer, contrasting images.
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2.5. Field Emission Electron Probe Microanalysis

Field emission electron probe microanalyzer (EPMA) analysis (JEOL Ltd., Akishima,
Japan, JXA-8530F) was used to map the images’ cross-sections. Once completed, line
analysis was used to identify the elemental distribution differences at each level.

2.6. Micro-Raman Spectroscopic Analysis

Micro-Raman spectroscopic analysis (Horiba Jobin Yvon, Edison, NJ, USA, LabRAM
Aramis) was used to identify corrosion products on the bronze mirrors, and identification
was performed using Raman reference values [5]. For Raman analysis conditions, the
following settings were used: grid (600 gr/mm), resolution (3.0 cm−1), laser power (1 mW),
and acquisition time (60 s). An argon-ion laser, set to 514 nm (wavelength), was used
during this step.

3. Results and Discussion
3.1. Bronze Mirror Excavated from Pit Tomb Ga-2 (No. 1)
3.1.1. Metal

The mirror’s microstructure consisted of an δ phase, containing fine lines and nodular
particles, and an α + δ eutectoid phase between the δ phase’s spaces. Here, the δ phase,
found in the γ phase’s boundary lines, was created during early microstructure formation
or in circular patterns around the Pb particles [6]. The microstructure’s presence suggested
that the mirror was cast using molten metal with an even chemical composition, and no
additional treatments were performed after casting (Figures 2a and 3a). Furthermore, the
microstructure contains sporadic amounts of sulfides and Pb (Table 1).
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Table 1. Ga-2 (No. 1) microstructure energy dispersive spectrometer (EDS) results.

No. Position
Element (wt%)

O S Cu Sn Pb Fe Cl

1

1 0.83 − 69.58 28.02 1.57 − −
2 − 21.97 74.71 − 3.32 − −
3 0.42 − 65.98 33.60 − − −
4 − − 73.15 26.85 − − −
5 − − 67.54 30.36 2.10 − −
6 − 1.41 86.89 2.84 5.78 0.65 2.44
7 11.35 − 33.07 51.34 3.44 − 0.81

Secondary copper is a highly pure metallic Cu formed within a bronze artifact‘s mi-
crostructure. These are mostly formed between layers of corrosion materials, particularly
in fractures created by external forces, defects in the casting process, holes created by
corroded Pb particles, or α + δ eutectoid sites lost through corrosion. Multiple processes,
such as electrolysis, generation of residual Cu particles, and rapid changes in the burial en-
vironment, can explain secondary copper formation [7]. Here, secondary copper observed
in the Ga-2 bronze artifact were small particles found in cracks (Figures 2b and 3b). These
are common features found in ancient bronze artifacts, which can be observed when the
artifacts corrode over extended periods [8].

3.1.2. Patina

Enlarging the corrosion layers of the bronze mirror in DF photography revealed thick,
localized layers of red and green corrosion products (Figure 4a). Alternating layers of corro-
sion material indicated an irregular series of changes in the burial environment. According
to the bronze artifact corrosion layer classification system proposed by Robbiola et al. [9],
this mirror’s corrosion was classified under the type II corrosion category; type II corro-
sion is identified when corrosion products, such as malachite and cuprite, are present.
Micro-Raman spectroscopy was then used to identify these corrosion products. Here, red
corrosion products (a) were identified as cuprite (Cu2O), dark green corrosion products (c)
were malachite ((Cu2CO3(OH)2), and bright green corrosion product (b and d) were cassi-
terite (SnO2). Notably, cassiterite is the mineral form of SnO2, and the Raman shift observed
in the bronze mirror had significant differences from the reference value (Figure 4b) [5].
In this study, the major Raman shift of cassiterite was moderately observed at a range of
545 cm−1 to 568 cm−1. Meanwhile, the Raman shift of natural tin oxide cassiterite, the
reference, generally shows a Raman shift ranging from 633 cm−1 to 775 cm−1 (Figure 4c).
Raman researchers reported that in nanocrystalline SnO2, a wide band that appears below
580 cm−1 was observe (Figure 4c) [10]. Based on existing research, nanocrystalline SnO2
Raman shifts were observed at 486 cm−1, 568 cm−1, and 706 cm−1 [11–13]. Therefore, the
cassiterite found in the bronze mirror is nanocrystalline SnO2. Since cassiterite is generated
during long-term soil burial, the possibility of uniform detection is low, and a Raman shift
error occurred. The possibility of substitution due to various environmental changes dur-
ing soil burial also cannot be excluded. More importantly, the presence of nanocrystalline
SnO2 can be attributed to long-term bronze corrosion in a burial environment.

EPMA analysis found that Sn content increased significantly toward the edges’ corro-
sion layers, which contained SnO2 (Figure 5). Excluding highly reducing environments
with low pH, SnO2 could be found in a wide zone between the PO2 = 1 and PH2 = 1 bars in
a stable state, as seen in the Cu-Sn-Cl-H2O Eh-pH diagram. Moreover, the Gibbs energies
of SnO2 and Cu2O are −519 kJ/mol−1 and −416 kJ/mol−1, respectively, at a temperature
of 24.85 ◦C. These findings, along with the insolubility of SnO2, explain the high levels of
Sn in the artifact’s corrosion layers [7].
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3.2. Bronze Mirror Excavated from Pit Tomb Ga-31 (No. 2)
Metal

Given the selective corrosion in the α + δ eutectoid phases along the sample’s outline
and the lack of malachite and cuprite corrosion layers, this mirror’s corrosion was classified
under type I corrosion [9]. This type of corrosion grows toward the original metallic layer
without outward changes in volume and shows high corrosion resistance. Here, this type
resulted from generalized corrosion related to the formation of passive layers. Because the α
+ δ eutectoid phase is a combination of two distinct phases, it has a higher electric potential
difference compared to the single solid phases at the α or δ phases. Namely, it is a priority
target for corrosion because of its structural flaws. Corrosion on the α + δ eutectoid phase
gradually changed to a dark-blue corrosion product, which is unclear and occluded under
microscopic examination and etched during the macroscopic examination. EDS and EPMA
mapping analyses revealed that severe corrosion lowered its Cu content and increased
oxygen (O) and Sn levels, indicating partial tin oxide mineralization (Figure 6). This oxide
formed cryptocrystalline cassiterite structures (SnO2) and created unclear boundaries [14].
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The microstructure consisted of α + δ eutectoid and δ phases with sporadic sulfide and
lead particles (Figure 7a). Its secondary copper likely formed as clumps in the corroded Pb
particles or cracks, and twin crystals were observed in some cases (Figure 8a). Secondary
copper with twin crystals is a product of the alloy’s constituent components undergoing
extended mineralization, production technique, and burial environment [14]. In addition,
black corrosion products observed on the mirror’s surface during excavation appeared
because mineralized cassiterite formed on the surface.
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corrosion.

In the secondary copper, Cu and O differed according to the degree of corrosion, and
greater corrosion levels increased O and reduced Cu content. Because the Cu and O content
standards between secondary copper and copper oxides remain unclear, determining
secondary copper and copper oxide can be difficult. Here, a sample was observed under a
metallurgical microscope. Pure secondary copper has an orange hue similar to metallic
copper, while copper oxides have grey, cloudy hues. Despite losing its hue, copper oxide
undergoing early stages of corrosion is nearly as pure as secondary copper. Thus, secondary
copper and copper oxide were determined using EDS analysis and visually confirmed
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using a metallurgical microscope. EDS positions 6 to 8, based on Cu and O content (6:
metallic copper, 7: copper oxide undergoing corrosion, 8: copper oxide mineralized through
corrosion), showed that metallic copper undergoing corrosion created cracks within the
microstructure and exited to form corrosion compounds on the bronze artifact. (Figure 7b
and Table 2).

Table 2. Ga-31 (No. 2) microstructure energy dispersive spectrometer (EDS) results.

No. Position
Element (wt%)

O S Cu Sn Pb Fe Cl

2

1 0.37 − 68.24 27.90 3.48 − −
2 0.49 16.12 78.26 2.58 − 2.55 −
3 − − 68.29 31.71 − − −
4 − − 72.17 27.83 − − −
5 5.67 − 6.98 − 87.35 − −
6 − − 100.00 − − − −
7 4.33 − 90.07 4.79 0.34 − 0.47
8 17.86 − 79.94 − 2.20 − −
9 3.87 − 55.67 35.28 5.18 − −

3.3. Bronze Mirror Excavated from Pit Tomb Ga-35 (No. 3)
3.3.1. Metal

The sample showed selective corrosion on the α + δ eutectoid phase along the bound-
aries and cracks as thick layers of red and green corrosion materials. According to the
bronze artifact corrosion layer classification system, this mirror was classified under the
type II corrosion category [9]. The microstructure consisted of α + δ eutectoid and δ phases,
with scattered sulfide and lead particles (Figure 9a and Table 3).
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Table 3. Ga-35 (No. 3) microstructure energy dispersive spectrometer (EDS) results.

No. Position
Element (wt%)

O S Cu Sn Pb Fe

3

1 1.34 0.15 64.87 29.10 4.55 −
2 1.24 − 68.37 27.73 2.66 −
3 − − 66.51 33.49 − −
4 0.73 23.91 60.13 0.60 − 14.63
5 7.13 − 8.50 1.61 82.76 −
6 13.22 6.81 2.06 − 77.91 −
7 5.12 − 94.88 − − −
8 17.51 − 8.59 66.95 6.96 −
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Because the bronze mirrors showed similar microstructures and distributions, they
were most likely produced with the same techniques in a similar period. According to the
ICP-AES analysis, a relatively small amount of Pb (0.85% to 1.10%) was detected, and all of
them are ternary alloys of Cu-Sn-Pb (Table 4).

Table 4. Chemical composition of bronze mirrors obtained from the Sinpung site using inductively coupled plasma atomic
emission spectroscopy (ICP-AES) analysis.

No. Name
Composition (%)

Cu Sn Pb As Ag Co Fe Ni Sb Zn

1 Ga-2 64.3 28.2 0.85 0.1684 0.0182 0.1204 0.0194 0.1555 0.0670 0.000273
2 Ga-31 63.9 28.3 1.10 0.1858 0.0292 0.1520 0.0745 0.1605 0.0867 0.000450
3 Ga-35 60.8 25.6 1.21 0.3567 0.0156 0.0410 0.0816 0.0791 0.1827 0.000941

In the Ga-35 (No. 3) bronze mirror, Pb and S appear to be present as lead sulfide,
caused by the ore being added during the manufacturing process. Regarding the lead ore,
previous studies on bronze production by-products excavated from the Wanju Sinpung
ruins suggested that galena (PbS) obtained from southern Korean mines may have been
used for smelting [15]. Sulfides were present in the bronze mirror’s microstructures, but
EDS detected only S or a combination of S and Fe. Secondary copper was found in clustered
particles or lines, and twins were observed in some secondary copper (Figure 10).
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3.3.2. Patina

Enlarging the corrosion layers of the bronze mirror in DF photography revealed
thick, localized layers of red and green corrosion products. According to the classification
system proposed by Robbiola et al. [10], this falls under type II corrosion. Through micro-
Raman spectroscopy, the dark green corrosion product (a) was determined as malachite
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((Cu2CO3(OH)2), the red corrosion product (b) was cuprite (Cu2O), and the bright green
corrosion product (c) was cassiterite (SnO2) (Figure 11a).
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Based on the EPMA mapping analysis results (Figure 12), corrosion layers with large
amounts of Sn formed in the corroded microstructure because O and Sn content was
remarkably high in the sections under the corrosion layer. From the EPMA line analysis,
Cu and Sn exhibit inversely proportional correlations relative to their overall positions
(Figure 13). In an external environment, anions such as CO3

2− and O2− move to the bronze
alloy’s interior, while cations of metals such as Cu and Sn move outward and bond with
each other to form and maintain a corrosion layer [16].
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4. Conclusions

This study analyzed the metallurgical and corrosion characteristics of Early Iron Age
bronze mirrors excavated in the Sinpung site in Wanju. According to the ICP-AES results,
the bronze mirrors were cast with a triple bronze Cu-Sn-Pb alloy (60% to 65% Cu, 25% to
28% Sn, and 0.85% to 1.21% Pb). Their metallic microstructures consisted of an δ phase and
an α + δ eutectoid phase, and there was no evidence of further treatment after casting. Lead
sulfide was observed in the microstructure of the Ga-35 (No. 3) bronze mirror, suggesting
that its lead content originated from lead ores used to produce the artifacts. Sulfides
containing Fe from copper sulfide ore or Cu-Fe-S residual matte were also added to the
bronze mirrors while being manufactured.
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For corrosion characteristics, selective corrosion in the α + δ eutectoid phase was
observed at the sample’s surface, where selective corrosion in the α phase was correlated
with the oxidation environment. In contrast, selective corrosion in the α + δ eutectoid
phase was correlated with a reducing burial environment [8]. According to Robbiola et al.’s
classification system [9], Ga-2 and Ga-35 contained corrosion materials classified as type I
corrosion. Meanwhile, nanocrystalline SnO2 observed in bronze mirrors buried for long
periods in soil was observed in type I and type II corrosion.

High-purity secondary copper in the artifacts was mainly located in cracks, holes
left by Pb corrosion, and the corroded α + δ eutectoid phase. The secondary copper was
classified according to Wang and Merkel’s [8] proposal as it followed similar patterns. They
distinguished the formation mechanism of secondary copper into two types: redeposition
and destannification. In metallic copper formed through the former, Cu ions could not
move freely and form metallic structures. In the samples, metallic copper was found in
cracks, holes, and between cuprite formations formed through redeposition. In comparison,
metallic copper formations found as pseudomorphs on the α + δ eutectoid phase formed
through destannification because copper moved inward and replaced the existing metallic
structures following Sn’s selective corrosion. Thus, the secondary copper observed in
holes left by corroded Pb particles and cracks on the excavated mirrors formed through
redeposition. In contrast, the secondary copper formations observed on the α + δ eutectoid
phase were created through destannification.

Various analytical techniques were used on bronze mirrors excavated from the Sin-
pung site to identify their production techniques and corrosion characteristics. Compared
to other artifacts excavated from the site, weapons (swords) and tools (plows) contained
Pb oxides, such as cerussite (PbCO3), anglesite (PbSO4), and litharge (PbO), as corrosion
products, which were absent in bronze mirrors [17]. This contrast shows that the mirrors
exhibited different corrosion characteristics caused by differences in alloy compositions
or production techniques. The presence of malachite, which does not form in an under-
water burial environment, indicated that corrosion characteristics could only be found in
bronze mirrors excavated from the ground [18]. The corrosive properties of pure bronze
artifacts also showed a heterogeneity that cannot be simulated in an artificial environment.
Therefore, this study’s results are of great importance for preserving artifacts and eval-
uating an artifact’s authenticity. Moreover, future studies must develop a multifaceted
analysis of various bronze artifacts and develop a comprehensive understanding of burial
environments to establish long-term corrosion mechanisms in ancient bronze artifacts.
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