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Featured Application: Endodontics.

Abstract: The instrumental fracture is a common endodontic complication that is treated by surgical
or non-surgical removal approaches. However, no tool exists to help the clinician to choose between
available strategies, and decision-making is mostly based on clinical judgment. Digital solutions, such
as Finite Element Analysis (FEA) and Virtual Treatment Planning (VTP), were recently proposed in
maxillofacial surgery. The aim of the current study is to present a digital tool to help decide between
non-surgical and surgical strategies in a clinical situation of a fractured instrument. Five models
have been created: the initial state of the patient, two non-surgical removal strategies using a low or
high root canal enlargement, and two surgical removal strategies using a 3- or 6-mm apicoectomy.
Results of the VTP found a risk of perforation for the non-surgical strategies and sinus proximity
for surgical ones. FEA showed the lowest mechanical risk for the apicoectomy strategy. A 3-mm
apicoectomy approach was finally chosen and performed. In conclusion, this digital approach could
offer a promising decision support for instrument removal by planning the treatment and predicting
the mechanical impact of each strategy, but further investigations are required to confirm its relevance
in endodontic practice.

Keywords: finite element analysis; virtual treatment planning; endodontics; apicoectomy; Instrument
removal; decision-making

1. Introduction

During cleaning and shaping of the root canal, troublesome incidents, such as the
fracture of the instrument, can occur. Many factors contribute to instrument fracture, and
these have been associated with torsion stress or flexural fatigue [1]. The prevention of
file separation has been widely investigated and is based on inspection of the file (notably
of the winding of the flutes) or curvature management, which has led to more flexible
endodontic files [1]. However, the fracture of an endodontic instrument within the root
canal remains a common complication of endodontic treatments (0.25 to 7.41%), with
most fractures occurring in the apical third of the root [2,3]. This fracture can affect tooth
prognosis, and several instrument removal strategies have been reported to complete the
endodontic treatment [1,4]. A non-surgical strategy was proposed using ultrasonic tips to
loosen the fractured instrument, but this procedure can lead to canal over-enlargement or
root perforation [5,6]. A surgical strategy was also reported to remove the instrument after
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performing an apicoectomy [7], but it induces a reduction of the crown-to-root ratio [8,9].
Both strategies thus impact mechanically the tooth and the success of the endodontic
retreatment [10,11]. No tool exists, at the time of writing, to guide the clinician in choosing
between these strategies, and decision-making is mostly based on clinical judgment instead
of scientific evidence [3]. Furthermore, numerous different tools are available to deal with
retained instruments, including mini forceps, broach and cotton, hypodermic surgical
needles, wire loops, Masseran instruments, extractors, and ultrasonic tips [1,4]. In the face
of the multitude of possible therapeutical choices, instrument removal is still considered
highly technical and time-consuming because dental practitioners have difficulties planning
the removal and its impact on tooth resistance.

Digital approaches have been used for many years; for instance, virtual treatment
planning (VTP) has been used to improve the reconstruction accuracy and outcome in the
maxillofacial field [12,13], and patient-specific finite element analysis (FEA) has been used
to provide better predictions on bone fracture than experienced clinicians in orthopedic
practice [14]. In endodontics, FEA has been used to evaluate the influence of the instrument
position and the resection length on the root stress distribution [15–17]. However, these
studies use standard anatomic dimensions to create finite element (FE) models, and the
success rate mainly depends on patient-specific parameters such as bone loss and canal
anatomy [6,9,18]. A recent study proposed combining VTP and FEA for computer-aided
decision-making, with the aim to predict the mechanical behavior of different maxillofacial
surgeries and choose the most adapted solution for the patient [19]. Herein, we report
a case of an endodontic instrument fracture and the application of a digital approach
combining VTP and FEA to help decide between surgical and non-surgical strategies for
its removal.

2. Case Report
2.1. Case Presentation

A 26-year-old female patient was addressed to the department of endodontics of
the Lyon University Hospital with a fractured instrument (FI) in the root canal of her
right second maxillary premolar. The 8 mm-long instrument was fractured during an
initial endodontic treatment of irreversible pulpitis one week previously. The patient
reported no pain since the fracture occurred. Clinical examination of the premolar crown
indicated the presence of four dental walls and a recent temporary restoration on the
occlusal face. The tooth presented no cold response, no percussion or palpation tenderness,
and physiological mobility. The intraoral periapical radiograph confirmed the transfixed
position of the instrument, close to the sinus, and the absence of periapical radiolucency
or local swelling of the sinus membrane (Figure 1a). The patient’s tooth was scanned
before any intervention to evaluate the instrument position using cone beam computed
tomography (CBCT; Planmeca ProMax 3D, Helsinki, Finland) operating at 120 kV, 100 mAs,
with a slice thickness of 0.75 mm. The data were recorded under the Digital Imaging
and Communication in Medicine (DICOM) format and analyzed. Two non-surgical and
surgical strategies emerged from the discussions of the healthcare team, but no consensus
was defined on the treatment that could ensure the best outcome. A digital approach,
combining VTP and FEA [19], was then implemented to visualize the planned treatment
and predict the mechanical impact of the two removal strategies (Figure 1).
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Figure 1. The process for a patient-specific biomechanical analysis and detailed steps for virtual 
treatment planning and finite element analysis: (a) radiograph of the initial situation presenting a 
fractured instrument, (b) cone beam computed tomography axial view with temporary intracanal 
medication, (c) segmentation based on a growing region algorithm, (d) transformation of the ini-
tial 3D image to simulate a 3 mm apicoectomy, (e) analysis of the 3D simulated treatment, and (f) 
meshing of the 3D transformed image to get a finite element model and application of boundary 
conditions. 

2.2. Virtual Treatment Planning 
The different anatomical structures were segmented using DESK, an application 

suited for medical images [20]. The semi-automatic segmentation is based on the attribu-
tion of pixel labels, “seeds”, inside each anatomical structure and a growing region algo-
rithm. Four labels were generated according to the structures of “air”, “tooth”, “bone”, 
and “intra-root canal material” to produce a multi-label 3D image. This initial 3D image 
was then modified to simulate the procedures of the different removal strategies.  

Five clinical situations were considered by the healthcare team: the initial state of the 
patient, two simulated non-surgical removal strategies using a low or high root canal en-
largement, and two simulated surgical removal strategies using a 3 or 6 mm apicoectomy. 

An ultrasonic tip (ET25; Satelec, Bordeaux, France) was modeled by a conical cylinder 
0.5 mm in diameter and a 4% taper and recorded under Standard Tessellation Language 
(STL) format for VTP of non-surgical approaches. The surface of the tip was then super-
imposed along one-third of the instrument either on the distal side of the instrument to 
simulate a low root canal enlargement or on the distal and vestibular sides of the instru-
ment to simulate a high root canal enlargement. VTP of surgical approaches was con-
ducted with a 3 or 6 mm root shortening (Figure 2a).  

The different virtual removal strategies were analyzed on the 3D modified image. 
The latter offers the operator the possibility to add or suppress masks of bone, ultrasonic 
tip or instrument to plan his procedure. For non-surgical strategies, the high enlargement 
was associated with a long perforation. VTP of surgical strategies was also informative for 
the reduction of the crown–root ratio (Figure 2a). The 3D modified image could also be 
used to simulate the clinical point of view of the dental practitioner. For non-surgical strat-
egies, the location of the instrument and the long perforation were difficult to perceive on 
the simulated clinical view. The clinical view of surgical strategies also enables planning 
possible access ways that avoid sinus perforation (Figure 2b). 

Figure 1. The process for a patient-specific biomechanical analysis and detailed steps for virtual treatment planning and
finite element analysis: (a) radiograph of the initial situation presenting a fractured instrument, (b) cone beam computed
tomography axial view with temporary intracanal medication, (c) segmentation based on a growing region algorithm,
(d) transformation of the initial 3D image to simulate a 3 mm apicoectomy, (e) analysis of the 3D simulated treatment, and
(f) meshing of the 3D transformed image to get a finite element model and application of boundary conditions.

2.2. Virtual Treatment Planning

The different anatomical structures were segmented using DESK, an application suited
for medical images [20]. The semi-automatic segmentation is based on the attribution of
pixel labels, “seeds”, inside each anatomical structure and a growing region algorithm.
Four labels were generated according to the structures of “air”, “tooth”, “bone”, and “intra-
root canal material” to produce a multi-label 3D image. This initial 3D image was then
modified to simulate the procedures of the different removal strategies.

Five clinical situations were considered by the healthcare team: the initial state of
the patient, two simulated non-surgical removal strategies using a low or high root canal
enlargement, and two simulated surgical removal strategies using a 3 or 6 mm apicoectomy.

An ultrasonic tip (ET25; Satelec, Bordeaux, France) was modeled by a conical cylinder
0.5 mm in diameter and a 4% taper and recorded under Standard Tessellation Language
(STL) format for VTP of non-surgical approaches. The surface of the tip was then super-
imposed along one-third of the instrument either on the distal side of the instrument to
simulate a low root canal enlargement or on the distal and vestibular sides of the instrument
to simulate a high root canal enlargement. VTP of surgical approaches was conducted with
a 3 or 6 mm root shortening (Figure 2a).

The different virtual removal strategies were analyzed on the 3D modified image. The
latter offers the operator the possibility to add or suppress masks of bone, ultrasonic tip
or instrument to plan his procedure. For non-surgical strategies, the high enlargement
was associated with a long perforation. VTP of surgical strategies was also informative
for the reduction of the crown–root ratio (Figure 2a). The 3D modified image could also
be used to simulate the clinical point of view of the dental practitioner. For non-surgical
strategies, the location of the instrument and the long perforation were difficult to perceive
on the simulated clinical view. The clinical view of surgical strategies also enables planning
possible access ways that avoid sinus perforation (Figure 2b).
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Figure 2. Tri-dimensional images for each situation of the virtual treatment planning. (a) Superim-
position on the initial 3D image of the surfaces of the ultrasonic tip for enlargement strategies and 
osteotomy for apicoectomy strategies. (b) Simulated clinical views of the initial 3D image and of 
the modified 3D images for each removal strategy. 
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and elastic, and there was a perfect bonding between each component [16]. The occlusal 
faces were not modeled due to X-ray artifacts. A vertical load of 150 N was distributed on 
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Von Mises stress (fracture criterion) [24] between all FE models. Each FE model was verified 
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Figure 2. Tri-dimensional images for each situation of the virtual treatment planning. (a) Superimposition on the initial 3D
image of the surfaces of the ultrasonic tip for enlargement strategies and osteotomy for apicoectomy strategies. (b) Simulated
clinical views of the initial 3D image and of the modified 3D images for each removal strategy.

2.3. Finite Element Modeling and Mechanical Analysis

Modified 3D images were then meshed with tetrahedral elements using the Com-
putational Geometry Algorithms Library (CGAL) meshing library [20] imported in the
FEA software Abaqus (Dassault Systèmes, Vélizy-Villacoublay, France; Figure 3). The peri-
odontal ligament could not be detected on the DICOM and was simulated around the root
surface with a thickness of 250 µm [21]. The attributed material properties (Table 1) were
referenced from the literature [21–23]. All materials were supposed homogeneous, linear
and elastic, and there was a perfect bonding between each component [16]. The occlusal
faces were not modeled due to X-ray artifacts. A vertical load of 150 N was distributed
on the top surface of the root and the nodes of the base, and lateral faces of the bone
were constrained to prevent displacement [16]. A static explicit analysis was conducted
to calculate principal strains and Von Mises stresses for all FE models. The mechanical
behavior of the tooth was evaluated by comparing the Von Mises stress distribution and the
maximal Von Mises stress (fracture criterion) [24] between all FE models. Each FE model
was verified using a convergence test [25] and the Zhu–Zienkiewicz error estimator [26]
(Table 2).

Table 1. Material properties [21–23].

Material Young’s Modulus (GPa) Poisson’s Ratio

Dentine 18.6 0.31
Ligament 0.069 0.45

Trabecular bone 1.3 0.3
Gutta 0.069 0.45

Root-end filling (modified zinc-oxide
eugenol) 0.1 0.31

Nickel Titanium (ProTaper Gold) 50 0.26
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Table 2. Number of elements, nodes, and error indicator according to the finite element model considered.

Structure Number of Elements Number of Nodes Error Indicator Zhu
Zienkiewicz

Initial model 202,636 29,742 9.1%
Low enlargement 202,462 29,637 9.2%
High enlargement 202,027 29,614 9.3%
3-mm apicoectomy 201,714 29,855 8.9%
6-mm apicoectomy 207,250 31,126 9.2%
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Figure 3. Cut views for each mesh and buccal views of Von Mises root stress represented by color, from blue (low values) to
red (high values), for each finite element model. (a) Initial model representing the initial state, (b) low enlargement model,
(c) high enlargement model, (d) 3 mm apicoectomy model, and (e) 6 mm apicoectomy model.

The apicoectomy models presented a lower fracture criterion than enlargement models
and the model of the initial state of the patient. The 3 mm apicoectomy model presented the
lowest value, whereas the high enlargement model presented the highest fracture criterion
of all models (Table 3). Regarding stress distribution, high stresses around the instrument
were found in the initial model, high stresses around the perforation were found in the
enlargement models, and high stresses on the resected surface were found in apicoectomy
models (Figure 3). The error indicator was considered as acceptable [27,28] for all models,
indicating that this method provides valuable models for FEA.

Table 3. Patient-specific analysis based on the 3D image and maximal Von Mises stress of the different
removal strategies.

Clinical Situation Change on the 3D Initial Image High Stress Location

Initial state No Around the instrument
Low enlargement Apical perforation Around the perforation
High enlargement Lateral perforation Around the perforation
3 mm apicoectomy Decrease of the crown root ratio Resected apex
6 mm apicoectomy Decrease of the crown root ratio Resected apex

2.4. Management of the Fractured Instrument

After having informed the patient about the possible treatments, a 3 mm apicoectomy
strategy was decided in accordance with her. The orthograde endodontic treatment was
completed during the first appointment. The temporary restoration was removed under
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isolation with a medium-weight green rubber dam (Hygenic Dental Dam, Coltene, Lan-
ganau, Germany). The canal was rinsed with 2.5% sodium hypochlorite, dried, and filled
with warm gutta percha and zinc eugenol root canal sealer (EWT, Kerr, Detroit, MI, USA).
The tooth was restored using a composite resin (A3 Tetric Evoceram, Ivoclar Vivadent,
Saint-Jorioz, France). One week later, the micro apical surgery was conducted following
a 3 mm apicoectomy. The root end and the instrument were removed as a single entity
to avoid the risk of instrument projection into the sinus [29]. The root end was inspected
under high magnification and, in line with the mechanical analysis, no crack or fracture
was found. The root canal was treated in a minimally invasive way using only a 3 mm
ultrasonic retro-tip (AS3D, Satelec). Then, it was dried with sterile paper points and filled
using a polymer-reinforced zinc oxide-eugenol cement (IRM, Dentsply Sirona, Charlotte,
NC, USA). The adaptation of the root-end filling was verified on a periapical radiograph,
and the flap was closed with 5-0 resorbable sutures (Ethicon Vicryl, Johnson & Johnson,
Somerville, NJ, USA). The patient returned to her referent practitioner for prosthetic reha-
bilitation. The tooth remained asymptomatic at six weeks follow-up and was restored by
an inlay. The periapical radiograph at six months and one year showed bone healing and
absence of periapical radiolucency (Figure 4).
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at one year.

3. Discussion

This is the first work to report the use of digital technologies as decision support
between non-surgical and surgical strategies of removal of a fractured endodontic instru-
ment. In the present case, the digital approach allowed us to visualize and anticipate the
patient-specific root and sinus perforation, and to predict the mechanical impact of four
removal strategies.

Studies reported that clinicians have difficulties orienting themselves in space from
CBCT slices during their surgical procedure [30]. Herein, VTP was used to simulate the
procedures using a multi-label 3D image and to predict the iatrogenicity of the procedure.
An increased risk of perforation and complications were reported for the removal of apically
fractured instruments [31]. The 3D image enabled us to precisely evaluate the presence of
perforation and the position of the sinus using the clinical view. It should be noted that only
two endodontic ultrasonic tips were simulated in the current study, but the current proof of
concept opens a new way to plan endodontic treatment and develop supplementary digital
models of endodontic files. Furthermore, dynamic navigation systems are increasingly
being used in the endodontic field [32,33]; a potential application of the current work
could therefore be to implement in these systems the developed digital tools and evaluate
dynamically their actions on the tooth structure as it is proposed in the medical field [34].
It is of note that the use of a printed guide increases the accuracy and reduces the risk of
sinus perforation during endodontic microsurgery [35]. However, this was not used in the
case presented herein owing to the risk of instrument projection into the sinus.
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In the current case, surgical strategies present a more favorable stress distribution
than non-surgical ones, which supports herein the apicoectomy. This conclusion was also
recommended by a previous narrative review promoting a surgical approach in cases of
a separated instrument in the apical part of the root [3]. However, a first non-surgical
attempt to remove the instrument was also advised before considering surgery [5], which
makes the decision-making highly complex. Facing this lack of consensus, the benefit of
this patient-specific FEA is to optimize an individual’s therapy and reduce the risk of root
fracture. As a perspective, this patient-specific stress analysis could also lead the root-end
preparation to be customized and the tip size to be adapted according to the anatomy of
each root [36]. Regarding the resection level, a 3 mm apicoectomy presents lower stresses
than 6 mm, which is in accordance with previous FEA studies [9,37]. However, Von Mises
stress was herein used as a failure criterion under the assumption that dentin could fail after
plastic deformation and distortion [38]. Other criteria such as the maximum of principal
stress could have been used to predict fracture and provide different perspectives [38].

Despite the apparent value of the presented strategy, several limitations are to be
highlighted. The main one is that the accuracy of CBCT is questionable in the occlusal
part due to artifacts, whereas it is known that occlusal morphology influences the stress
distribution in FEA [38,39]. Recent technologies such as micro CBCT [40] and the use of
an intraoral scanner avoiding X-ray artifacts [41] could improve future simulations. In the
present study, the mesh error was considered acceptable [27,28]. However, FEA results
should also be carefully interpreted due to the technical impossibility to identify patient-
specific parameters such as force intensity [42] or for ligament modeling [43]. Consequently,
the use of software in patient care is a debated topic due to the numerous variables involved
in the procedure, making standardization highly difficult [25,44]. Artificial intelligence
was recently proposed to automatize the segmentation process [45], but the other steps
involved in VTP and FEA also require supplementary software and operator skills, which
makes their use in routine clinical practice complex. Indeed, the approximate time required
could be considered relatively long, but is in good agreement with the mean time required
for maxillofacial VTP [46]. From the perspective of endodontic practice, it should be
stated that in the maxillofacial field conception time was reduced by 31% compared to
a traditional approach [46]. The development of an intuitive software dedicated to the
field of endodontics will be necessary in the future to allow a wide dissemination of this
technique among dental practitioners.

4. Conclusions

The case presented in this report illustrates some benefits of computer-aided solutions
for decision-making in the removal of fractured endodontic instruments by planning the
treatment and predicting the mechanical impact induced by non-surgical and surgical
strategies. A simulated clinical view and a mechanical failure criterion were successfully
used for instrument removal, opening a new way for decision-making in endodontics. Fur-
ther investigations are, however, required to improve and validate the current methodology
for routine clinical practice and to consider supplementary patient-specific parameters.
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