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Abstract: The estimation of production rate (or throughput) is important in manufacturing system
design. Herein, we consider the manufacturing system of an automotive body shop in which two
types of car are produced, and one car (engine car) is substituted by the other car (electric car)
gradually. In this body shop, two different underbody lines are installed because the underbody
structures of the two types of cars differ completely; however, the side body line and main body line
are shared by the two cars. Furthermore, we assume that the underbody lines are reconfigurable
based on an increase in the product mix of the electric car. A simulation-based meta-model, which
is in the form of a quadratic polynomial function, is developed to estimate the production rate. In
the meta-modelling process, we group some buffer locations and represent them as one variable to
reduce the number of variables included in the meta-model. Subsequently, the meta-models have
been used to optimize two types of buffer allocation problems, and optimal solutions are obtained
easily.

Keywords: manufacturing system design; automotive body shop; product-mix; reconfiguration;
meta-model; simulation

1. Introduction

The role of an automotive body shop is to assemble sheet metal panels together by
various welding technologies [1]. A typical car undergoes 3500 to 4000 spot welds [2].
Large cars, such as the Rover 75, undergo 5400 spot welds, of which 3000 spots are re-spot
welds [3]. In the case of compact cars produced by a Korean automotive manufacturer, the
total number of welding points is 4500–5400 and 50–55% of them are operated in house.

The body shop of an automotive factory is highly automated and comprises complex
manufacturing systems involving 15–20 sublines and many assembly operations [4]. In
general, the sublines of a body shop can be categorized into a few groups, such as un-
derbody lines, side body lines, main body lines, opening parts (attachments) lines, and
body in white lines. In the design phase of automotive body shops, many factors must be
considered, such as the line concept, number of sublines, length of each subline, locations
and capacities of buffers, line balancing, robot type, material handling equipment, and
tooling. Moon et al. [4] has described the processes in automotive body shop design.

The mixed-models production, which means two or more types of cars are produced
in the same line (or shop), is popular in automotive industries, even in a body shop. Hansen
et al. [5] has introduced that an average of five car variants are produced in a single body
shop, and this will increase to eight variants. In general, different cars with similar body
framing and similar operations enable a mixed-model production by changing jigs, fixtures,
and welding robot programs automatically [5]. As the demand for eco-friendly (low
carbon) cars such as hybrid cars or electric cars is increasing, most automotive companies
are obliged to change the layout concept of their body shops [6–8]. In general, they produce
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both hybrid cars and internal combustion engine cars (we refer to it as an engine car) in the
same body shop because both cars can share the same body platform. For a hybrid car with
front-wheel drive, engine, motor, and transmission are installed in the front area of the car
body (engine room), whereas the battery pack and fuel tank are typically installed in the
rear area of the car body. However, in an electric car, a flat battery pack is installed on the
entire underbody to account for weight balance [7,8]. Hence, the underbody structure of
an electric car differs from that of an engine car by its fully enclosed, smooth underbody
(known as the “skateboard platform”). Furthermore, the material of the underbody of
an electric car may be different from that of an engine car, thereby resulting in different
adhesive operations. Therefore, underbody lines tend to be separated to two in automotive
manufacturing, i.e., one for the engine car (or hybrid car) and the other for the electric car.
This is investigated in our study.

Another situation considered in this study is reconfiguration. Koren [9,10] defined the
reconfigurable manufacturing system (RMS) as ‘RMS is a production system designed to
match the dynamic market asking for high-quantity products in variable quantities and
at a reasonable cost. RMS has a changeable hardware and software structure allowing
adjusting production capacity and functionality to combine high throughput rate, flexibility
and cellular organization pattern.’ In the survey paper written by Bortolini et al. [11], the
research areas related to RMS have been grouped as five: reconfigurability level assessment;
analysis of RMS features such as modularity, integrability, diagnosibility, convertibility,
customization and scalability; analysis of RMS performances; applied research and field
applications; and reconfigurability toward Industry 4.0 goals.

Initially, the production quantity of electric cars is small; however, the demand for
electric cars increases gradually and electric cars will substitute engine cars. Hence, the
capacity of the underbody line of an electric car should be expanded, and that of an engine
car should be downsized. This means that the layouts of the two types of cars should be
changed, and this necessitates reconfiguration of underbody lines. Hence, although the
configurations of manufacturing system are not changed dynamically, the situation can be
defined as the simple case of reconfiguration. Moon et al. [12] presented a brief simulation
study regarding reconfiguration strategies in a body shop which is shown in Figure 1, and
an extension of that study is presented herein.
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In this study, we develop meta-models that can estimate the production rate when the
product mix is changed in an automotive body shop; additionally, we investigate the effects
of reconfiguration strategies. The developed meta-models are applied to two optimal buffer
allocation problems (BAP); the first is the maximization problem of production rate and the
other is the maximization problem of profit. This paper is organized as follows. In Section 2,
the related topics and articles are introduced, and the system configuration is described in
Section 3. In Section 4, meta-modelling processes using simulations are explained, and the
validity of the meta-models are addressed. In Section 5, the developed meta-models are
applied to solve two optimization problems, and conclusions are presented in Section 6.

2. Related Topics and Literatures

This study combines three subjects; a special automotive manufacturing system as the
application area, simulation-based meta-modeling for evaluating performance measures,
and optimization problems such as BAP (buffer allocation problems). Hence, related
literatures are reviewed separately according to the three subjects. Table 1 compares
some important articles (excluding survey papers and books) introduced in this section
with respect to the type of manufacturing system, the number of products, performance
evaluation method, and the type of objective functions.

2.1. Automotive Body Shop Design

To determine the final design of an automotive body shop, many iterative steps are
required, and the performance of the system should be evaluated at each step. Hence, the
evaluation of the performance measures is crucial. Only a few studies have considered the
manufacturing systems of automotive body shops. Muhl, Charpentier, and Chaxel [13]
and Tahar and Adham [14] explained the overall processes of an automotive factory and
introduced some issues.

Spieckermann et al. [15] presented a simulation-based optimization approach for
the body shop design problem, and they used meta-heuristics for solving the problem.
However, their simulation model was simpler than our model because they assumed
the sublines as a station; therefore, the time required for optimization was not a serious
problem. Moon et al. [4] published a case study regarding the design procedure and
design analysis of an automotive body shop using three-dimensional simulations. Feno,
Cauvin, and Ferrarini [16] proposed a design process for the early phase of automotive
body shop design and explained the integration of digital manufacturing technologies and
simulations. Recently, Giampieri et al. [6] published a review paper regarding automotive
manufacturing systems in the context of energy.

Kim et al. [17] compared two different layouts in automotive body shops, the layered
build method and the modular build method, with respect to welding methods in side
body sublines. In this study, they conclude that modular build method is more efficient.
Moon et al. [18] compared two types of part transfer policies that are applicable to sublines
without any buffer: the synchronous and asynchronous transfer. Generally, asynchronous
transfer is better than synchronous transfer with respect to production rate, but more
investment cost is required. Moon, Nam, and Shin [19] suggested that the throughput gap
between two layout structures can be reduced by decoupling the main body subline and
optimizing buffer allocations. However, these studies assumed only one type of car and
did not include underbody sublines. Moon, Lee, and Shin [20] investigated the effect of
mixed-model production in a body shop through simulations, but they did not consider
underbody lines.

There have been some articles dealing with the element technologies applicable to
the design of an automotive body shop. Kahan et al. [21] presented a backup strategy in
which working robots perform tasks of failed robots. They proposed that a mixed-integer
linear-programming-based approach minimizes the throughput loss by utilizing the robots’
redundancy in the system. Azzi et al. [22,23] introduced a mixed model assembly line
balancing problem (MALBP) and mixed model sequencing problem (MMS) in unpaced
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assembly lines which consisted of a main line and multiple feeder lines using simulation
and optimization models. Although their systems were not specified as an automotive
body shop, they were worthwhile to analyze the subsystems of a body shop. Collaborative
assembly systems in which human and robots are working together (see [24]) could be
applicable to the design of opening parts sublines.

2.2. Performance Evaluating Methods for Manufacturing System Design

In manufacturing system design, the processes, process time, and process equipment
required for manufacturing products must be identified. Furthermore, the method to con-
struct the most efficient layout, and the prediction of various performance measures, such
as throughput (or production rate), work-in-process (WIP), and manufacturing lead time, as
well as the utilization of each resource must be considered. Additionally, both investment
and operating costs should be considered in the design phase of a manufacturing system.

To solve manufacturing system design problems, one must firstly estimate the perfor-
mance measures. Two approaches are typically used to evaluate the performance measures
of manufacturing systems: simulations and stochastic models, such as the queuing network
theory or Markovian processes [25,26].

2.2.1. Stochastic Modeling

Stochastic modelling has been widely used in the past decades, and the analysis of
manufacturing systems such as flow lines, parallel lines, and assembly lines considering
finite (or infinite) buffers and reliable (or unreliable) servers are abundant in the litera-
ture [25–30]. Recently, Papadopoulos, Li, and O’Kelly [31] published a survey paper that
classified prior studies using the Markov model in manufacturing system design into
system types, objectives, and approaches. In their paper, system types were classified into
flow lines, job shops, flexible manufacturing cells, and assembly systems. Among them,
the most popular system considered was flow lines (serial lines), and the objective was to
estimate the throughput of the system.

Systems comprising only two or three machines can be analyzed through stochastic
modelling, from which exact solutions can be obtained. However, it is typical to analyze a
complex manufacturing system using the approximation approach because of limitations
due to difficulties in modelling and solving. The assembly line is more complex than the
flow line; hence, its mathematical analysis is more difficult [31]. For assembly lines, most
studies that obtained an exact solution for the prediction of throughput are for systems
comprising only one assembly process. Recently, Tancrez [32] presented an approximation
method using decomposition for assembly/disassembly systems with general processing
time distributions and a finite buffer, but the system considered was relatively simpler than
our systems.

2.2.2. Simulation

Simulation is widely used because of its relatively easy application in designing and
analyzing complex systems. Cohen et al. [33] predicted that the advances in Industry 4.0
would provide both challenges and opportunities for digital manufacturing and assembly
systems, and one of the key technologies must be a simulation. All articles addressed in
Section 2.1 [4,13–21] used simulation for evaluating the performances of the systems. How-
ever, many replicative tasks are required to solve optimization problems using simulation,
such as modifying simulation models, changing parameters, and performing additional
experiments. These limitations further complicate the simulations when the number of
factors to be optimized increases. Another problem in simulations is that the results may
fluctuate in the vicinity of the optimal solution owing to randomness. For example, the
production rate should increase when the buffer capacity increases additionally from the
current capacity; however, the production rate may decrease slightly owing to randomness
in the simulation, thereby affecting the convergence of the objective. This problem is
inevitable when using an approximate method or simulations.
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2.2.3. Meta-Modeling

Meta-modelling methods based on simulation have been used to overcome limitations
such as convergence due to randomness as well as significant amounts of experimental
costs and time. Meta-models are also known as response surface, surrogates, or auxiliary
models; they are defined as functions that describe the relationship between the input and
output of the target system [34]. According to Can and Heavy [35], meta-models using
discrete event simulation may be a good alternative for satisfying the accuracy and cost
required for optimization problems. The meta-model is classified into a method using an
analytic model such as the linear regression model, and a black-box model such as artificial
intelligence. Kleijnen and Standridge [36] proposed a meta-modelling method that uses
two types of regression models in simple flexible manufacturing system lines to predict
throughput. Durieux and Pierreval [37] introduced a meta-model using regression for a
system involving logistics equipment in an automated line composed of parallel machines,
and they analyzed the effects of design factors on system efficiency using the meta-model.
Recently, Motlagh et al. [38] developed a meta-model for evaluating throughput in un-
reliable, unbalanced serial lines, and applied the meta-model to optimization problems.
In addition, Dengiz and Akbay [39], Um, Cheon and Lee [40], Dengiz, Tansel İç, and
Belgin [41], and others investigated meta-modelling methods using regression methods in
various manufacturing system design problems. However, the system considered in this
paper is more complex than the systems in the papers introduced above.

Table 1. Comparison of references.

References Manufac. Sys. Types Products Performances
Performance Analysis Methods

Objectives
Sim. Meta

Spieckermann [15] AL(FABS) Single PR, CT • Min. Cost
Kahan [21] AL(PABS) Single CT • Comp.
Feno [16] AL(PABS) Multiple CT, TP • Comp.
Kim [17] AL(PABS) Single PR • Comp.
Moon [4] AL(FABS) Single TP • Max. TP

Moon [18] AL(PABS) Single PR, LT • Comp.
Moon [19] AL(PABS) Single PR, LT • Max. PR
Moon [20] AL(PABS) Multiple PR, LT • Comp.
Can [35] FL Single TR • Max TP

Dengiz [39] FL Single PR, CT • Comp.
Motlagh [38] FLP Multiple TP, WIP, • Multi.
Dengiz [41] FLR Multiple TP • Max. TP
Kleijnen [36] FMS Single TP Max TP
Durieux [37] FMS Multiple Util. • -

Um [40] FMS Multiple TP, AGV Util. etc. • Multi.

This paper AL(FABS) Multiple PR • Max. PR,
Max. Profit

FL: Flow lines; FLP: Flow line with parallel machine; FLR: Flow line with re-entrance; FMS: Flexible manufacturing system (or cell); AL:
Assembly lines; FABS: Full automotive body shop (relatively); PABS: Part of automotive body shop; PR: Production rate; TP: Throughput;
CT: Cycle time; LT: Lead time; Util.: Utilization of resource; WIP: Work-in-process; Comp.: Comparison strategies; Multi: Multiple objectives.

2.3. Buffer Allocation Problem (BAP)

The most representative optimization problem studied in the design of manufacturing
systems is the buffer allocation problem (BAP), which is to determine the optimal buffer
size for each buffer location when the total number of buffers is determined [42]. BAP is
classified according to four criteria as follows. The first is about the system types such
as flow lines, flexible flow lines, assembly lines and so on, and the most widely studied
area is flow lines. The mathematical formulation of optimal buffer allocation in assembly
lines is basically similar to that of the flow lines, but there is a difference in that the method
of evaluating the value of the objective function, such as production volume and system
residence time, is relatively complicate.

The second is the classification according to the type of objective function. The
most representative objective function is to maximize the production rate (or throughput),
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and there are various objective functions such as minimizing investment and operating
costs, maximizing profits, and multi objectives. The third criterion is according to the
optimization methodologies such as genetic algorithm and various meta-heuristics. Finally,
as mentioned in Section 2.2, the fourth classification is the approaches used for performance
evaluation such as stochastic models, simulations, and meta-models. Since there have been
many survey papers related to BAP [42–47], we will not discuss BAP anymore.

3. System Configurations
3.1. Basic Configuration

For our system, we assume that the welding method of the side body is the modular
build method [17] and the transfer policies in all sublines are asynchronous transfer [18].
To evaluate the reconfiguration strategies for underbody lines in an automotive body shop,
we defined the abstract model of the automotive body shop as shown in Figure 1, and the
following assumptions were applied to the system:

1. Both the engine and electric cars are produced for the same car model. The total target
production volume is fixed, but the individual production volume can be changed
according to the product mix.

2. All sublines except for the underbody lines are typically shared. However, two types
of underbody lines exist: one for the engine car and the other for the electric car. The
layout of the underbody lines for the engine car is similar to the traditional layout.
However, the structure of underbody lines for the electric car is designed based on the
concept of a cell system owing to the low production volume. When the production
volume of the electric car increases, we can install additional cell lines in parallel.

3. Buffers exist between two sublines (total number of buffer locations is 14); however,
no buffer exists between two successive stations in a subline.

4. The process times (PT) of all stations in sublines for the upper body (side body and
main body) and the opening parts are constant and known as one time unit (minute)
because a body shop is a highly automated manufacturing system.

5. The PTs of the underbody lines (cells) can be changed according to the change in the
product mix of two types of cars. The total workload is fixed; hence, the process time
of a workstation is determined by the number of work stations. We assume that a
perfect line balancing is possible.

6. Only one mode of time-dependent failure exists for all workstations, and the distri-
butions of time-to-failure (uptime) and time-to-repair (downtime) are exponentially
distributed.

7. No starvation occurs in the first stations, and no blocking occurs in the final stations.
The first stations denote stations without predecessors, whereas the final stations are
stations without successors.

Table 2 shows the basic data of the two underbody lines. The total workload of the
underbody line of the engine car (TW1) is 24, and that of the electric car (TW2) is less
than TW1. This assumption is reasonable because the underbody structure of the electric
car is simpler than that of the engine car. Hence, we set TW2 to 21, as shown in Table 1;
however, it can be changed from 16.8 to 24 for developing a meta-model, as shown in
Table 3. Subsequently, the total number of stations for the engine car (NS1) is 24, and that
for the electric car (NS2) is three. Hence, the process times of a station (PT1 and PT2) can
be calculated using Equation (1), of which the values are one and seven, respectively.

PTi =
TWi
NSi

(1)
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Table 2. Basic data of two underbody lines.

Engine Car (Type 1) Electric Car (Type 2)

TWi 24 21
NSi 24 3
PTi 1 7

Table 3. Data for strategies 1, 2 and 3.

Electric Car (Type 2) Engine Car (Type 1)

Product-Mix Number of Cell Lines
Strategy 1 Strategies 2 and 3

NS1 PT1 NS1 PT1

0% 0 24 1.0 24 1.0000
10% 1 24 1.0 22 1.0909
20% 2 24 1.0 20 1.2000
30% 3 24 1.0 17 1.4118
40% 4 24 1.0 15 1.6000
50% 5 24 1.0 12 2.0000

3.2. Reconfiguration Strategies

As the production volume of electric car increases, the production capacity of the
underbody line of electric cars should be expanded by installing additional cell lines in
parallel. Meanwhile, the production capacity of the underbody line of engine cars can be
reduced by eliminating some stations and allocating more workloads to the remaining
stations. The strategies are presented as follows.

3.2.1. Strategy 1

Although the production volume of engine cars decreases as the product mix increases
(add new cell lines for electric cars), we did not change NS1 and PT1 (as shown in Table 3)
and retained the current capacity of engine cars. In this case, additional space is required
for installing the new underbody lines of electric cars.

3.2.2. Strategy 2

If the production volume of electric cars increases, we should eliminate some stations
in the underbody lines of engine cars based on Table 3. In this case, the positions of stations
to be eliminated are determined by the scenario shown in Figure 2. When the product mix
becomes 10%, we can eliminate the two workstations marked with 1© in Figure 2. Similarly,
when the product mix increases to 20%, we can eliminate the two workstations additionally
which are marked with 2© in Figure 2. Subsequently, process time PT1 can be recalculated
using Equation (1). In strategy 2, we can reduce the additional spaces required for adding
new cell lines for electric cars.
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3.2.3. Strategy 3

In strategy 3, the stations to be eliminated are substituted to buffers. Hence, the
data and buffer positions for strategy 3 are the same as those in strategy 2. In strategy 3,
additional spaces are required for expanding the underbody lines of electric cars.
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In the previous simulation study, the production rate of strategy 3 was better than
those of strategies 1 and 2 [12].

4. Procedure of Meta-Modeling

The procedure to solve an optimization problem using a meta-model generally com-
prises two steps: the development of the meta-model and optimization using the developed
meta-model. The specific procedure is shown in Figure 3.
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4.1. Shape Determination of Meta-Model

As described in Section 2.2, the most widely used meta-models in manufacturing
system design problems are regression models [36–41]. In this study, the quadratic polyno-
mial model was used. The form of the quadratic polynomial regression model used in this
study can be expressed as shown in Equation (2). Hence, the model enables the analysis
of the effects of the input variables on the objective function in the first-order, two-way
interaction, and pure quadratic forms.

f (·) = β0 +
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i +

n

∑
i=1

n

∑
j=i+1

βijxixj + ε (2)

where xi denotes the value of the input variable; β0, βi, βii, and βij are relative coefficients;
ε is the error of the model.

4.2. Grouping Input Variables

The input variables affecting the production rate of the system were considered in the
meta-model shown in Figure 1. They are as follows:

• 14 buffers between two sublines (B1–B14)
• Isolated efficiency of each station
• Mean time to failure
• Product mix of two car models
• Process time of electric car

The total number of variables was 18, and the number of simulation experiments
increased significantly for obtaining the accurate meta-model. Hence, the 14 buffers were
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grouped into eight, considering the similar structures of the sublines. For example, the
front and rear structures of the sublines connected to B1, B2, B3, and B4 were similar; hence,
the four buffers were grouped and represented as one variable.

Grouping variables may have two issues. One is the accuracy of the meta-model, and
the other is the pattern of optimal buffer allocation. In our preliminary study, we developed
a meta-model in a simplified body shop in which underbody sublines and attachment
sublines were deleted from the system of Figure 1. The related coefficients of first-order
terms and second-order terms were same in the meta-model. There were some differences
in the coefficients of two-way interactions, but their effects were insignificant.

Grouping variables may slightly influence on the buffer allocation sequence during
optimizing processes. However, in the near-optimal solution, the optimal buffer allocations
for buffers in the same group were almost the same; hence, this grouping method is
reasonable [19]. The results of the grouping are summarized in Table 4. Among the
12 variables included in the meta-model, z1–z8 were decision variables, whereas z9–z12
were control variables

Table 4. Definitions of input variables and the ranges of levels.

Input Variables Range of Levels (α = 2)

Notation Definition Min (ai) Low Medium High Max (bi)

z1 Buffer capacity of group 1 (B1, B2, B3, B4) 1 4 7 10 13
z2 Buffer capacity of group 2 (B5, B6) 1 4 7 10 13
z3 Buffer capacity of group 3 (B7, B9) 1 4 7 10 13
z4 Buffer capacity of group 4 (B8) 1 4 7 10 13
z5 Buffer capacity of group 5 (B10, B12) 1 4 7 10 13
z6 Buffer capacity of group 6 (B11) 1 4 7 10 13
z7 Buffer capacity of group 7 (B13) 1 4 7 10 13
z8 Buffer capacity of group 8 (B14) 1 2 3 4 5
z9 Efficiency of each station (e) 0.94 0.95 0.96 0.97 0.98
z10 Mean time to failure (1/f ) 160 200 240 280 320
z11 Product mix 0.1 0.2 0.3 0.4 0.5
z12 The process time of each station for electric cars (PT2) 5.6 6.2 6.8 7.4 8

4.3. Design of Experiments

The meta-model of this study was designed based on the response surface methodol-
ogy. Several experimental design methods exist, such as the three-level factorial design,
central composite design (CCD), and Box–Behnken design [48]. In this study, simulation
results were obtained according to the CCD experimental design method. The CCD is
useful for building a second-order (quadratic) model with various input variables as it
does not require a complete three-level factorial experiment.

The CCD can be designed by adding center point and axial point experiments to the
two-level factorial design method. Hence, it has a relatively small number of experiments
compared with other methods for estimating the quadratic polynomial model. If the
number of input variables is 12, then the total number of experiments of the three-level full
factorial design method is 312 = 531,441; however, the total number of experiments of the
CCD is 2(12−p) + 2× 12 + Cp, where p and Cp are the size of fraction of the two-level full
factorial design and the number of center points, respectively. We set p = 4 and Cp = 8;
therefore, the total number of experiments was 288. In addition, the CCD has five levels
of analysis, i.e., (−α, −1, 0, 1, and α), for one variable. We set the value of α, which is the
distance from the center point to the axis point, to 2.

The number of experiments for the fractional factorial 2-level designs of 12 factors is
128 with resolution level IV, but we set the number of experiments to 256 with resolution
level VI for increasing the accuracy of the meta-model [49]. The design of experiments for
256 points was selected according to the plan recommended in RcmdrPlugin.DoE package
in R package [50]. Eight experiments for center points were conducted by changing the
random number streams.
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The level of each factor was determined within the ranges considered in practice.
z1–z8 denote the buffer capacities of B1–B14. z9 and z10 are variables related to the isolated
efficiency of each workstation defined in Equation (3), where z9 is the efficiency (e) in
Equation (3), and x10 denotes the mean time-to-failure (MTTF). When the values of z9
and z10 are determined, the mean time-to-repair (MTTR) can be calculated easily using
Equation (3). In a mixed production environment, z11 denotes the production volume ratio
of an electric car when the total production amount of two cars is fixed as 1; hence, the
production volume ratio of an engine car is (1− z11). z12 denotes the process time of each
station in the underbody cell of an electric car. The value of z12 is 7 when the total workload
is 21, as in Table 1; however, we considered the z12 range of 5.6–8.0 for developing the
meta-model.

e =
MTTF

MTTF + MTTR
(3)

Although the value of zi in Table 4 would be used directly for developing the meta-
model, we defined a new variable, xi, which normalizes the range of xi to (−α–α), and α

was set to 2. This transformation was performed because the variables were inhomogeneous
and the scales of zi differed; hence, the accuracy of the meta-model was not good enough.
The relational expression for the normalization is shown in Equation (4), and we denote
this transformation equation as hi(zi).

xi = hi(zi) = −α+ {α− (−α)} zi − ai
bi − ai

(4)

Table 5 shows part of the 288 experimental design points used for developing the
meta-model and the corresponding simulation results. PRsim denotes the production
rate obtained by simulation, and the related 95% confidence intervals are ±0.0008–0.0026.
Both the original level of zi and the normalized level of xi are also listed in Table 5. The
simulation models were developed using ARENA®; the simulation run time was set to
330,000 time units, including 30,000 warm up time units, and the number of replications
was 10. Hence, PRsim is calculated as the production quantities divided by 300,000, where
300,000 is the annual production time (250 days

year × 20 hours
day × 60 minutes

hour ).

Table 5. Experiment design for building the meta-model (reconfiguration strategy 3).

Data Set
Original Levels Normalized Levels PRsim

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 4 4 4 4 4 4 4 2 0.95 200 0.2 6.2 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0.2973
2 10 4 4 4 4 4 4 2 0.97 280 0.4 7.4 1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 0.5001
:

255 4 10 10 10 10 10 10 4 0.95 200 0.2 6.2 −1 1 1 1 1 1 1 1 −1 −1 −1 −1 0.3830
256 10 10 10 10 10 10 10 4 0.97 280 0.4 7.4 1 1 1 1 1 1 1 1 1 1 1 1 0.5867
257 1 7 7 7 7 7 7 3 0.96 240 0.3 6.8 −2 0 0 0 0 0 0 0 0 0 0 0
258: 13 7 7 7 7 7 7 3 0.96 240 0.3 3.8 2 0 0 0 0 0 0 0 0 0 0 0

:
279 7 7 7 7 7 7 7 3 0.96 240 0.3 5.6 0 0 0 0 0 0 0 0 0 0 0 −2 0.4344
280 7 7 7 7 7 7 7 3 0.96 240 0.3 8 0 0 0 0 0 0 0 0 0 0 0 2 0.4336
281 7 7 7 7 7 7 7 3 0.96 240 0.3 6.8 0 0 0 0 0 0 0 0 0 0 0 0 0.4349

:
288 7 7 7 7 7 7 7 3 0.96 240 0.3 6.8 0 0 0 0 0 0 0 0 0 0 0 0 0.4349

4.4. Determination of the Meta-Model

The data collected according to the experimental design in Table 5 were analyzed
to estimate the coefficients βo, βi, βii, and βij of the meta-model by variance analysis.
Some ineffective terms were removed individually; the remaining terms and the analysis
results are listed in Table 6. Considering traditional statistical principles, we should discard
terms when the p-values are greater than 0.05. In this process, x12 is a candidate for
removal (p-value-0.094), but we retained it. Pérez et al. [51] described that “There is no clear
justification to the use of fixed significance, except by tradition”. Hence, we pre-determined
that all first-order terms (xi) would not be discarded, because they must be important and
effective on the performance measure, and helpful for the expansion of the model. Similarly,
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the meta-models for reconfiguration strategies 1 and 2 were developed individually. Only
the analysis data of strategy 3 are described herein.

Table 6. Result of regression analysis and selected terms (strategy 3).

Term Coef. SE Coef. t p Term Coef. SE Coef. t p

Const. 0.4340 0.0004 1070.01 <0.001 x1x7 0.0005 0.0001 4.07 <0.001
x1 0.0160 0.0001 143.57 <0.001 x1x9 0.0009 0.0001 8.01 <0.001
x2 0.0152 0.0001 136.60 <0.001 x1x10 −0.0003 0.0001 −2.51 <0.002
x3 0.0103 0.0001 92.03 <0.001 x1x11 0.0011 0.0001 9.38 <0.001
x4 0.0095 0.0001 85.42 <0.001 x2x3 0.0007 0.0001 5.90 <0.001
x5 0.0018 0.0001 15.90 <0.001 x2x5 0.0002 0.0001 2.07 <0.04
x6 0.0014 0.0001 12.99 <0.001 x2x6 0.0002 0.0001 2.06 <0.04
x7 0.0045 0.0001 40.57 <0.001 x2x9 0.0006 0.0001 5.17 <0.03
x8 0.0003 0.0001 2.89 <0.002 x2x10 −0.0002 0.0001 −2.00 <0.05
x9 0.1066 0.0001 956.30 <0.001 x2x11 0.0007 0.0001 6.14 <0.03
x10 −0.0277 0.0001 −248.76 <0.001 x3x4 −0.0010 0.0001 −9.21 <0.001
x11 0.0069 0.0001 62.28 <0.001 x3x7 0.0003 0.0001 2.99 <0.001
x12 −0.0002 0.0001 −1.68 0.094 x3x9 0.0006 0.0001 5.68 <0.001
x2

1 −0.0031 0.0003 −10.18 <0.001 x3x10 −0.0005 0.0001 −4.31 <0.001
x2

2 −0.0023 0.0003 −7.52 <0.001 x3x11 0.0007 0.0001 6.17 <0.001
x2

3 −0.0020 0.0003 −6.70 <0.001 x4x9 0.0005 0.0001 4.40 <0.001
x2

4 −0.0012 0.0003 −3.84 <0.001 x4x10 −0.0002 0.0001 −2.01 <0.05
x2

7 −0.0015 0.0003 −4.80 <0.001 x4x11 0.0004 0.0001 3.46 <0.001
x2

9 0.0142 0.0003 46.69 <0.001 x5x6 −0.0002 0.0001 −2.14 <0.04
x2

10 0.0027 0.0003 8.97 <0.001 x5x7 −0.0003 0.0001 −2.36 <0.001
x2

11 −0.0010 0.0003 −3.29 <0.004 x5x11 −0.0009 0.0001 −8.16 <0.02
x1x2 −0.0020 0.0001 −17.72 <0.001 x6x7 −0.0004 0.0001 −3.26 <0.001
x1x3 0.0012 0.0001 10.81 <0.001 x6x11 −0.0009 0.0001 −7.96 <0.001
x1x4 0.0005 0.0001 4.81 <0.001 x7x9 0.0003 0.0001 2.77 <0.001
x1x5 0.0004 0.0001 3.42 <0.001 x7x11 −0.0018 0.0001 −15.51 <0.001
x1x6 0.0003 0.0001 2.69 <0.01 x10x11 0.0007 0.0001 5.98 <0.001

The meta-models for estimating the production rates of strategies 1, 2, and 3 are
denoted by f1(X), f2(X), and f3(X), respectively, and the detailed functions are shown in
Equations (5), (6) and (7), respectively. Table 7 shows the result of variance analysis for the
meta-model of strategy 3.

PR1 = f1(X) = 0.4316 + 0.0156x1 + 0.0151x2 + 0.0100x3 + 0.0095x4 + 0.0021x5 + 0.0018x6 + 0.0057x7
+0.0003x8 + 0.1080x9 − 0.0283x10 + 0.0061x11 − 0.0002x12 − 0.0033x2

1 − 0.0025x2
2

−0.0024x2
3 − 0.0013x2

4 − 0.0016x2
7 + 0.0145x2

9 + 0.0027x2
10 − 0.0009x2

11 − 0.0021x1x2
+0.0012x1x3 + 0.0006x1x4 + 0.0004x1x5 + 0.0003x1x6 + 0.0006x1x7 + 0.0011x1x9
−0.0003x1x10 + 0.0010x1x11 + 0.0007x2x3 + 0.0002x2x5 + 0.0009x2x9 + 0.0005x2x11
−0.0009x3x4 + 0.0002x3x5 + 0.0002x3x6 + 0.0004x3x7 + 0.0008x3x9 − 0.0005x3x10
+0.0006x3x11 + 0.0006x4x9 − 0.0003x4x10 + 0.0004x4x11 − 0.0003x5x6 − 0.0005x5x7
−0.0009x5x11 − 0.0003x6x7 − 0.0008x6x11 + 0.0003x7x10 − 0.0010x7x11 + 0.0005x10x11

(5)

PR2 = f2(X) = 0.4296 + 0.0153x1 + 0.0148x2 + 0.0099x3 + 0.0093x4 + 0.0025x5 + 0.0022x6 + 0.0060x7
+0.0003x8 + 0.1063x9 − 0.0278x10 + 0.0066x11 − 0.0002x12 − 0.0032x2

1 − 0.0021x2
2

−0.0021x2
3 − 0.0013x2

4 − 0.0007x2
5 − 0.0015x2

7 + 0.0143x2
9 + 0.0029x2

10 − 0.0021x1x2
+0.0012x1x3 + 0.0006x1x4 + 0.0005x1x5 + 0.0007x1x7 + 0.0008x1x9 + 0.0009x1x11
+0.0006x2x3 + 0.0002x2x6 + 0.0006x2x9 + 0.0007x2x11 − 0.0009x3x4 + 0.0005x3x7
+0.0006x3x9 − 0.0004x3x10 + 0.0007x3x11 + 0.0005x4x9 + 0.0004x4x11 − 0.0005x5x7
−0.0009x5x11 − 0.0007x6x11 + 0.0005x7x9 − 0.0011x7x11 + 0.0002x9x11 + 0.0004x10x11

(6)
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PR3 = f3(X) = 0.4340 + 0.0160x1 + 0.0152x2 + 0.0103x3 + 0.0095x4 + 0.0018x5 + 0.0014x6 + 0.0045x7
+0.0003x8 + 0.1066x9 − 0.0277x10 + 0.0069x11 − 0.0002x12 − 0.0031x2

1 − 0.0023x2
2

−0.0020x2
3 − 0.0012x2

4 − 0.0015x2
7 + 0.0142x2

9 + 0.0027x2
10 − 0.0010x2

11 − 0.0020x1x2
+0.0012x1x3 + 0.0005x1x4 + 0.0004x1x5 + 0.0003x1x6 + 0.0005x1x7 + 0.0009x1x9
−0.0003x1x10 + 0.0011x1x11 + 0.0007x2x3 + 0.0002x2x5 + 0.0002x2x6 + 0.0006x2x9
−0.0002x2x10 + 0.0007x2x11 − 0.0010x3x4 + 0.0006x3x7 + 0.0006x3x9 − 0.0005x3x10
+0.0007x3x11 + 0.0005x4x9 − 0.0002x4x10 + 0.0004x4x11 − 0.0002x5x6 − 0.0003x5x7
−0.0009x5x11 − 0.0004x6x7 − 0.0009x6x11 + 0.0003x7x9 − 0.0018x7x11 + 0.0007x10x11

(7)

Table 7. Result of analysis of variance (meta-model for strategy 3).

Data Set DF Adj. SS F p

Model

Linear 12 3.4030 86,449 <0.001
Quadratic 8 0.0079 302.15 <0.001
2 way interaction 31 0.0044 45.56 <0.001
Total model 51 3.4153 2671.62 <0.001

Residual
Lack of fit 230 0.0008 1.1436 ×1026 <0.001
Pure error 6 0
Total error 236 0.0008

R-square (Adj.) = 99.98

4.5. Validation of Meta-Model

To validate the meta-model, we compared the production rates obtained from the
simulation and the meta-model; the results are shown in Table 8. The data used for
validation comprised two types: one contained 288 design experiment points, which were
used for developing the meta-model; the other contained 45 points selected randomly from
ranges (−1–1) and (−2–2) in Table 3. In Table 8, the absolute percentage error (APE), which
is the index for measuring the difference between the simulation and meta-model results,
is defined as shown in Equation (8). In the case of random points ranging from (−2–2),
the maximum difference was relatively greater than those of others. Furthermore, the
maximum difference occurred at the extreme value of the range of each variable (−2 or 2).
This phenomenon is consistent with the fact that the meta-model is statistically meaningful
only within the initial setting range (Low–High) of each variable. Hence, we conclude that
the meta-model developed is efficient for optimizing problems.

APE =
|PRsim − PRmeta|

PRsim
× 100 (8)

Table 8. Validation of the meta-model (strategy 3).

Data Set Number of Points
APE (%)

Minimum Mean Maximum

DOE points 288 0.00 0.29 2.91

Random points α = 1 45 0.00 0.21 0.57
α = 2 45 0.03 1.01 5.16

5. Application to Manufacturing System Design Problems
5.1. Production Rate Maximization Problem

At first, the meta-models developed were applied to the BAP which maximizes pro-
duction rate. The purposes of 5.1 are to estimate production rate and to see the pattern of op-
timal buffer allocation, when total buffer (TB), product mix, and reconfiguration strategies
are predetermined. Then, this problem is generally defined as shown in Equations (9)–(12).
Equation (9) defines the objective function, which is to maximize the production rate, where
i is the buffer group, k is the total number of buffer positions (k = 8 herein), and n is the
total number of factors included in the meta-model, where the value of zj (j = k + 1, . . . , n)
is predetermined as vj. In this study, we developed a meta-model that is generally used for
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estimating the production rate; therefore, z9, z10, z11 and z12 were included in the meta-
model. However, these control variables should be fixed for solving the BAP. Equation (10)
shows the constraint related to the capacity of the total buffer (TB), where ci is the number
of buffer positions in buffer group i, and zi is the capacity of buffer group i. Equation (11)
defines the lower limit (LBi) and upper limit (UBi) of zi. In addition, Equation (2) restricts
zi to a non-negative integer. It is noteworthy that the meta-model developed uses the nor-
malized variable xi, not the original variable zi. Hence, the objective function is redefined
as shown in Equation (13), where hi(zi) is the transformation function that transforms the
value of zi to xi, as defined in Equation (4).

maxPR(Z) = g(z1, z2, . . . , zi, . . . , zk |zk+1 = vk+1, . . . , zn = vn ) (9)

s.t.
k

∑
i=1

cizi = TB (10)

LBi ≤ zi ≤ UBi ≤ TB, i = 1, 2 . . . , k (11)

zi : nonnegative integer, i = 1, 2 . . . , k (12)

maxPR(X) = f (x1, . . . , xi, . . . , xk |xk+1 = v′k+1, . . . , xn = v′n )
= f (h1(z1), . . . , hi(zi), . . . , hk(zk) |xk+1 = hk+1(vk+1), . . . , xn = hn(vn ))

(13)

The problem of reconfiguration strategy 3 was solved with CPLEX® because the
efficiency of optimization algorithm was not our concern, and the results of the optimal
buffer allocations are shown in Table 8. In these experiments, LBi and UBi were set to 1 and
13 (except for UB8 = 5), respectively, as defined in Table 4. The values of x9, x10, x11, and
x12 were set to medium values (level = 0). The number in parenthesis below zi denotes the
number of the buffer positions of group i, and the maximum value of the TB was 174 when
all zi = UBi. The optimal buffer allocations obtained from CPLEX® were not always global
optimal. Figure 4 shows the behavior of the production rate and relative optimal buffer
allocation as TB increases. In this figure, reconfiguration strategy 3 always performs better
than strategies 1 and 2. However, the gaps are negligible when the TB is greater than 150.
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The production rates obtained from the meta-model of strategy 3 were compared
with those from simulation, as shown in Figure 5. The buffer allocations were optimized
using the meta-model, and the same values were applied to simulation model. The detail
optimization results are listed in Table 9. The meta-model overestimated the production
rates when the TB was small; however, it changed to being underestimated when the TB
increased. The gap between the two methods reduced in the middle of the ranges of the
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TB but enlarged at both ends of the ranges. This phenomenon depicts the limits of the
meta-model. Table 10 shows the results of optimal buffer allocations and their production
rates when product-mix is varied under the strategy 3. The production rate increases
as the increase of product-mix, because additional cell lines for electric car had a good
influence on the total production volume. The patterns of optimal buffer allocations are a
little bit different.
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Table 9. Solution of BAP using CPLEX® (strategy 3).

TB
Optimal Buffer Allocation

PRmeta PRsim APE (%)z1
(4)

z2
(2)

z3
(2)

z4
(1)

z5
(2)

z6
(1)

z7
(1)

z8
(1)

14 1 1 1 1 1 1 1 1 0.2775 0.2625 −5.70
15 1 1 1 2 1 1 1 1 0.2825 0.2693 −4.90
18 1 1 1 5 1 1 1 1 0.2957 0.2827 −4.61
19 1 2 1 4 1 1 1 1 0.3000 0.2892 −3.72
20 1 2 1 5 1 1 1 1 0.3041 0.2933 −3.75
21 1 3 1 4 1 1 1 1 0.3079 0.2987 −3.11
29 1 5 1 8 1 1 1 1 0.3374 0.3285 −2.68
30 1 5 1 8 1 1 2 1 0.3405 0.3336 −2.07
40 1 8 1 11 1 1 3 1 0.3697 0.3620 −2.13
50 1 10 2 13 1 1 5 1 0.3927 0.3861 −1.71
56 1 11 4 12 1 1 6 1 0.4048 0.3973 −1.90
57 1 11 4 12 1 1 7 1 0.4065 0.3995 −1.74
58 2 10 4 12 1 1 6 1 0.4085 0.4023 −1.55
59 2 11 3 13 1 1 6 1 0.4104 0.4030 −1.82
60 2 11 4 12 1 1 6 1 0.4124 0.4060 −1.57
70 3 12 5 13 1 1 7 1 0.4298 0.4251 −1.10
80 5 12 6 13 1 1 7 1 0.4451 0.4402 −1.12
90 6 12 8 13 1 1 9 1 0.4592 0.4539 −1.18
100 7 13 9 13 1 1 11 1 0.4706 0.4688 −0.86
110 8 13 12 13 1 1 11 1 0.4803 0.4780 −0.48
120 10 13 12 13 1 2 12 1 0.4886 0.4902 0.33
130 10 13 12 13 1 13 11 1 0.4959 0.4980 0.42
140 12 13 13 13 1 13 11 1 0.5023 0.5083 1.17
150 13 13 13 13 3 13 12 2 0.5061 0.5165 2.01
160 13 13 13 13 9 13 11 2 0.5096 0.5198 1.95
170 13 13 13 13 12 13 11 5 0.5131 0.5240 2.08
173 13 13 13 13 13 13 12 5 0.5140 0.5242 1.95
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Table 10. Results of buffer allocations for changing product-mix (strategy 3).

Product-Mix 20% 30% 40%

TB (z1, . . . , z8) * PR (z1, . . . , z8) * PR (z1, . . . , z8) * PR

50 (1,10,2,11,1,1,7,2) 0.3825 (1,10,2,13,1,1,5,1) 0.3927 (1,10,3,12,1,1,4,2) 0.4023
70 (3,11,5,13,1,1,9,1) 0.4190 (3,12,5,13,1,1,7,1) 0.4298 (3,12,6,13,1,1,5,1) 0.4400
90 (6,11,8,13,1,1,11,1) 0.4475 (6,12,8,13,1,1,9,1) 0.4592 (6,12,9,13,1,1,7,1) 0.4700

110 (9,12,10,13,1,1,13,1) 0.4683 (8,13,12,13,1,1,11,1) 0.4807 (9,13,11,13,1,1,9,1) 0.4923
130 (10,13,12,13,1,13,11,1) 0.4859 (10,13,12,13,1,13,11,1) 0.4959 (12,13,13,13,1,4,10,1) 0.5062
150 (12,13,13,13,5,13,13,1) 0.4968 (13,13,13,13,3,13,12,2) 0.5061 (13,13,13,13,2,13,10,5) 0.5147

* Optimal solution of buffer allocation.

5.2. Profit Maximization Problem

The second problem is a profit maximization problem (PMP) in which total profit
is defined as the sum of the profit from the production rate, the cost savings from the
reconfiguration of workstations, and reconstruction costs. In this problem both buffer
allocation and reconfiguration strategy are determined at the same time.

Max TP(Z, y1, y2, y3)

= d1
3
∑

l=1
{yl × gl(z1, z2, . . . , zi, . . . , zk |zk+1 = vk+1, . . . , zn = vn )}

+(d2 + d3 − d4)× y2 × ∆ + (d3 − d4)× y3 × ∆

= d1
3
∑

l=1
{yl × fl((h1(z1), . . . , hi(zi), . . . , hk(zk) |xk+1 = hk+1(vk+1), . . . , xn = hn(vn )}

+(d2 + d3 − d4)× y2 × ∆ + (d3 − d4)× y3 × ∆

(14)

s.t. ∑3
j=1 (yj ×∑k

i=1 cizij) = TB (15)

y1 + y2 + y3 = 1 (16)

LBi ≤ zij ≤ UBi ≤ TB, i = 1, 2 . . . , k, and j = 1, . . . , 3 (17)

zij : nonnegative integer, i = 1, 2 . . . , k and j = 1, . . . , 3 (18)

y1, y2, y3 : 0 or 1 (19)

Note that
gl(·) and fl(·): meta-models (Equations (9) and (13)) when reconfiguration strategy l

is selected,
d1: revenue obtained from production rate,
d2: annual profit obtained from the elimination of floor space in a station,
d3: annual profit obtained from the uninstallation of robots in a station,
d4: reconstruction cost for eliminating a station,
∆: the number of stations eliminated by the reconfiguration strategy, where

∆ =


2 i f z11 = 0.1
4 i f z11 = 0.2
7 i f z11 = 0.3
9 i f z11 = 0.4
12 i f z11 = 0.5

For the numerical example, we set d1 as $1000×300,000
car because the production quantity

is calculated by PR× 300,000. Although Liberopoulos [52] estimated the annual investment
costs of a buffer space as $250–500 plus $500–1000 of depreciation, it is unreasonable for
the floor space of a station. The land price of Korean automotive factory is very expensive
about $1000/ft2, and the shop floor space required for a station in underbody line is at least
33 ft2. Thus, we set d2 = 0.2× $1000

ft2 × 33 ft2

station = $6600
station where 0.2 is the opportunity cost of

floor space. Since the number of robots installed in each station of underbody lines is 2–10,
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we assumed that four robots can be uninstalled and reused when a station is eliminated.
Thus, we set d3 = 0.1× 4 robots

station ×
$50,000
robot = $20,000

station , where 0.1 is the depreciation rate of
robots. Finally, d4 is set to $5000 per station.

With these coefficient values, we solved this problem easily using a genetic algorithm
supplied from MATLAB®, because this problem is a nonlinear integer problem and difficult
to solve using CPLEX®. Figure 6 compares the total profits with respect to the reconfigu-
ration strategies after optimal buffer allocations when the product-mix (z11) is set to 30%.
It means that strategy 3 is better than strategies 1 and 2, and it means that y3 = 1 when
the PMP is solved. However, it is difficult to say that strategy 3 is better than strategies
1 or 2 with respect to statistical principles when TB has a large value, because the gaps
among strategies are smaller than the confidence intervals. Nevertheless, strategy 3 must
be selected if we have to choose only one, and there are any other preferences. Table 11
shows the examples of total profits, production rates obtained by meta-models, and the
confidence intervals obtained from simulation experiments when same optimized values
of variables are used for simulation models. The cross point between the strategies 1 and 2
(TB = 142) becomes slightly smaller than that of the BAP problem in Section 5.1 (TB = 144).
This phenomenon is due to the fact that the profit caused by the production rate is much
bigger than the profit obtained from the reconfiguration.

Appl. Sci. 2021, 11, 2748 17 of 20 
 

line is at least 33 ft2. Thus, we set 𝑑ଶ = 0.2 × $ଵ଴଴଴୤୲మ × 33 ୤୲మୱ୲ୟ୲୧୭୬ = $଺଺଴଴ୱ୲ୟ୲୧୭୬ where 0.2 is the op-
portunity cost of floor space. Since the number of robots installed in each station of un-
derbody lines is 2–10, we assumed that four robots can be uninstalled and reused when a 
station is eliminated. Thus, we set 𝑑ଷ = 0.1 × 4 ୰୭ୠ୭୲ୱୱ୲ୟ୲୧୭୬ × $ହ଴,଴଴଴୰୭ୠ୭୲ = $ଶ଴,଴଴଴ୱ୲ୟ୲୧୭୬, where 0.1 is the 
depreciation rate of robots. Finally, 𝑑ସ is set to $5000 per station. 

With these coefficient values, we solved this problem easily using a genetic algorithm 
supplied from MATLAB®, because this problem is a nonlinear integer problem and diffi-
cult to solve using CPLEX®. Figure 6 compares the total profits with respect to the recon-
figuration strategies after optimal buffer allocations when the product-mix (𝑧ଵଵ) is set to 
30%. It means that strategy 3 is better than strategies 1 and 2, and it means that 𝑦ଷ =1 when the PMP is solved. However, it is difficult to say that strategy 3 is better than strat-
egies 1 or 2 with respect to statistical principles when TB has a large value, because the 
gaps among strategies are smaller than the confidence intervals. Nevertheless, strategy 3 
must be selected if we have to choose only one, and there are any other preferences. Table 
11 shows the examples of total profits, production rates obtained by meta-models, and the 
confidence intervals obtained from simulation experiments when same optimized values 
of variables are used for simulation models. The cross point between the strategies 1 and 
2 (TB = 142) becomes slightly smaller than that of the BAP problem in Section 5.1 (TB = 
144). This phenomenon is due to the fact that the profit caused by the production rate is 
much bigger than the profit obtained from the reconfiguration. 

 
Figure 6. Comparison of total profits among reconfiguration strategies (product-mix = 30%). 

Table 11. Optimized results using meta-model and confidence intervals from simulation (product-mix = 30%). 

TB 

Strategy 1 Strategy 2 Strategy 3 
Using Meta-Model 

(Optimized) 
Simulation Using Meta-Model 

(Optimized) 
Simulation Using Meta-Model 

(Optimized) 
Simulation 

TP 
(×108) 

PR1 95% C.I. of 
PR1 

TP 
(×108) 

PR2 95% C.I. of 
PR2 

TP 
(×108) 

PR3 95% C.I. of 
PR3 

70 1.2789 0.4263 0.0013 1.2634 0.4205 0.0017 1.2907 0.4298 0.0020 
90 1.3665 0.4555 0.0019 1.3529 0.4504 0.0009 1.3791 0.4592 0.0013 

110 1.4287 0.4762 0.0016 1.4195 0.4725 0.0014 1.4422 0.4803 0.0016 
130 1.4751 0.4917 0.0027 1.4719 0.4900 0.0015 1.4891 0.4959 0.0020 
150 1.5042 0.5014 0.0013 1.5101 0.5028 0.0014 1.5196 0.5061 0.0018 

Figure 6. Comparison of total profits among reconfiguration strategies (product-mix = 30%).

Table 11. Optimized results using meta-model and confidence intervals from simulation (product-mix = 30%).

TB

Strategy 1 Strategy 2 Strategy 3

Using Meta-Model
(Optimized) Simulation Using Meta-Model

(Optimized) Simulation Using Meta-Model
(Optimized) Simulation

TP
(×108) PR1

95% C.I.
of PR1

TP
(×108) PR2

95% C.I. of
PR2

TP
(×108) PR3

95% C.I.
of PR3

70 1.2789 0.4263 0.0013 1.2634 0.4205 0.0017 1.2907 0.4298 0.0020
90 1.3665 0.4555 0.0019 1.3529 0.4504 0.0009 1.3791 0.4592 0.0013

110 1.4287 0.4762 0.0016 1.4195 0.4725 0.0014 1.4422 0.4803 0.0016
130 1.4751 0.4917 0.0027 1.4719 0.4900 0.0015 1.4891 0.4959 0.0020
150 1.5042 0.5014 0.0013 1.5101 0.5028 0.0014 1.5196 0.5061 0.0018

Other observation is that total profit increases as the increase of TB within the range
considered. If the TB increases much more, the total profit will decreases because pro-
duction rate will not increase anymore, but the investment cost increases as the increase
of buffer.



Appl. Sci. 2021, 11, 2748 17 of 19

6. Conclusions

Herein, the design problems of an automotive body shop have been considered, in
which two types of cars (engine car and electric car) with different underbody structures
were produced. Furthermore, three types of reconfiguration strategies were considered
when the production volume of the electric car substituted that of the engine car gradually.

Most previous studies pertaining to the design problem of complex systems such
as automotive body shops have used the simulation approach. However, the time for
solving the optimization problem using simulations increased significantly when the
system became more complex. Hence, we suggest quadratic polynomial meta-models
based on simulations, and they have been applied to solve the two optimization problems.
In meta-modeling, we grouped some buffer locations and presented them as one variable
to reduce the number of variables, and the number of simulation experiments could be
reduced. As a result, the number of simulation experiments for developing three meta-
models was 288× 3 = 864, and the simulation run time required on PC with an i-9(9900k)
CPU was about 310 s for each experiment. On the contrary, the time required for solving
the problems in Sections 5.1 and 5.2 were less than 0.1 s and 1.5 s, respectively. If we solve
these problems directly by simulation, the maximum number of simulation experiments
for all enumerations could be estimated to 3× 137 × 5 = 9.4× 108. Consequently, we have
been able to reduce the number of experiments and the time required for optimization
rather than attempting optimization by using simulations directly.

We included various control variables such as failure, product-mix and process times
for expanding the meta-models to various aspects of the automotive body shop. Hence,
the estimation of production rates and optimization can be carried easily when the system
configurations are changed.

Practically, we suggested the concept of parallel cell lines for the underbody sub-lines of
electric car, and compared three reconfiguration strategies when electric car substitutes engine
car in the near future. Therefore, it was possible to optimize the buffer allocation and the
reconfiguration strategy simultaneously, and it would be helpful to automotive manufacturers.

It was found that strategy 3 was superior to the other two reconfiguration strategies,
when considering the current cost structure in the two optimization problems considered.
However, strategy 2 will be meaningful if the cost savings due to reconfiguration are
relatively bigger, or if the constraint of available space for installing new parallel cell lines
is limited when the product-mix of electric car increases.

As a further research topic, we can consider a new problem of finding the optimal
stepwise reconfiguration strategies by years that could maximize the profit for the entire
planning periods, when the product-mix of electric car continues to increase. The inventory
cost of WIP (work-in-process) can be included in the maximizing profit model, because the
increase of TB will results in the level of WIPs and manufacturing lead times.
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