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Abstract: When the measured object is fast moving online, the captured deformed pattern may
appear as motion blur, and some phase information will be lost. Therefore, the frame rate has to
be improved by adjusting the image acquisition mode of the camera to adapt to a fast-moving
object, but the resolution of the captured deformed pattern will be sacrificed. So a super-resolution
image reconstruction method based on maximum a posteriori (MAP) estimation is adopted to obtain
high-resolution deformed patterns, and in this way, the reconstructed high-resolution deformed
patterns also have a good effect on noise suppression. Finally, all the reconstructed high-resolution
equivalent phase shifting deformed patterns are used for online three-dimensional (3D) reconstruc-
tion. Experimental results prove the effectiveness of the proposed method. The proposed method
has a good application prospect in high-precision and fast online 3D measurement.

Keywords: phase measurement profilometry; super-resolution image reconstruction; online three-
dimensional measurement; maximum a posteriori; random field

1. Introduction

With the development of optics, computer and information technology, 3D measure-
ment technology plays an important role in reverse engineering, industrial 3D testing,
medical diagnosis, cultural relic protection and so on [1–3]. The more commonly used 3D
measurement technologies are phase measurement profilometry (PMP) [4,5] and Fourier
transform profilometry (FTP) [6,7]. Compared with FTP, PMP is a point-to-point phase
calculation with multiple frames of deformed patterns, it has higher precision and is more
favored by the industry. Common 3D measurement based on PMP requires the fixed posi-
tion of the object, but the object is moving in online 3D measurement, which will cause the
object coordinates in the captured multiple frames of deformed patterns not to correspond,
and lead to the error in the PMP phase demodulation. The pixel matching method [8] is
used to obtain deformed patterns with consistent object coordinates. Scholars have carried
out a lot of research in the field of online 3D measurement. Among them, in order to
improve the matching speed, Peng Kuang et al. [9] proposed a new pixel matching method
using the modulation of shadow areas in online 3D measurement. To improve the mea-
sured precision, Chen Cheng et al. [10] proposed an online phase measuring profilometry
for objects moving with straight-line motion. To avoid the loss of phase information due to
frequency filtering, Peng Kuang et al. [11] proposed a dual-frequency online PMP method
with phase-shifting parallel to the moving direction of the measured object.

Generally, these methods may have a good effect when the speed of the production line
is less than 0.2 m/s. However, when the object moves fast online, the captured deformed
patterns will appear as motion blur. In order to adapt to the fast speed, the frame rate of
the camera can be increased by adjusting the image acquisition mode, but the resolution of
captured deformed patterns is bound to be sacrificed simultaneously. In order to obtain
high-resolution deformed patterns and improve the measurement precision, we proposed
an online phase measurement profilometry method based on super-resolution image

Appl. Sci. 2021, 11, 2805. https://doi.org/10.3390/app11062805 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4483-4053
https://doi.org/10.3390/app11062805
https://doi.org/10.3390/app11062805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11062805
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11062805?type=check_update&version=3


Appl. Sci. 2021, 11, 2805 2 of 12

reconstruction [12,13], which combines high-resolution image from multiple frames of
low-resolution images with sub-pixel [14] shifts among them. In addition, this paper
adopts a super-resolution reconstruction method based on the maximum a posteriori
(MAP) [15,16], using Gauss and Markov–Gibbs [17,18] random field models to construct
posteriori probability of the high-resolution deformed pattern, the optimal estimation of
high-resolution deformed pattern is obtained by minimizing the objective function. In this
way, the high-resolution deformed patterns can be obtained. Finally, all the equivalent
phase-shifting deformed patterns are demodulated for online 3D reconstruction.

2. Principle
2.1. Principle of PMP

The sinusoidal grating is designed to parallel to the moving direction, and the projector
projects the sinusoidal grating onto the surface of the object, the deformed pattern I(x, y)
captured by the camera is:

I(x, y) = A(x, y) + B(x, y) cos(ϕ(x, y) + δ) (1)

where A(x, y) represents the background intensity of the deformed pattern, B(x, y) reflects
the contrast of the deformed pattern, ϕ(x, y) is the phase modulated by the height of the
object and δ is the shifting phase. Then in N (N ≥ 3) step PMP, the n-th corresponding
deformed pattern is:

In(x, y) = A(x, y) + B(x, y) cos
(

ϕ(x, y) +
2nπ

N

)
(2)

The phase ϕ(x, y) is calculated by Equation (3):

ϕ(x, y) = arctan

[
∑N

n=1 In(x, y) sin
( 2nπ

N
)

∑N
n=1 In(x, y) cos

( 2nπ
N
)]. (3)

Because ϕ(x, y) is wrapped in (−π, π] due to the arctan function, it should be un-
wrapped to be the continuous phase Φ(x, y) by using the rhombus phase unwrapping
algorithm [19], and the object height distribution h(x, y) is reconstructed by the phase-to-
height mapping algorithm [20].

1
h(x, y)

= a(x, y) + b1(x, y)
1

Φ(x, y)
+ b2(x, y)

ΦC(x, y)
Φ(x, y)

(4)

where a(x, y), b1(x, y), b2(x, y) can be obtained by plane calibration, ΦC(x, y) is the phase
of the reference plane, it can be obtained by measuring the reference plane in advance.

2.2. Super-Resolution Image Reconstruction Algorithm Based on MAP
2.2.1. The Basic Principles of the MAP

Due to the change of camera acquisition mode for fast online measurement, the cap-
tured deformed pattern is degraded to low-resolution deformed pattern, and the main
degradation process can be expressed as follows:

I ′′ n,k = Dn,kBn,k Mn.k I ′′ n + ∆I ′′ n,k (5)

where I ′′ n,k is the low-resolution deformed pattern, which is the k-th (k = 1, 2, . . . , K) frame
captured in the n-th (n = 1, 2, . . . , N) phase-shifting position, and K represents the number
of low-resolution deformed patterns captured at the same work station (the same shifting
phase), Dn,k represents the down-sampling matrix, which means that the high-resolution
image is sampled at a certain distance so that the resolution of the image is reduced, Bn,k
is the blur matrix, it can be used to express the effect of the optical system’s blur and
aberration on high-resolution image, the point spread function (PSF) is used to express
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mathematically. Mn,k is the motion matrix, used to characterize the pixel displacement
of the low-resolution image relative to the high-resolution image. I′n is the original high-
resolution deformed pattern matrix, and ∆I′n,k is the additive random noise matrix. Bn,k
and Dn,k of each low-resolution deformed pattern are the same when a reference is selected,
but Mn,k of each deformed pattern may not be the same because of the motion of the object.
For convenience, only one phase-shifting position is analyzed here, so the Equation (5) can
be written as:

I ′′ k = Hk I′ + ∆I ′′ k (6)

where Hk = DkBk Mk is a degenerate matrix. Only I ′′ k is known in Equation (6), so we need
to use an algorithm to estimate Hk and ∆I ′′ k to solve I′.

In experiment, to obtain the high-resolution image from the low-resolution image,
we need to set the resolution magnification factor q and interpolate the low-resolution
image, so that we can interpolate the first frame by bicubic interpolation, and this inter-
polated image can be regarded as the reference frame of high-resolution image. Then the
down-sampling matrix Dk can be solved, and motion matrix Mk between other frames
of low-resolution images and the reference frame can be calculated by pixel matching.
Blur matrix Bk can be represented by PSF. Above all, Hk is estimated.

Because super-resolution image reconstruction is an ill-posed problem, I′ needs to
be estimated, so what satisfies the condition is a set of images, not the unique solution.
However, under the Bayesian theory [21], MAP can flexibly add the prior probability of
image, which is the mathematical expression of image features, and then it can convert ill-
posed problems into well-posed problems by means of regularization. Finally, the unique
solution of the problem can be obtained.

MAP estimation refers to the maximum probability of obtaining a high-resolution
image under the condition of known low-resolution image sequence I ′′ , which can be
expressed as solving maxP(I′|I ′′ ) . According to Bayesian theory, it can be calculated as:

Î = argmaxP(I′
∣∣∣∣I ′′ ) = argmax(

P(I ′′ |I′)P(I′)
P(I ′′ )

) (7)

where Î represents the estimation of a high-resolution image I′, P(I′|I ′′ ) is a posteriori prob-
ability, P(I ′′ |I′) is a conditional probability when a high-resolution image degenerates into
a low-resolution image, P(I′) and P(I ′′ ) are the prior probabilities of the high-resolution
image and the low-resolution image, respectively. Since P(I ′′ ) has no effect on the solution
of Î, it can be omitted and the Equation (7) is reduced to:

Î = argmax(P(I ′′
∣∣I′)P

(
I′
)
) (8)

Logarithmically available

Î = argmax(log P(I ′′
∣∣I′) + log P

(
I′
)
) (9)

Or
Î = argmin(− log P(I I ′′

∣∣I′)− log P
(

I′
)
) (10)

Equation (10) is the initial form of the objective function. In order to solve it, the prior
probability P(I′) and the conditional probability P(I ′′ |I′) must be determined. And their
distributions depend on assumptions about the statistical model of the image

According to the degeneration model I ′′ k = Hk I′ + ∆I ′′ k, a low-resolution image can
be regarded as a random field and the mean of the random field is Hk I′ because of the
random noise, so Gauss random field can be used to solve P( Î

∣∣I′) . Markov random field
describes the local statistical properties of images, while Gibbs random field describes the
global properties by joint probability, so they are combined by equivalence, and the global
statistical results can be calculated by using the local Gibbs distribution model.
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2.2.2. Establishment of Objective Equation

When the image statistical model is selected, Equation (10) can be written as

Î = argmin[
K

∑
k=1
‖ I ′′ k − Hk Î ‖2 +α ∑

c∈C
ρα(dic)] (11)

where ∑K
k=1 ‖ I ′′ k − Hk Î ‖2 represents the difference between the actual data and the

estimated value, ∑c∈C ρα(dic) is the regular term, and α is the coefficient of the regular
term, which determines the influence of the regular term on the image estimation. C is all
the cliques [22] in the image matrix neighborhood system, ρα(x) is the potential function
related to the cliques C, different potential functions can be selected to obtain different
texture statistical properties, and the parameter dic is the variance of its pixel mean. So the
objective function can be expressed as:

Θ( Î) =
K

∑
k=1
‖ I ′′ k − Hk Î ‖2 +α ∑

c∈C
ρα(dic) (12)

The function of the regular term is to constrain the estimation Î according to the
desired goal, and reduce the deviation from the optimal solution. The regular term used in
this experiment is a function of the Gibbs distribution model, which describes the energy
of a feature in the image neighborhood. The higher the energy, the lower the probability
of feature will appear. According to the objective equation, the higher the energy of the
feature, the larger the regular term, the greater the inhibition in the process of minimizing
the objective equation. Therefore, in order to reduce the influence of noise on the estimation
Î, the feature should reflect the difference between the noise and the original image and
make the noise larger. The potential function ρα(dic) is chosen according to the penalty
degree of removing features of image, such as the Huber equation and linear equation.

2.2.3. Iterative Solution

Since it is hard to directly solve Î when Θ( Î) is minimum, we can choose to estimate Î
iteratively by using the gradient descent [23], and projecting the negative gradient of the
objective function into the constraint space at each iteration, thus Î converges to the local
minimum and to the global minimum as far as possible.

The whole iterative process can be described as:

1. firstly, the low-resolution image is interpolated by bicubic interpolation, and the initial
estimation Î0 is obtained. When m = 0, where m is the number of iterations, the mean
square error (MSE) of the initial negative gradient MSE0 is calculated.

2. calculate the gradient of the objective function gm = ∇Θ( Îm).
3. calculate the projection map to the constraint space pm, pm = −Pgm, where P is the

projection operator, and P = E− HT
k
(

Hk HT
k
)−1Hk, where E is the identity matrix.

4. using the gradient of the objective function to constrain Îm, and the expression is

Îm+1 = Îm + (−βpm) (13)

where β is the learning rate, which is the coefficient of the negative gradient of the
objective function.

5. calculate the MSE of the negative gradient of this iteration MSEm. If MSEm
MSE0

≤ ε, Îm

is the best estimation, where ε is the iteration termination flag. Otherwise, return to
step 2◦.

MSE is defined as:

MSE =
1

L1L2
∑
x,y

[
Î(x, y)− I′r(x, y)

]2 (14)
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where L1, L2 are the width and height of the high-resolution deformed pattern. I′r is the
reference of high-resolution deformed pattern, which is obtained by interpolating the first
frame of low-resolution images. The whole process of MAP is shown in Figure 1.
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Figure 1. The flow-process diagram of maximum a posteriori (MAP).

2.3. Equivalent Deformed Patterns

Using the previous MAP super-resolution image reconstruction method, we can
reconstruct a set of high-resolution deformed patterns in different positions of an online
moving object. In order to obtain equivalent deformed patterns, which means that an object
in each deformed pattern is in the same position, this paper adopts Fast 3D measurement
based on improved optical flow for dynamic objects by Peng Kuang et al. [24] for pixel
matching. As shown in Figure 2, Figure 2a is the modulation of the deformed pattern I1

′,
Figure 2b is the modulation of the deformed pattern IN

′. Figure 2a is used as a reference,
the motion displacement of the object is calculated by pixel matching of Figure 2a,b; at the
same time, according to the calculated motion displacement, the modulation with the same
position of the object is obtained, as shown in Figure 2d, where the black area is the part of
the missing information after the left shift of the pixel matching; phase demodulation can
be carried out for the region of interest (ROI), which is the dotted line region in Figure 2c,d.
IN
′ is moved in the reverse direction according to the calculated motion displacement,

and the equivalent deformed patterns I1 and IN can be obtained by intercepting I1
′ and

IN
′ on the ROI in Figure 2d. Similarly, by matching the modulation of I2

′ − IN−1
′ with the

modulation of I1
′, and intercepting on the ROI in Figure 2d, a set of equivalent deformed

patterns I1, I2, I3, . . . , IN can be obtained. The phase ϕ(x, y) of the online object can be
obtained by substituting I1, I2, I3, . . . , IN into Equation (3). The continuous phase Φ(x, y)
of the online object can be obtained by using the rhombic phase unwrapping algorithm
and 3D shape of the online object can be obtained by substituting Φ(x, y) into Equation (4).
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3. Experiment and Analysis

In order to verify the feasibility and practicability of the proposed method, an online
3D measurement experimental system is built. As shown in Figure 3, the projector used
in this experiment is PLED-W200 DLP, and the image collector is a SDI-C2010M camera,
the highest frame rate of this camera is 60 fps when the image pixel size is 1920 × 1080;
in order to adapt the fast speed, we increase the frame rate to 100 fps while the pixel
size is decreased to 256 × 256. During this measurement, the object is driven from left to
right by the electric translation platform Y100SC01 at a fast speed, Through the previous
experimental calibration, we measured that the relationship between pixels and the motion
distance is approximately 1.245 mm/pixel. The entire image acquisition process is:

1. The designed 5 frames of sinusoidal gratings with a shifting phase of 2/5π are
combined into a repeated video.

2. The projector projects the video onto the object.
3. Start the electric translation platform at a given speed.
4. Turn on the DLP frame synchronization signal to trigger the camera, thus achieving

synchronous acquisition.
5. After 0.2 s, turn off the DLP frame synchronization.
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Figure 3. Experimental system.

In this experiment, the frame rate of the video is 25 fps, and the frame rate of the
camera is 100 fps. Thus, at the same work station, 4 frames (K = 4) of deformed patterns are
captured. The image acquisition is real time, data processing is post-processing, and the
data processing includes super-resolution reconstruction, obtaining equivalent deformed
patterns and PMP 3D reconstruction. Because the iterative solution of the super-resolution
reconstruction takes some time, and iteration time is related to hardware and data process
mode, in future, we will use a better computer or adapt graphics processing unit (GPU)
acceleration to speed up data processing.

The proposed method is compared with the averaging method, and the experimental
data are shown in Figure 4. Figure 4a is a measured object, which is a “face” model, and in
this experiment, the speed of the object is 0.2 m/s. Figure 4b is a set of low-resolution
deformed patterns captured at the first work station, which are I ′′ 11, I ′′ 12, I ′′ 13, I ′′ 14,
and the pixel size is 256 × 256.
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Figure 4. Measured data of “face” model: (a) Measured object; (b) A set of deformed patterns.

The reconstructed deformed patterns are shown in Figure 5, Figure 5a is I ′′ 11, and it is
regarded as a reference frame. The process of pixel matching is in Figure 5a,b. The points
marked in Figure 5a are the selected feature points of I ′′ 11, the other points marked in
Figure 5b are the matching points of I ′′ 14. The difference between the two set of points
represents the movement of the “face”. Then the estimated motion matrix, blur ma-
trix and down-sampling matrix are used for subsequent iterations. In this experiment,
the super-resolution factor q is 2, the max number of iterations m is 200. Figure 5c,d are
the reconstructed results of the averaging method and MAP, respectively, and their pixel
size is 512 × 512. By comparison, it can be seen that the deformed pattern reconstructed by
MAP is clearer, and there is no large motion blur. At the same time, compared with the
original low-resolution deformed pattern, the deformed pattern reconstructed by MAP
has a good effect on noise suppression. Figure 5e,f are the enlargements of the rectangular
areas of Figure 5c,d, respectively. Compared with Figure 5e, Figure 5f has a clearer edge,
which further indicates that noise is reduced effectively using MAP.
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Figure 5. Low-resolution deformed patterns and super-resolution reconstructions: (a) Reference;
(b) I ′′ 14 with matching points; (c) Reconstruction by averaging; (d) Reconstruction by MAP; (e) En-
largement of rectangular area in (c); (f) Enlargement of rectangular area in (d).
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In the same way, high-resolution deformed patterns of the other four work stations
can also be obtained, and the reconstructed results are shown in Figure 6. Figure 6a shows
five frames of high-resolution deformed patterns reconstructed by the averaging method,
and Figure 6c shows five high-resolution deformed patterns reconstructed by the proposed
method, which are I′1, I′2, I′3, I′4, I′5. In Figure 6a,c, the marked dotted line shows that the
position of the object in each frame is not the same. We adopt optical flow [24] to obtain
equivalent deformed patterns, and the results are shown in Figure 6b,d. The pixel size of
Figure 6b,d is 458 × 512, and in Figure 6b,d, the position of the object in each frame is the
same. Figures 6e and 6f are, respectively, the experimental results of PMP 3D reconstruction
using Figure 6b,d. From Figure 6e,f, it can be seen that the reconstructed result by the
proposed method is better than that by the averaging method, and the phase information
is more complete. At the same time, in order to better analyze the measuring results of the
proposed method, the measuring result of eight-step PMP [25] is taken as the quasi truth
value, and the eight-step PMP is taken for the same but stationary object.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 12 
 

In the same way, high-resolution deformed patterns of the other four work stations 
can also be obtained, and the reconstructed results are shown in Figure 6. Figure 6a shows 
five frames of high-resolution deformed patterns reconstructed by the averaging method, 
and Figure 6c shows five high-resolution deformed patterns reconstructed by the pro-
posed method, which are 𝐼 , 𝐼 , 𝐼 , 𝐼 , 𝐼 . In Figure 6a,c, the marked dotted line shows 
that the position of the object in each frame is not the same. We adopt optical flow [24] to 
obtain equivalent deformed patterns, and the results are shown in Figure 6b,d. The pixel 
size of Figure 6b,d is 458 × 512, and in Figure 6b,d, the position of the object in each frame 
is the same. Figure 6e and Figure 6f are, respectively, the experimental results of PMP 3D 
reconstruction using Figure 6b,d. From Figure 6e,f, it can be seen that the reconstructed 
result by the proposed method is better than that by the averaging method, and the phase 
information is more complete. At the same time, in order to better analyze the measuring 
results of the proposed method, the measuring result of eight-step PMP [25] is taken as 
the quasi truth value, and the eight-step PMP is taken for the same but stationary object. 

    
(a) (b) (c) (d) 

  
(e) (f) 

Figure 6. Experimental results for “face” model, pixel size of Figure 6a,c is 512 × 512, pixel size of 
Figure 6b,d is 458 × 512: (a) High-resolution deformed patterns by averaging; (b) Equivalent de-
formed patterns by averaging; (c) High-resolution deformed patterns by the proposed method; (d) 
Equivalent deformed patterns by the proposed method; (e) Object reconstruction by averaging; (f) 
Object reconstruction by the proposed method. 
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object with different methods.  

Figure 6. Experimental results for “face” model, pixel size of Figure 6a,c is 512 × 512, pixel size of
(b,d) is 458 × 512: (a) High-resolution deformed patterns by averaging; (b) Equivalent deformed
patterns by averaging; (c) High-resolution deformed patterns by the proposed method; (d) Equivalent
deformed patterns by the proposed method; (e) Object reconstruction by averaging; (f) Object
reconstruction by the proposed method.

Figure 7 shows the 255th column sectional view of the reconstructed 3D profile of the
object with different methods.
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Figure 7b is the enlargement of Figure 7a forehead (rectangular area). The dot-and-
dash line is the result of the eight-step PMP, the dotted line is the result of the averaging
method, and the solid line is the result of the proposed method. As can be seen from
Figure 7a, the reconstructed result of the proposed method is closer to that of the eight-step
PMP, and better than that of the averaging method. As can be seen from the details shown
in Figure 7b, the results of the proposed method are also very close to those of the eight-step
PMP. The reconstructed result of the proposed method is better than that of the averaging
method, either in the whole or in the detail. The experimental results indicate that the
proposed method can improve the resolution while preserving the details of the object.

In order to further verify the applicability of the proposed method, this experiment
used a more complex model, a “snail” model, and the speed of the object is 0.5 m/s,
super-resolution q = 2, the max num of the iterators m is 200. The experimental data and
the results of the comparison experiment are shown in Figure 8. Figure 8a, Figure 8b,
and Figure 8c are one frame of the high-resolution deformed patterns obtained by the
averaging method, proposed method and eight-step PMP, respectively. Figure 8d–f show
the corresponding wrapped phases, and they are obtained by calculating all equivalent
deformed patterns, and through phase unwrapping and height mapping, the reconstructed
results are shown in Figure 8g–i. It also can be seen that motion blur in Figure 8b is less
than that in Figure 8a; The wrapped phase in Figure 8e is clearer than that in Figure 8d and
is closer to that in Figure 8f. By comparing Figure 8g–I, the height reconstruction by the
proposed method is obviously better than that by the averaging method, and is closer to
that by eight-step PMP.
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Figure 8. Experimental data and the comparison experiment results of the ‘’snail” model: (a) High-resolution deformed
pattern by averaging; (b) High-resolution deformed pattern by the proposed method; (c) High-resolution deformed pattern
by 8-step PMP; (d) Wrapped phase by averaging; (e) Wrapped phase by the proposed method; (f) Wrapped phase by 8-step
PMP; (g) Reconstruction by averaging; (h) Reconstruction by the proposed method; (i) Reconstruction by 8-step PMP.

To further analyze the details, Figure 9 is a cross-sectional comparison of the three
methods; the dot-and-dash line is the result of the eight-step PMP, the dotted line is the
result of the averaging method, and the solid line is the result of the proposed method.
It also can be seen that the reconstructed result of the proposed method is better than that
of the averaging method, either in the whole or in the detail. It means that the proposed
method has a higher precision than the averaging method. The experimental results as
shown in both Figures 8 and 9 prove that the proposed method has a good effect on the
more complex object.
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Figure 9. The 255th column data of the reconstructed object.

To further quantitative analysis of the error of the proposed method and the averaging
method, we measured the heights of the different planes. The heights of the planes are
known and measured by metrological grating, and they are taken as the truth values.
The heights are 5 mm, 10 mm and 15 mm. According to the proposed method and the
averaging method, we take an online 3D measurement of known height plane. Then we
use root mean squared error (RMSE) to analyze the errors. The results of measurements
are shown in Table 1. RMSE1 and RMSE2 are the calculated RMSEs of the averaging
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method and the proposed method, respectively. For example, in the experiment of 5 mm,
the measured RMSE of the averaging method is 0.358 mm, and that of the proposed method
is 0.091 mm. The results prove that the proposed method has a higher precision and higher
reliability than the average method.

Table 1. Error analysis of planes with different heights (/mm).

Height RMSE1 RMSE2

5.000 0.358 0.091
10.000 0.317 0.074
15.000 0.336 0.086

4. Conclusions

In the online 3D measurement of a fast-moving object, the frame rate of a camera
can be adjusted to adapt to the deformed pattern capturing of the fast-moving object,
and the resolution of camera will be sacrificed. In this paper, an online phase measurement
profilometry method for a fast-moving object was proposed, and the experimental results
prove that the proposed method can not only improve the resolution of the deformed
patterns, but also ensure to restore most of the details of the object. The proposed method
can adapt to the online 3D measurement when the fast-moving object moves at the speed
of 0.5 m/s. We also think that the proposed method has a good application prospect
in high-precision and fast online 3D measurement. However, the proposed method is
mainly limited by the frame rate of the camera, and if a higher frame rate camera is
selected, the speed can be higher. In later work, we may adopt a super-resolution image
reconstruction method based on deep learning, the training model can monitor and train
more factors.
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