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Featured Application: The study proposes a methodology to evaluate the response of patients
with brain lesions to Gamma Knife treatments through the use of Positron Emission Tomogra-
phy imaging.

Abstract: Gamma Knife treatment is an alternative to traditional brain surgery and whole-brain
radiation therapy for treating cancers that are inaccessible via conventional treatments. To assess
the effectiveness of Gamma Knife treatments, functional imaging can play a crucial role. The aim
of this study is to evaluate new prognostic indices to perform an early assessment of treatment
response to therapy using positron emission tomography imaging. The parameters currently used in
nuclear medicine assessments can be affected by statistical fluctuation errors and/or cannot provide
information on tumor extension and heterogeneity. To overcome these limitations, the Cumulative
standardized uptake value (SUV) Histogram (CSH) and Area Under the Curve (AUC) indices were
evaluated to obtain additional information on treatment response. For this purpose, the absolute
level of [11C]-Methionine (MET) uptake was measured and its heterogeneity distribution within
lesions was evaluated by calculating the CSH and AUC indices. CSH and AUC parameters show
good agreement with patient outcomes after Gamma Knife treatments. Furthermore, no relevant
correlations were found between CSH and AUC indices and those usually used in the nuclear
medicine environment. CSH and AUC indices could be a useful tool for assessing patient responses
to therapy.

Keywords: gamma knife; imaging quantification; [11C]-methionine positron emission tomogra-
phy; cancer

1. Introduction

The Leksell Gamma Knife (GK) is a stereotactic radio surgical device capable of
treating brain tumors inaccessible to conventional surgery by allowing accurate target
irradiation. It is a minimally invasive instrument that does not involve a scalpel or in-
cision [1,2]. Tumor delineation is the crucial step when planning GK treatment because
metastatic lesions can show infiltrative natures. Magnetic resonance (MR) is usually used
to perform accurate delineation of the target volume. MR provides high-quality images
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with excellent soft-tissue contrast [3–6]. With the aim of adding another layer of sophistica-
tion during radiosurgery, the integration of positron emission tomography (PET) images
in the treatment planning phase was evaluated [7–9]. Functional information improves
lesion knowledge, as demonstrated by Gempt et al. [10]. The biological tumor volume
(BTV) identified by PET can be used to treat the cancer region more precisely [11]. Fur-
thermore, PET imaging has become a standard component of diagnosis and staging in
oncology [12–16]. Functional changes are often faster and more indicative of the effects
caused by therapy than anatomical imaging, providing a faster method of detecting the
treatment response [17,18]. Levivier et al. [19] found that PET conveys complementary
information to information derived from computerized tomography (CT) or MR imaging
in brain disorders. Historically, the first parameter introduced for the evaluation of PET
studies is the maximum standardized uptake value (SUVmax), which provides punctual
information of the voxel showing the highest uptake value within the tumor. Nevertheless,
this parameter can be affected by statistical fluctuation errors and cannot provide informa-
tion on the extent of the tumor [20]. For this reason, other quantitative indices have been
introduced, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG) [21].
These parameters provide information on the extent of the tumor but no information on
the uptake heterogeneity.

To overcome these limitations and considering that the dose distribution is not uniform
in GK treatments, sixteen patients underwent [11C]-Methionine (MET) PET scans and
GK treatments were considered in this study to calculate new PET indices, such as the
Cumulative SUV Histogram (CSH) and Area Under the Curve (AUC), in order to obtain
additional PET information, such as the functional heterogeneity [22]. In other words, we
focus on the [11C]-MET uptake heterogeneity in pre- and post-treatment PET examinations
by calculating CSH and AUC for each patient. Methionine is an amino acid that exhibits
increased transport within active cancer cells. It has been reported that the extent of
tumor cell invasion can be more clearly detected by [11C]-MET PET than by CT or MR [23].
The correlation between CSH and AUC results with medical reports evaluated by three
physicians was also considered in our study. The proposed methodology could represent a
useful tool for assessing patient response to GK treatments.

2. Materials and Methods
2.1. Patients

We retrospectively analyzed patients with metastatic brain cancers who underwent
restaging PET/CT after GK between March 2014 and December 2015. The inclusion
criteria were as follows: (i) [11C]-MET PET/CT performed one week before stereotactic
neuro-radiosurgery, (ii) [11C]-MET PET/CT performed two months after stereotactic neuro-
radiosurgery for the early treatment assessment, and (iii) MR performed one year after
stereotactic neuro-radiosurgery to assess the treatment response. In this way, sixteen
patients (8 males, 8 females; mean age ± standard deviation: 60 ± 9.80 years; median
age: 57 years; age range: 48 ÷ 78 years) with metastatic brain cancers originating from
melanoma (n = 2), breast (n = 2), kidney (n = 2), lung (n = 9), and urothelium (n = 1) primary
cancers were considered.

All subjects were treated with Leksell Gamma Knife® model C, a mini-invasive
technique for the treatment of cerebral lesions inaccessible to conventional surgery [24,25].
The dose released during treatment in a single fraction ranged from 16 to 18 Gy at 50%
isodose. The qualitative evaluation of the treatment response was carried out by a team of
three physicians (S.C., Sebastiano Cosentino, F.M., and S.C., Salvatore Cicero). The clinical
staff jointly analyzed brain tumors without any information of the quantitative evaluation
performed in this study. Comparing their perspectives, physicians were able to provide a
careful assessment for each case.

This study was not a clinical trial but a retrospective study that did not influence
management of patients. Image analyses were performed offline. In any case, the informed
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consent to the processing of personal data was obtained from all the subjects involved in
the study.

2.2. [11C]-Methionine PET (MET)

Methionine is the most popular amino acid tracer used in PET imaging. It has a
potential role in providing additional information in brain studies, although MR remains
the gold-standard for diagnosis and follow-up evaluations after radiotherapy [26,27]. Cell
proliferation in brain tumors is associated with protein synthesis and since the amino acids
are protein constituents, avid uptake of these precursors indicates a rapidly proliferating
cell. As a consequence, an increase in amino acid transport and protein synthesis, compared
to normal tissue, indicates the presence of tumor proliferation. For this reason, MET-PET is
able to distinguish between malign and benign tissue with great sensitivity and specificity.
The MET-PET specificity for cancer delineation and differentiation between relapse and
radiation necrosis is higher than MR [28].

Since C-11 isotope has a short half-life (20.3 min) [29], on-site production of MET is
essential to perform diagnostic scans. An IBA cyclotron 18 MeV was used to produce C-11.
To ensure compatibility with in vivo administration, the final product was subjected to
quality control according to European Pharmacopoeia. Radiochemical and enantiomeric
purity, higher than 95% and 90%, respectively, were assessed by radio-HPLC-UV, while
residual solvents were evaluated by gas chromatography.

2.3. PET/CT

PET brain acquisitions were performed using the PET/CT Discovery 690 with time
of flight (TOF) by General Electric Medical Systems (Milwaukee, WI, USA). Patients
fasted for 4 hours before PET examination and were injected intravenously with MET.
The PET protocol started 10 minutes after injection. PET images consisted of a matrix of
256 × 256 voxels of 1.1719 × 1.1719 × 3.27 mm3 voxel size. Imaging data were encoded in
the 16-bit Digital Imaging and Communications in Medicine (DICOM) format. The activity
of MET administered to patients was 550 MBq.

2.4. PET Feature-Based Measures

Similar to the dose–volume histogram (DVH), which is the radiation dose histogram
for tumor treatment [30], the CSH uses the SUV derived from PET imaging instead of
the dose value derived from CT imaging. Specifically, the SUV is the widely used PET
semiquantitative parameter calculated as the ratio of the tissue radioactivity concentration
(RC) in kBq/mL and the MET injected dose (ID) in MBq at the time of injection divided by
the body weight in kilograms [31]:

SUV =
RC
ID

× Mp (1)

where RC is calculated as the ratio between the image intensity and the image scale factor.
ID is the product between actual activity and dose calibration factor. Therefore, in the case
of PET imaging, the image intensity values were normalized in SUVs. While the SUVmean
is the mean intensity value in the region of interest (ROI), the SUVmax is defined as the
voxel with the highest SUV within a specified ROI. It is the most common PET parameter
because it is both a ROI and user independent [32]. A disadvantage is that it represents
a small portion of the tumor that may not be a statistically reliable representation of the
whole-tumor biology. It does not take into account the SUV distribution within the tumor.
Starting from these considerations, the CSH is the representation of the percentage of the
tumor volume with a certain SUV [22,33]. The CSH summarizes the 3D functional imaging
intensity information in a single curve for the structure of interest, which will be used
to derive intensity-volume metrics, such as the area under the CSH (AUC) to take into
account the tumor uptake heterogeneity [22] (see Figure 1 for an example of CSH and
AUC). In this way, it is possible to analyze changes in the uptake distribution within the
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tumor due to nonuniform dose distribution during GK treatments. Finally, in addition to
the aforementioned PET feature-based measures, MTV and TLG were also calculated [21].
These parameters provide information on the tumor extension but no information on the
uptake heterogeneity. MTV is the active volume of oncological lesions obtained using a
segmentation algorithm, e.g., [34,35], while TLG was calculated to acquire a simultaneous
estimate of volumetric and metabolic information:

TLG = MTV × SUVmean (2)

Consequently, TLG is also a segmentation-dependent parameter.
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Under the Curve (AUC). CSH shows the percentage of the tumor volume with a certain SUV. For
example, the 60% of the tumor has a SUV > 1.

2.5. Data Analysis

For the purpose of treatment response monitoring, the quantitative assessment of PET
studies before and after treatment can become the standard. In general, however, the uptake
of PET radiotracers is not homogeneously distributed across the tumor due to necrosis,
cell proliferation, blood flow, microvessel density, and hypoxia [22]. For this reason, it
is interesting to quantify heterogeneity in tumor uptake to provide useful information
for planning radiation therapy treatment. The area under the CSH can be a quantitative
parameter capable of providing additional information on the tumor response and its
heterogeneity. Lower values correspond to greater heterogeneity.

To evaluate this innovative PET parameter in the evaluation of the treatment response,
we analyzed PET images using a semiautomatic MATLAB tool [36] to reduce intra- and
interoperator result variability. As a matter of fact, semiautomatic algorithms provide
greater accuracy and consistency in defining PET volumes and they are important to
quantify the response to therapy. In our tool, the operator dependence is minimal because
it is limited to the change in the size of the bounding area containing the cancer region—no
parameter setup is required.

In the following, a brief explanation of the processing steps is presented. The user
draws a line on the coronal PET image along the lesion, and the axial slice with SUVmax
is automatically identified and showed to the user. To manage ambiguous situations,
physicians can make corrections to the volume of interest (VOI), including the tumor
region, obtained as described in [36]. After a square bounding region enclosing the tumor
is shown, the user can reduce the region size to discard any external area with high uptake
to target. This approach allows the proper inclusion of cancer, excluding false positives.
Furthermore, the number of PET slices containing the tumor in basal examinations is
recorded to process the same slice volume in post-GK treatment examinations. In this way,
the proposed tool is designed ad hoc to appropriately compare cumulative histograms
between follow-up scans. According to the literature [19], the SUV threshold was set at
50% of SUVmax and the area under the CSH curve was considered as a quantitative index
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of the MET uptake heterogeneity within the lesion volume. Figure 2 outlines the overall
flow diagram of the proposed approach.
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Figure 2. Flow diagram of the proposed semiautomatic approach to calculate CSH and AUC
parameters. Adopted graphical and color notations are explained in the legend box.

In order to evaluate the ablation effect, the percentage change of AUC between pre-
and post-treatment periods was obtained as follows:

∆AUC =
AUCpost − AUCpre

AUCpre
(3)

AUC variation was analyzed and its correlation with the patients’ outcomes was
studied. Three outcome classes, based on variation of AUC and on shifting of CSH
curve, were identified: positive response, stable response, and negative response. Figure 3
shows the workflow of the proposed study used to compare PET studies before and after
GK treatment.
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2.6. Statistical Analysis

Statistical analyses were performed to assess whether ∆AUC provides additional
information compared to the other PET parameters (∆MTV, ∆SUVmax, ∆SUVmean and
∆TLG). For this reason, the Pearson correlation coefficient (r) between ∆AUC and the
aforementioned prognostic indices was computed as:

r =
COV(X, Y)

σXσY
(4)

where COV is covariance, σX is the standard deviation of X and σY is the standard deviation
of Y. The Pearson correlation coefficient ranged between +1 and −1, where + 1 and −1 show
total correlation (no difference between ∆AUC and the aforementioned prognostic indices),
0 is no correlation (total difference between ∆AUC and the aforementioned prognostic
indices). Consequently, the determination coefficient (R2) was calculated as:

R2 = r2 (5)

In this way, R2 ranges from 0 to 1. R2 = 0 means that the dependent variable cannot
be predicted by the independent variable. Finally, the paired t-test was used to determine
whether a result is statistically significant. Particularly, the t-test was used to determine
whether the correlation coefficient is significantly equal to zero, hence there is no evidence
of an association between ∆AUC and the aforementioned indices.

3. Results

A total of 16 patients were involved in this study. All subjects were treated with the
Leksell Gamma Knife Model C and they underwent PET/CT Discovery 690 with TOF (GE
Medical Systems) before and after the treatment. For basal studies, tumor size ranged
from 0.25 to 10.56 cm3 (mean ± standard deviation: 2.83 ± 2.41 cm3) with a SUVmax
between 1.6 and 6.84 (mean ± standard deviation: 3.91 ± 1.57). In follow-up studies,
tumor size ranged from 0 (complete response) to 12.02 cm3 (mean ± standard deviation:
2.40 ± 2.96 cm3) with a SUVmax between 0 (complete response) and 4.6 (mean ± standard
deviation: 2.81 ± 1.17). Changes (∆) in AUC, SUVmax, SUVmean, MTV and TLG between
baseline and follow-up scans and medical reports performed by the three nuclear medicine
physicians are shown in Table 1 for each patient.

Table 1. Positron emission tomography (PET) parameter variations (%) between pre- and post-Gamma Knife (GK) treatment.

Patient N. ∆AUC ∆MTV ∆SUVmax ∆SUVmean ∆TLG Physician Report

#1 2.33 13.87 −12.63 −12.18 0.05 Stable

#2 −38.62 18.80 −32.72 −25.73 −11.77 Improvement

#3 −59.05 0.12 −47.66 −33.56 −33.48 Improvement

#4 −17.43 −62.72 −20.23 −5.91 −64.93 Improvement

#5 −57.59 −81.16 −41.83 −14.34 −83.86 Improvement

#6 −36.42 24.85 −44.36 −40.85 −26.15 Improvement

#7 8.62 −16.90 9.47 10.10 −8.50 Worsening

#8 16 −100 −100 −100 −100 Complete Response

#9 −11.22 7.73 −2.29 −5.56 1.73 Stable

#10 −4.61 −13.27 −11.28 3.08 −10.60 Stable

#11 −30.37 −31.53 −26.21 −17.96 −43.83 Improvement
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Table 1. Cont.

Patient N. ∆AUC ∆MTV ∆SUVmax ∆SUVmean ∆TLG Physician Report

#12 −13.07 14.14 −22.74 −17.40 −5.72 Improvement

#13 −23.03 −94.29 −34.64 −10.65 −94.90 Improvement

#14 −25.48 −62.20 −30.11 −11.82 −66.67 Improvement

#15 1.88 −61.12 −1.00 4.34 −59.43 Stable

#16 −6.11 −5.06 −33.55 −13.41 −17.80 Stable

Starting from an exploratory analysis of PET parameters to understand if ∆AUC
could actually provide further information to other PET parameters, Pearson correlation
coefficients (r) between ∆AUC and the aforementioned prognostic indices were com-
puted. ∆MTV, ∆SUVmax, ∆SUVmean, and ∆TLG were not highly correlated with ∆AUC
(see Figure 4). The determination coefficients (R2) were low, demonstrating a low corre-
lation between considered measures. As a result, it can be affirmed that ∆AUC provides
additional information than other PET parameters. The paired t-test showed a p-value
greater than 0.05 in all cases, so there is no evidence of an association between ∆AUC and
the aforementioned indices. Finally, three outcome classes were identified based on the
variation of AUC and on the shifting of the CSH curve: positive response, stable response,
and negative response, as shown in Figure 5.
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3.1. Positive Response

Nine patients who showed positive responses to treatment show a reduction in the
AUC greater than about 10% and a shifting of the CSH to the left, as is possible to see
in Figure 6 (patient #3). Patients included in this category show a marked response
to the therapy. In particular, all cases show a reduction in the MET uptake (as can be
seen in Table 1, where ∆SUVmean is always negative), indicating a probable formation of
necrotic areas.
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3.2. Stable Response

The five patients included in this class show a AUC reduction of less than 10% and no
modification of the CSH between the PET pretreatment and the PET post-treatment, as it is
possible to see in Figure 7 (patient #1). Patients included in this category show a moderate
response to the therapy.

3.3. Negative Response

The patient included in this class shows an increasing AUC and a right shifting of
CSH, as it is possible to see in Figure 8 (patient #7). The patient included in this category
worsened following therapy.
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4. Discussion

The conventional parameters used in the nuclear medicine environment, such as the
SUVmax, can be affected by statistical fluctuation errors and cannot provide information
on the tumor extension and heterogeneity. The other parameters introduced to resolve
these limitations have some limitations related to partial volume effect [32] and to the
segmentation method chosen to identify the tumor area [37]. TLG is the first parameter
that can provide both anatomical and metabolic information. It is calculated by performing
a multiplication of SUVmean with the MTV value. Nevertheless, TLG does not take into
account the SUV distribution within the VOI.

New parameters were proposed, such as CSH and AUC, in order to provide infor-
mation about the absolute uptake, the radiotracer distribution, and the lesion dimen-
sion [22,33,38,39]. The histograms are similar to DVH used in radiotherapy [30]. The CSH
is a cumulative histogram that shows the percentage of the lesion volume with the same
SUV. It takes into account the distribution of SUV within the tumor volume. The AUC
consists of the value of the area under the histogram curve and can be a quantitative index
of tracer uptake heterogeneity or homogeneity tumor response [22].

The aim of this work was to assess these new prognostic indices in order to perform
an early assessment of the treatment response to therapy using MET-PET images. The
strength of these new parameters is that they can potentially take into account the SUV
distribution within the tumor area voxel by voxel and not only a single one, as is the case
when using SUVmax or a single mean value, i.e., the SUVmean, which does not take into
account the tumor heterogeneity. No relevant correlation was found between AUC and
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other parameters usually used in the nuclear medicine environment. Furthermore, the
CSH and AUC parameters showed a good agreement with the patient follow-up after
GK treatments. Changes in AUC between baseline and follow-up scans could indicate
an increase in necrotic tissue tumour after treatment [22]. In our study, the proposed
classification (positive, stable, and negative response) found a good agreement with the
patient outcome evaluated by three physicians. In particular, nine patients with a positive
response to the treatment showed a reduction in AUC—lower AUC values correspond to
greater heterogeneity, which can be associated with an increase in the necrotic tissue, as
well as the corresponding MET uptake reduction in the follow-up scans.

Conversely, an increase in heterogeneity (positive ∆AUC) can indicate a negative
response to therapy. As a result, AUC represents a potential clinical index for an early
assessment of the treatment response. In fact, functional changes are faster to identify
the therapy response than anatomical imaging (CT or MRI). However, the current clinical
methodology in nuclear medicine departments is limited to visual assessment or uptake
value measurements, such as SUVmax. Our preliminary results suggest that the proposed
parameters could provide better discriminating power for the use of PET imaging in
radiotherapy or chemotherapy. These parameters may be incorporated into the plan-
ning process to modify patient management. For example, this could be carried out by
intensifying chemotherapy treatment after radiotherapy for high-risk patients showing
negative responses or providing less toxic regimens for patients at lower risk; in the age of
radiomics [40,41], it is mandatory to find the most relevant quantitative features in moni-
toring or predicting the patient’s response to cancer therapy. Further studies are needed
to evaluate the proposed PET parameters in depth and enlarge the number of patients
involved, as well as improve statistics to validate the patient outcome classes identified in
our work.

5. Conclusions

CSH and AUC could be new functional parameters useful for evaluating treatment re-
sponse considering the heterogeneity information provided by PET studies. An innovative
method to monitor the patient’s treatment response could be developed to alter patient
management in the early stages to maximize results of therapy from the perspective of
personalized medicine.

Author Contributions: Conceptualization, A.S.; Data curation, A.S., S.C. (Sebastiano Cosentino),
F.M., and S.C. (Salvatore Cicero); Formal analysis, A.S. and P.P.; Funding acquisition, A.S. and A.C.;
Investigation; A.S.; Methodology, A.S.; Project administration, A.S.; Resources, P.P. and M.G.S.;
Software, A.S.; Supervision, G.R. and M.I.; Validation, P.P.; Visualization, A.S., A.C., and M.P.;
Writing—original draft, A.S. and P.P.; Writing—review and editing, A.S., A.C., and M.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The proposed research has no implication on patient treat-
ment. Review board approval was not sought: the proposed image analysis was performed offline
and thus did not change the current treatment protocol.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: Authors would like to thank Giovanni Borasi and Lucia M. Valastro for their
crucial help in the management of the proposed study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Appl. Sci. 2021, 11, 2999 11 of 12

References
1. Moskvin, V.; DesRosiers, C.; Papiez, L.; Timmerman, R.; Randall, M.; DesRosiers, P.; Dittmer, P. Monte Carlo simulation of the

Leksell Gamma Knife: I. Source modelling and calculations in homogeneous media. Phys. Med. Biol. 2002, 47, 301. [CrossRef]
2. Wu, A. Physics and dosimetry of the gamma knife. Neurosurg. Clin. N. Am. 1992, 3, 35–50. [CrossRef]
3. Khoo, V.S.; Joon, D.L. New developments in MRI for target volume delineation in radiotherapy. Br. J. Radiol. 2006, 79, S2–S15.

[CrossRef]
4. Bol, G.H.; Kotte, A.N.T.J.; van der Heide, U.A.; Lagendijk, J.J.W. Simultaneous multi-modality ROI delineation in clinical practice.

Comput. Methods Programs Biomed. 2009, 96, 133–140. [CrossRef] [PubMed]
5. Cuocolo, R.; Cipullo, M.B.; Stanzione, A.; Ugga, L.; Romeo, V.; Radice, L.; Brunetti, A.; Imbriaco, M. Machine learning applications

in prostate cancer magnetic resonance imaging. Eur. Radiol. Exp. 2019, 3, 35. [CrossRef]
6. Comelli, A.; Terranova, M.C.; Scopelliti, L.; Salerno, S.; Midiri, F.; Lo Re, G.; Petrucci, G.; Vitabile, S. A kernel support vector

machine based technique for Crohn’s disease classification in human patients. In Advances in Intelligent Systems and Computing;
Springer: Cham, Switzerland, 2018; Volume 611, pp. 262–273, ISBN 9783319615653.

7. Comelli, A.; Stefano, A.; Russo, G.; Bignardi, S.; Sabini, M.G.; Petrucci, G.; Ippolito, M.; Yezzi, A. K-nearest neighbor driving
active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 2019, 81, 133–144. [CrossRef]

8. Comelli, A.; Stefano, A. A Fully Automated Segmentation System of Positron Emission Tomography Studies. In Medical Image
Understanding and Analysis; Zheng, Y., Williams, B.M., Chen, K., Eds.; Communications in Computer and Information Science;
Springer: Cham, Switzerland, 2020; Volume 1065, pp. 353–363.

9. Comelli, A.; Stefano, A.; Bignardi, S.; Coronnello, C.; Russo, G.; Sabini, M.G.; Ippolito, M.; Yezzi, A. Tissue Classification to
Support Local Active Delineation of Brain Tumors. In Medical Image Understanding and Analysis; Zheng, Y., Williams, B.M., Chen,
K., Eds.; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2020; Volume 1065, pp. 3–14.

10. Gempt, J.; Bette, S.; Buchmann, N.; Ryang, Y.-M.; Förschler, A.; Pyka, T.; Wester, H.-J.; Förster, S.; Meyer, B.; Ringel, F. Volumetric
Analysis of F-18-FET-PET Imaging for Brain Metastases. World Neurosurg. 2015, 84, 1790–1797. [CrossRef]

11. Stefano, A.; Vitabile, S.; Russo, G.; Ippolito, M.; Marletta, F.; D’Arrigo, C.; D’Urso, D.; Sabini, M.G.; Gambino, O.; Pirrone, R.; et al.
An automatic method for metabolic evaluation of gamma knife treatments. In Image Analysis and Processing—ICIAP 2015; Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9279, pp. 579–589.

12. Weber, W.A.; Grosu, A.L.; Czernin, J. Technology Insight: Advances in molecular imaging and an appraisal of PET/CT scanning.
Nat. Clin. Pract. Oncol. 2008, 5, 160–170. [CrossRef] [PubMed]

13. Fletcher, J.W.; Djulbegovic, B.; Soares, H.P.; Siegel, B.A.; Lowe, V.J.; Lyman, G.H.; Coleman, R.E.; Wahl, R.; Paschold, J.C.; Avril,
N.; et al. Recommendations on the use of 18F-FDG PET in oncology. J. Nucl. Med. 2008, 49, 480–508. [CrossRef] [PubMed]

14. Stefano, A.; Porcino, N.; Banna, G.; Russoa, G.; Mocciaro, V.; Anile, G.; Gieri, S.; Cosentino, S.; Murè, G.; Baldari, S.; et al.
Metabolic response assessment in non-small cell lung cancer patients after platinum-based therapy: A preliminary analysis. Curr.
Med. Imaging Rev. 2015, 11, 218–227. [CrossRef]

15. Banna, G.L.; Anile, G.; Russo, G.; Vigneri, P.; Castaing, M.; Nicolosi, M.; Strano, S.; Gieri, S.; Spina, R.; Patanè, D.; et al. Predictive
and Prognostic Value of Early Disease Progression by PET Evaluation in Advanced Non-Small Cell Lung Cancer. Oncology 2017,
92, 39–47. [CrossRef] [PubMed]

16. Cegla, P.; Kazmierska, J.; Gwozdz, S.; Czepczynski, R.; Malicki, J.; Cholewinski, W. Assessment of biological parameters in head
and neck cancer based on in vivo distribution of 18F-FDG-FLT-FMISO-PET/CT images. Tumori 2019, 106, 33–38. [CrossRef]

17. Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in
solid tumors. J. Nucl. Med. 2009, 50 (Suppl. 1), 122S–150S. [CrossRef]

18. Borasi, G.; Russo, G.; Alongi, F.; Nahum, A.; Candiano, G.; Stefano, A.; Gilardi, M.C.; Messa, C. Radiotherapy and High Intensity
Focused Ultrasound in Oncology: Competition or integration? A future scenario. J. Ther. Ultrasound 2013, 1, 6. [CrossRef]

19. Levivier, M.; Wikier, D.; Goldman, S.; David, P.; Metens, T.; Massager, N.; Gerosa, M.; Devriendt, D.; Desmedt, F.; Simon, S.; et al.
Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma
knife: Early experience with brain tumors. Technical note. J. Neurosurg. 2000, 93 (Suppl. 3), 233–238. [CrossRef]

20. Stefano, A.L.; Gallivanone, F.; Messa, C.L.; Gilardi, M.C.L.; Castiglioni, I. Metabolic impact of Partial Volume Correction of
[18F]FDG PET-CT oncological studies on the assessment of tumor response to treatment. Q. J. Nucl. Med. Mol. Imaging 2014, 58,
413–423. [PubMed]

21. D‘Urso, D.; Stefano, A.; Romano, A.; Russo, G.; Cosentino, S.; Fallanca, F.; Gioe, M.; Attanasio, M.; Sabini, M.G.; Di Raimondo,
F.; et al. Analysis of Metabolic Parameters Coming from Basal and Interim PET in Hodgkin Lymphoma. Curr. Med. Imaging Rev.
2017, 14, 533–544. [CrossRef]

22. van Velden, F.H.P.; Cheebsumon, P.; Yaqub, M.; Smit, E.F.; Hoekstra, O.S.; Lammertsma, A.A.; Boellaard, R. Evaluation of a
cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung
cancer PET studies. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1636–1647. [CrossRef]

23. Nariai, T.; Tanaka, Y.; Wakimoto, H.; Aoyagi, M.; Tamaki, M.; Ishiwata, K.; Senda, M.; Ishii, K.; Hirakawa, K.; Ohno, K. Usefulness
of L-[methyl-11C] methionine—Positron emission tomography as a biological monitoring tool in the treatment of glioma. J.
Neurosurg. 2005, 103, 498–507. [CrossRef] [PubMed]

http://doi.org/10.1088/0031-9155/47/12/301
http://doi.org/10.1016/S1042-3680(18)30681-8
http://doi.org/10.1259/bjr/41321492
http://doi.org/10.1016/j.cmpb.2009.04.008
http://www.ncbi.nlm.nih.gov/pubmed/19443076
http://doi.org/10.1186/s41747-019-0109-2
http://doi.org/10.1016/j.engappai.2019.02.005
http://doi.org/10.1016/j.wneu.2015.07.067
http://doi.org/10.1038/ncponc1041
http://www.ncbi.nlm.nih.gov/pubmed/18253106
http://doi.org/10.2967/jnumed.107.047787
http://www.ncbi.nlm.nih.gov/pubmed/18287273
http://doi.org/10.2174/157340561104150727165035
http://doi.org/10.1159/000448005
http://www.ncbi.nlm.nih.gov/pubmed/27832654
http://doi.org/10.1177/0300891619868012
http://doi.org/10.2967/jnumed.108.057307
http://doi.org/10.1186/2050-5736-1-6
http://doi.org/10.3171/jns.2000.93.supplement_3.0233
http://www.ncbi.nlm.nih.gov/pubmed/24732680
http://doi.org/10.2174/1573405613666170331110119
http://doi.org/10.1007/s00259-011-1845-6
http://doi.org/10.3171/jns.2005.103.3.0498
http://www.ncbi.nlm.nih.gov/pubmed/16235683


Appl. Sci. 2021, 11, 2999 12 of 12

24. Stefano, A.; Vitabile, S.; Russo, G.; Ippolito, M.; Sardina, D.; Sabini, M.G.; Gallivanone, F.; Castiglioni, I.; Gilardi, M.C. A Graph-
Based Method for PET Image Segmentation in Radiotherapy Planning: A Pilot Study. In Image Analysis and Processing—ICIAP
2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 711–720.

25. Stefano, A.; Comelli, A.; Bravatà, V.; Barone, S.; Daskalovski, I.; Savoca, G.; Sabini, M.G.; Ippolito, M.; Russo, G. A preliminary
PET radiomics study of brain metastases using a fully automatic segmentation method. BMC Bioinform. 2020, 21, 325. [CrossRef]
[PubMed]

26. Miwa, K.; Matsuo, M.; Shinoda, J.; Aki, T.; Yonezawa, S.; Ito, T.; Asano, Y.; Yamada, M.; Yokoyama, K.; Yamada, J.; et al. Clinical
Value of [11C]Methionine PET for Stereotactic Radiation Therapy With Intensity Modulated Radiation Therapy to Metastatic
Brain Tumors. Int. J. Radiat. Oncol. 2012, 84, 1139–1144. [CrossRef] [PubMed]

27. Grosu, A.L.; Weber, W.a.; Riedel, E.; Jeremic, B.; Nieder, C.; Franz, M.; Gumprecht, H.; Jaeger, R.; Schwaiger, M.; Molls, M. L-
(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy.
Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 64–74. [CrossRef] [PubMed]

28. Grosu, A.L.; Weber, W.A.; Franz, M.; Stärk, S.; Piert, M.; Thamm, R.; Gumprecht, H.; Schwaiger, M.; Molls, M.; Nieder, C.
Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor
volume for stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol. 2005, 63, 511–519. [CrossRef]

29. Tu, Z.; Mach, R.H. C-11 Radiochemistry in Cancer Imaging Applications. Curr. Top. Med. Chem. 2010, 10, 1060–1095. [CrossRef]
[PubMed]

30. Drzymala, R.E.; Mohan, R.; Brewster, L.; Chu, J.; Goitein, M.; Harms, W.; Urie, M. Dose-volume histograms. Int. J. Radiat. Oncol.
1991, 21, 71–78. [CrossRef]

31. Stefano, A.; Vitabile, S.; Russo, G.; Ippolito, M.; Marletta, F.; D’Arrigo, C.; D’Urso, D.; Gambino, O.; Pirrone, R.; Ardizzone,
E.; et al. A fully automatic method for biological target volume segmentation of brain metastases. Int. J. Imaging Syst. Technol.
2016, 26, 29–37. [CrossRef]

32. Soret, M.; Bacharach, S.L.; Buvat, I.I. Partial-volume effect in PET tumor imaging. J. Nucl. Med. 2007, 48, 932–945. [CrossRef]
[PubMed]

33. El Naqa, I.; Grigsby, P.; Apte, A.; Kidd, E.; Donnelly, E.; Khullar, D.; Chaudhari, S.; Yang, D.; Schmitt, M.; Laforest, R.; et al.
Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009, 42, 1162–1171.
[CrossRef] [PubMed]

34. Stefano, A.; Vitabile, S.; Russo, G.; D’Urso, D.; Ippolito, M.; Marletta, F.; Sabini, M.G.; Patti, I.V.; Pittera, S.; Sardina, D.; et al.
Biological target volume segmentation for radiotherapy treatment planning. Phys. Medica 2016, 32, 64. [CrossRef]

35. Comelli, A.; Bignardi, S.; Stefano, A.; Russo, G.; Sabini, M.G.; Ippolito, M.; Yezzi, A. Development of a new fully three-dimensional
methodology for tumours delineation in functional images. Comput. Biol. Med. 2020, 120, 103701. [CrossRef] [PubMed]

36. Comelli, A.; Stefano, A.; Russo, G.; Sabini, M.G.; Ippolito, M.; Bignardi, S.; Petrucci, G.; Yezzi, A. A smart and operator
independent system to delineate tumours in Positron Emission Tomography scans. Comput. Biol. Med. 2018, 102, 1–15. [CrossRef]
[PubMed]

37. Comelli, A.; Stefano, A.; Benfante, V.; Russo, G. Normal and Abnormal Tissue Classification in Positron Emission Tomography
Oncological Studies. Pattern Recognit. Image Anal. 2018, 28, 106–113. [CrossRef]

38. Kang, S.R.; Song, H.C.; Byun, B.H.; Oh, J.R.; Kim, H.S.; Hong, S.P.; Kwon, S.Y.; Chong, A.; Kim, J.; Cho, S.G.; et al. Intratumoral
Metabolic Heterogeneity for Prediction of Disease Progression After Concurrent Chemoradiotherapy in Patients with Inoperable
Stage III Non-Small-Cell Lung Cancer. Nucl. Med. Mol. Imaging (2010) 2014, 48, 16–25. [CrossRef] [PubMed]

39. Takeshita, T.; Morita, K.; Tsutsui, Y.; Kidera, D.; Mikasa, S.; Maebatake, A.; Akamatsu, G.; Miwa, K.; Baba, S.; Sasaki, M. The
influence of respiratory motion on the cumulative SUV-volume histogram and fractal analyses of intratumoral heterogeneity in
PET/CT imaging. Ann. Nucl. Med. 2016, 30, 393–399. [CrossRef] [PubMed]

40. Stefano, A.; Gioè, M.; Russo, G.; Palmucci, S.; Torrisi, S.E.; Bignardi, S.; Basile, A.; Comelli, A.; Benfante, V.; Sambataro, G.; et al.
Performance of Radiomics Features in the Quantification of Idiopathic Pulmonary Fibrosis from HRCT. Diagnostics 2020, 10, 306.
[CrossRef] [PubMed]

41. Comelli, A.; Stefano, A.; Coronnello, C.; Russo, G.; Vernuccio, F.; Cannella, R.; Salvaggio, G.; Lagalla, R.; Barone, S. Radiomics:
A New Biomedical Workflow to Create a Predictive Model. In Medical Image Understanding and Analysis; Communications in
Computer and Information Science; Springer: Cham, Switzerland, 2020; pp. 280–293.

http://doi.org/10.1186/s12859-020-03647-7
http://www.ncbi.nlm.nih.gov/pubmed/32938360
http://doi.org/10.1016/j.ijrobp.2012.02.032
http://www.ncbi.nlm.nih.gov/pubmed/22520479
http://doi.org/10.1016/j.ijrobp.2005.01.045
http://www.ncbi.nlm.nih.gov/pubmed/16111573
http://doi.org/10.1016/j.ijrobp.2005.01.056
http://doi.org/10.2174/156802610791384261
http://www.ncbi.nlm.nih.gov/pubmed/20388115
http://doi.org/10.1016/0360-3016(91)90168-4
http://doi.org/10.1002/ima.22154
http://doi.org/10.2967/jnumed.106.035774
http://www.ncbi.nlm.nih.gov/pubmed/17504879
http://doi.org/10.1016/j.patcog.2008.08.011
http://www.ncbi.nlm.nih.gov/pubmed/20161266
http://doi.org/10.1016/j.ejmp.2016.01.219
http://doi.org/10.1016/j.compbiomed.2020.103701
http://www.ncbi.nlm.nih.gov/pubmed/32217282
http://doi.org/10.1016/j.compbiomed.2018.09.002
http://www.ncbi.nlm.nih.gov/pubmed/30219733
http://doi.org/10.1134/S1054661818010054
http://doi.org/10.1007/s13139-013-0231-7
http://www.ncbi.nlm.nih.gov/pubmed/24900134
http://doi.org/10.1007/s12149-016-1071-1
http://www.ncbi.nlm.nih.gov/pubmed/26955819
http://doi.org/10.3390/diagnostics10050306
http://www.ncbi.nlm.nih.gov/pubmed/32429182

	Introduction 
	Materials and Methods 
	Patients 
	[11C]-Methionine PET (MET) 
	PET/CT 
	PET Feature-Based Measures 
	Data Analysis 
	Statistical Analysis 

	Results 
	Positive Response 
	Stable Response 
	Negative Response 

	Discussion 
	Conclusions 
	References

