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Abstract: In the last decade, nanomaterials made a major breakthrough in the concrete industry
by providing the concrete with unique properties. Earlier studies have shown improvement in
the early strength of concrete that can accelerate the construction process. In this study, 1% and
2% of nano-silica were added to concrete mixtures that contain 30% and 70% ground granulated
blast-furnace slag (GGBS). Adding 1% of nano-silica to the 30% GGBS mixture showed an increase
in the compressive strength by 13.5%, 7.8%, 8.1%, and 2.2% at one day, three days, seven days, and
twenty-eight days, respectively. The 2% of nano-silica increased the 30% GGBS mixture’s compressive
strength less effectively by 4.3%, 7.6%, and 4.9% at three days, seven days, and 28 days, respectively,
when compared to the 1%. On the other hand, adding 1% and 2% of nano-silica reduced the 70%
GGBS mixtures’ compressive strength. Moreover, nano-silica reduced the deformability of the
mixtures significantly, which caused the increase in the Young’s modulus. The flexural strength of
the 30% GGBS mixtures had similar behavior as the 28-day compressive strength. On the other hand,
the flexural strength of the 70% GGBS mixtures increased as the nano-silica increased. Nano-silica
addition improved the microstructure and the interface structure of the mixtures due to its high
pozzolanic activity and the nano-filler effect, which is confirmed by RCPT results and SEM images.

Keywords: nano-silica; GGBS; nano-filler effect; pozzolanic activity; nucleation site; agglomera-
tion effect

1. Introduction

The concrete industry is one of the largest contributors of carbon dioxide [1]. The
use of cement in concrete has raised concerns about its sustainability due to the fact that
the production of one ton of OPC releases approximately one ton of carbon dioxide to
the atmosphere [1]. In the past few decades, scientists and engineers have been able to
partially replace the cement with supplementary cementitious materials, to reduce the
extensive emission of CO2 associated with the production of Portland cement and create
more sustainable concrete. These materials are byproducts of other industries, such as fly
ash, ground granulated blast furnace slag, silica fume, and other natural pozzolans. Not
only have these supplementary cementitious materials have contributed in reducing the
emission of CO2, but they also provided the concrete with high-performance abilities in
terms of strength and durability. The applications of nano-technology have been gaining
popularity in different fields of science and technology, especially in concrete industries [2].
The development of new materials with new functions or improvements in the properties
of existing materials using nano-technology are new areas of interest in civil engineering.
Nanoparticles (NPs) exhibit unique chemical and physical properties at the nano-scale.
SiO2, TiO2, Al2O3, Fe2O3, ZnO2, and carbon nanotubes are considered the most commonly
used NPs in concrete production. The role of the NPs can be summarized as follows: (1)
NPs not only act as fillers to improve the microstructure, but also as an activator to promote
pozzolanic reactions; (2) NPs act as a nucleation site for C-S-H seeds, which then accelerate
the cement hydration; (3) NPs (nano-silica [NS]) accelerate the consumption of C3S and
the formation of portlandite (small-sized CH) crystals and homogeneous clusters of CSH
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composition; and (4) NPs improve the microstructure of the interfacial transition zone
between aggregates and cement pastes [3].

S. Abd.El.Aleem et al. [3] carried out an experiment studying the hydration charac-
teristic, thermal expansion, and microstructure of cement containing nano-silica. Seven
different mixtures were used in this experiment that incorporated nano-silica at different
dosages up to 6% partial replacement of OPC. The presence of nano-silica had remarkably
increased the water demand, which, in consequence, retarded the setting time. This seemed
to be controlled by the particle size distribution and the high specific surface area of NS in
the presence of polycarboxylate superplasticizer [3]. Furthermore, the values of pH and
free portlandite decreased as the dosage of nano-silica increased. Due to the pozzolanic
reaction of nano-silica, the chemically combined water contents increased with increas-
ing nano-silica percentage dosage. The microstructure, and consequently the mechanical
properties, of the investigated cement mortars are improved sharply with NS up to 3.0%
and then slightly up to 5% [3]. Additionally, using nano-silica as a partial replacement of
Portland cement lowered the coefficient of thermal expansion of the hardened cement paste.
Moreover, due to the continuous hydration of cement phases and the pozzolanic reaction of
nano-silica, the thermal expansion of hydrated cement pastes incorporating 3% nano-silica
dosage increased with curing time. The nano-sized SiO2 up to 5% proved to be an effective
mineral addition for blending with OPC to improve its chemical, physico-mechanical,
and thermal properties [3]. Finally, incorporating nano-silica increased the compressive
strength because of the nano-filler effect, which improved the microstructure and promoted
the highly pozzolanic reaction.

Hongjian Du et al. [4] studied the durability properties of OPC concrete that contains
nano-silica at dosages of 0.3% and 0.9%. Three different mix designs were prepared to
be tested in this experiment, which are OPC concrete, 0.3 nano-silica concrete, and 0.9
nano-silica concrete. The compressive strength of each mix design was determined at 7, 28,
and 91 days by preparing three (100 × 200 mm) cylinders for each day, while the water
penetration depth was obtained by testing two (100 × 200 mm) cylinders at a water pressure
of 0.75 MPa for seven days. On the other hand, water sorptivity was determined by using
(100 × 500 mm) cylindrical slices. Along with the other tests used in this experiment, the
researchers were able to come up with multiple conclusions. First, nano-silica showed a
clear pozzolanic reaction with the Portland cement. This reaction, along with the nanofiller
effect of nano-silica, made the microstructure of the concrete more homogeneous and less
porous. Consequently, the permeability was reduced, which increased the compressive
strength and the resistance of the concrete against water penetration and chemical attacks
such as chloride ions.

Jing Yu et al. [5] investigated the use of nano-silica to improve mechanical and fractural
properties of a fiber-reinforced high-volume fly as cement mortar. The materials used in
this study were nano-silica, OPC type I 42.5 N, fly ash class F, PVA fibers, and river sand.
Four series (16 mixes) of experiments were carried out to evaluate the effect of nano-silica
(NS) on the fractural and mechanical properties of polyvinyl alcohol fiber-reinforced high-
volume fly ash mortars (PVA/HVFAM), with the fly ash/binder ratio fixed at 50 wt%,
NS/binder ratios of 0–1.5 wt%, and PVA fiber dosages of 0–1.0 vol% [5]. After conducting
the tests, multiple conclusions were drawn. First, the incorporation of 0.5–1.5 wt% nano-
silica improved the compressive strength, tensile strength, elastic modulus, fracture energy,
fracture toughness, brittleness index, and critical tip opening displacement compared to
plain high-volume fly ash mortars (HVFAM). Second, compared to plain HVFAM, the
incorporation of 0.2–1.0 vol% PVA fibers had no pronounced effect on the elastic modulus
and compressive strength. However, it improved the tensile strength, fracture energy,
fracture toughness, brittleness index, and critical tip opening displacement. Third, the
synergetic effect of NS and PVA was observed, in terms of the post-peak behavior under
static bending as well as the fracture parameters [5]. Finally, the microstructure analysis,
which was performed using the scanning electron microscopy, showed that additional C-S-
H was formed and covered the surface of the PVA fibers due to the accelerated hydration
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process that occurred due to the high reactivity of NS. This improved the bond between
the PVA fibers and the cement-based matrix and resulted in an efficient load-transfer by
fiber bridging [5].

D. Adak et al. [6] conducted a study about the effect of nano-silica on the strength and
durability of fly ash-based geopolymer mortar. Fly ash-based geopolymer mortar has a
shortcoming, which is the need for heat activator to develop early strength. To overcome
this, the researchers developed an experiment of using low calcium fly ash geopolymer
with different molar concentrations of activator liquid and different nano-silica percentage
dosages. The addition of 6% of nano-silica to the fly ash-based geopolymer mortar showed
an obvious increase in compressive, flexural, and tensile strength at 28 days under ambient
temperature curing. Furthermore, the same percentage of nano-silica reduced water
absorption. The modification that took place in the geopolymer with 6% of nano-silica is
due to the transformation of the amorphous compound to the crystalline compound.

A.M. Said et al. [7] investigated the properties of concrete incorporating nano-silica.
Two types of concrete were investigated in this experiment, which are concrete with
ordinary cement and concrete with ordinary cement plus class F fly ash. To link macro
and micro-scale trends and study the effect of using nano-silica, the research included tests
of adiabatic temperature, rapid chloride ion permeability, mercury intrusion porosimetry,
thermogravimetry, and backscattered scanning electron microscopy. Based on the test
results, multiple conclusions were reached. Both types of concrete used in this experiment
showed a remarkable improvement in performance due to the addition of nano-silica.
The nano-silica was responsible for accelerating the kinetics of hydration reactions. The
addition of nano-silica showed a modification to the inherently slower rate of gaining
strength of concrete that contains class F fly ash. The physical penetration depth was
decreased, which consequently decreased the conductivity. The specimens showed a
significant reduction in porosity and threshold pore diameter.

Morteza Bastami et al. [8] studied the performance of nano-silica modified high
strength concrete at elevated temperatures. The main focus of this experiment was on the
effect of elevated temperature on the compressive strength, tensile strength, spalling, and
mass loss of high strength concrete modified with nano-silica. Six samples with different
percentage dosages of nano-silica were considered in this experiment along with two
samples without nano-silica. The performance of the nano-silica modified high strength
concrete was measured by using (150 × 100 mm) cylinders that were heated to 400, 600,
and 800 ◦C at a rate of 20 ◦C/min. In general, the results of this experiment demonstrated
that the mass loss is decreased as the dosage of nano-silica is increased, and that is due to
the improvement in tensile strength, which helped in preventing spalling. Moreover, the
nano-silica also increased the residual compressive strength of the heated specimens.

Kiachehr Behfarnia et al. [9] investigated the effect of nano-silica and nano-alumina on
frost resistance and the mechanical properties of normal concrete. Seven different mixtures
were used in this experiment. NSC3, NSC5, and NSC7 denoted the concrete containing
3 wt%, 5 wt%, and 7 wt% nano-silica, by the weight of cement, respectively [9]. NAC1,
NAC2, and NAC3 denoted the concrete containing 1 wt%, 2 wt%, and 3 wt% nano-alumina,
by the weight of cement, respectively [9]. The specimens were subjected to numerous tests.
The compressive strength was determined at seven, 28, and 120 days. The percentage of
water absorption was obtained after 28 days of moisture-curing. Furthermore, the seven
mixtures were subjected to cycles of freezing and thawing. The loss of mass, change in
length, increase in water absorption, and reduction in compressive strength of specimens
was measured after a specified number of freeze and thaw cycles [9]. The experiment
results demonstrated that the addition of nanoparticles increased the compressive strength
whether they were nano-silica or nano-alumina. However, the nano-silica addition showed
a remarkable increase in the compressive strength compared to the addition of nano-
alumina. For example, at 28 days, the NSC5 mixture showed an increase of 31.13% in
the compressive strength, while the NAC3 mixture showed an increase of 8.00% in the
compressive strength. Moreover, the mixtures that incorporated nanoparticles showed a
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remarkable decrease in the water absorption compared to the control specimen due to the
nano-filler effect, which improved the pore structure of the concrete. The experimental
results also showed that the addition of nanoparticles improved the frost resistance consid-
erably. However, the frost resistance of concrete that incorporates nano-alumina was better
than the concrete that incorporates the same amount of nano-silica.

Chenglong Zhuang and Yu Chen [10] studied the effect of nano-silica on the properties
of concrete. The partial replacement of Portland cement with nano-silica accelerated the
hydration process and reduced the setting time due to the high pozzolanic activity of nano-
silica. Nano-silica has a large specific surface due to its small particle size. In the process of
concrete mixing, a large number of unsaturated bonds promoted the nano-SiO2 to absorb
more water molecules, which led to a decrease of a concrete slump [10]. Chemically, due to
the pozzolanic activity of nano-silica, more C-S-H was produced in the concrete mixing
process, which reduced the number of pores. Physically, due to the nano-filler effect of
nano-silica, the microstructure of nano-silica-based concrete was more compact and less
porous. In the early stage, the early strength improvement effect of nano-silica concrete
was more obvious due to the more sufficient pozzolanic reaction [10]. As the curing time
increased, the particle size decreased, which weakened the pozzolan response of nano-
silica. Therefore, the improvement effect of nano-silica on concrete strength in the later
period was reduced [10].

M. Berra et al. [11] conducted a study about the effects of nano-silica addition on
the workability of Portland cement pastes. The nano-silica slurry used in this experiment
consisted of 10.2 PH, 30 silica content (wt%), 0.56 titrable alkalis (wt% as Na2O), 1.22 Den-
sity (g/cm3), 5.5 viscosity (mPa s), 10 mean particle size (nm), and 345 specific surface
area (m2/g). The workability of fourteen mixtures with different water/binder ratio and
nano-silica concentrations in the liquid phase were evaluated using mini-slump tests. The
addition of nano-silica to cementitious mixes produced a remarkable reduction of the mix
workability, due to instantaneous interactions between the nano-silica sol and the liquid
phase of the cementitious mixes (mainly dissolved alkalis), with the formation of gels
characterized by high water retention capacities [11]. The delayed addition of mixing water
aliquots proved to be an effective way of reducing the adverse effect of nano-silica on mix
workability, without changing the water/binder ratio and/or adding superplasticizer [11].
However, the delayed water addition did not improve the workability of the Portland
cement mixes. Moreover, due to the reduction of the nano-silica reactivity caused by
the instantaneous interaction between superplasticizer and nano-silica, the immediate
superplasticizer addition was considered to be useless in improving the workability of
the mixtures. On the contrary, delayed addition of the superplasticizer, coupled with the
use of an appropriate mixer for the break-down of the gels formed from nano-silica sol
destabilization, proved to be the best procedure to uniformly disperse the mix ingredients,
without significantly penalizing the nano-silica reactivity [11].

L.P. Singh et al. [12] investigated the beneficial role of nano-silica in cement-based
materials. The nano-silica in the concrete acted as a nucleation site to accelerate the
hydration of cement and also filled the pores to give higher packing density, which led
to higher strength with lesser porosity [12]. The development of nano-silica based high-
performance concrete will help in decreasing the consumption of cement for specific
grades, which will help in protecting the environment to a great extent. Furthermore,
due to the high compressive strength, the nano-silica based high-performance concrete
will produce smaller structural members, which will reduce the total amount of materials
placed and consequently reduce the overall cost of the structure. Moreover, the high early
strength development of nano-silica based high-performance concrete will accelerate the
construction process, which will save time, money, and materials. Finally, the long service
life of the nano-silica based high-performance concrete will reduce the maintenance costs
to a great extent.

Sattawat Haruehansapong et al. [13] studied the effect of the particle size of nano-
silica on the compressive strength and the optimum replacement content of cement mortar
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containing nano-silica. Three different particle sizes of nano-silica (12, 20, and 40 nm)
were used in this experiment. Two groups of mixtures were tested, in which the first
group incorporated different dosages of silica-fume, and it consisted of four mixtures,
and the second group incorporated different dosages of nano-silica, and it consisted of
four mixtures. Compared to the silica-fume mixtures, the compressive strength of the
nano-silica mixtures was greater due to the pozzolanic activity and the packing ability.
The mixture that incorporated 40 nm nano-silica showed the highest compressive strength
compared to the mixtures with 12 and 20 nm nano-silica. One possible reason is poor
dispersion and agglomeration of small particles of 12 and 20 nm-SiO2 [13]. The optimum
replacement content of cement mortars with NS particle size of 12, 20, and 40 nm, as well
as cement mortar with SF, was obtained with NS 9% by weight of cement, independent
of NS particle size [13]. SEM photographs showed that the microstructure of the cement
pastes was improved by the incorporation of nano-silica making the paste more compact,
homogeneous, and denser.

Bibhuti Bhusan Mukharjee et al. [14] investigated the influence of nano-silica on the
properties of recycled aggregate concrete. The properties of colloidal nano-silica used
in this study are 1.12 specific gravity, 39% solid content, 8–20 nm particle size, 99.1%
SiO2 content, and 10.11 pH value. Eight different mixtures were cast, in which four of
them contained natural coarse aggregate (NCA) and the other four contained recycled
coarse aggregate (RCA). Multiple conclusions were obtained. As the percentage of nano-
silica increased, the slump values decreased due to the high surface area of colloidal
nano-silica, which causes absorption of mixing water by the nanoparticles. Furthermore,
replacement of natural coarse aggregates with recycled coarse aggregates reduced the
workability of the concrete mixture due to the high water absorption capacity of RCA, and
a further decrease in workability was observed due to the addition of NS to RAC mixes [14].
Moreover, the addition of nano-silica enhanced the compressive strength results in early
days because of the nano-silica’s high pozzolanic activity at initial periods. A decrease
of 14% of compressive strength was observed when replacement of NCA was done with
100% RCA [14]. However, the addition of NS enhanced the compressive strength of RAC,
and with the incorporation of 3% NS, the 28 days compressive strength equalized with
control concrete [14]. Compared to the natural coarse aggregate mixes, the recycled coarse
aggregate mixes had weaker tensile strength. However, the decrease in tensile strength
caused by using recycled coarse aggregate can be compensated by incorporating nano-silica.

Ehsan Ghafari et al. [15] studied the influence of a nano-silica addition on the durability
of ultra-high performance concrete (UHPC). The properties of nano-silica (NS) used in this
experiment are (160 ± 20 m2/g) specific surface area, (<99.9%) purity, amorphous crystal
phase, (15 ± 5 nm) diameter, (<0.15 g/cm3) density, and spherical morphology. Three
different sets of mixtures were considered for this test, consisting of UHPC containing NS,
UHPC without NS, and high-performance concrete (HPC) [15]. Based on the obtained
results, multiple conclusions were drawn. First, UHPC-NS presented the best corrosion
resistance performance, as the time to crack effectively increased with the NS addition [15].
Second, incorporating nano-silica contributed to extending the service life of concrete
structures by delaying corrosion in steel rebars. Corrosion rate measurements, based on
LPR and Tafel techniques, pointed out that the UHPC specimens containing NS addition
had the lowest corrosion rate when compared with HPC and UHPC specimens [15].

G. Quercia et al. [16] conducted a study about the self-consolidating concrete (SCC)
modification by the use of amorphous nano-silica. Three different SCC mixes were studied
in the experiment, in which the first mix did not contain nano-silica, the second mix
contained colloidal nano-silica, and the third mix contained powder nano-silica. Under the
laboratory conditions, the compressive and tensile splitting strength of the reference SCC
was improved by the addition of both types of nano-silica [16]. The colloidal nano-silica
SCC mix had higher compressive strength and lower splitting tensile strength compared to
the powder nano-silica SCC mix. All durability indicators of the SCC studied (conductivity,
chloride migration and diffusion coefficients, and freeze–thaw resistance) were significantly
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improved with the addition of 3.8% of both types of the nano-silica [16]. Compared to
the powder nano-silica SCC mix, the colloidal nano-silica SCC mix showed slightly better
performance in terms of durability properties.

Ramesh. N and Eramma. H [17] studied the behavior of ground granulated blast-
furnace slag (GGBS) and nano-silica on the strength properties of concrete. The properties
of nano-silica used in this experiment are 23.6 pH (1.08–1.11). It used specific gravity and
a 219 nm particle size. Eight different mixes were tested, in which mixes 1, 2, 3, and 4
contained zero nano-silica and 0%, 10%, 20%, and 30% GGBS, respectively, and mixes 5, 6,
7, and 8 contained 1%, 2%, 3%, 2% nano-silica and 0%, 0%, 0%, and 30% GGBS, respectively.
Based on the test results, multiple conclusions were obtained. First, mix #8 (30% GGBS and
2% nano-silica) achieved the highest seven-day and 28-day compressive and split tensile
strength results. Similarly, mix 8 had the highest flexural strength compared to the other
mixes. Second, the SEM test shows that the microstructure of nano SiO2 concrete was more
uniform and compact than the normal concrete [17]. Third, the silica nanoparticles addition
improved the pore structure of concrete.

D. V. Prasada Rao and U. Anil Kumar [18] conducted an experimental investigation on
the strength properties of concrete containing micro-silica and nano-silica. The properties
of nano-silica used in this experiment are 39.5–41% nano solids, 9–10 pH, 1.29–1.31 specific
gravity, and milky white liquid texture. Seven different mixtures were tested in which
the mixes contain 0, 19, 38, 19, 38, 19, and 38 kg micro-silica and 0, 0, 0, 14.25, 14.25, 28.5,
and 28.5 L colloidal nano-silica, respectively. The addition of 1.5% nano-silica to the 5%
and 10% micro-silica mixes had better mechanical properties compared to the addition
of 3% nano-silica to the 5% and 10% micro-silica mixes. Overall, in terms of its strength
performance, the addition of 1.5% nano-silica and 10% micro-silica achieved the highest
results compared to the other mixes.

Maitri Mapa et al. [19] investigated the mechanical properties of silica and GGBS
incorporated cement mortar. The properties of nano-silica used in this experiment are
2.4 specific gravity, 2200 kg/m3 bulk density, 640 m2/g fineness, and white color. Eleven
different mixes were tested consisting of different dosages of GGBS, densified silica fume,
and nano-silica. Numerous conclusions were obtained from this experiment. First, the
initial and final setting times were directly proportional to the GGBS content. The increase
in initial setting time of GGBS incorporated cement paste was higher than the increase of
final setting time for cement paste [19]. Therefore, the incorporation of GGBS retarded the
initial hydration of cement. Second, the compressive strength of silica added mortar mixes
showed good improvement in the early age’s compressive strength as compared with the
GGBS cement mix [19].

Hongru Zhang et al. [20] studied the modification effects of a nano-silica slurry on
microstructure strength and strain development of recycled aggregate concrete applied
in an enlarged structural test. Three concrete groups were prepared in this study, i.e., the
commercial natural aggregate concrete (CNAC), the original recycled aggregate concrete
(ORAC), and the modified recycled aggregate concrete (MRAC) [20]. For both ORAC and
MRAC, the percentage replacement of recycled aggregate was 50%. The strengthening
slurry prepared for this experiment contains 100 kg cement, 50 kg water, 1 kg super-
plasticizer, and 1 kg nano-silica dispersant. Multiple conclusions were obtained during
this experiment. First, mechanical properties of ORAC and MRAC, i.e., the compressive
strength and the splitting strength, were inferior to those of CNAC, given the mixture pro-
portions employed in this study, i.e., the dosage of water, cement, and aggregates were kept
the same among the three concrete groups [20]. Second, at an early age (before 28 days),
the resistance of CNAC to shrinkage caused by deformation in the target beam was found
to be inferior to ORAC and MRAC. However, after 90 days, CNAC showed long-term
superiority to ORAC and MRAC in its deformability against loads, given the loads applied
to the target beams similar [20]. Third, the employed nano-slurry had verified a beneficial
role in the deformability against shrinkage and loads of MRAC, which were applied in RC
beams in a real project.
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Jing Xu et al. [21] studied the modification effects of nano-silica on the interfacial zone
in concrete. At macro-scale level, compressive and flexural strength tests showed that
the addition of nano-silica is beneficial for the improvement of the interfacial transition
zone (ITZ) performance in particular [21]. On the other hand, at the micro-scale level, the
addition of nano-silica accelerated the hydration process, which played a major role in
improving the interfacial transition zone (ITZ) at an early age.

A. Ghazy et al. [22] studied the nano-modified fly ash concrete as a repair option
for concrete pavements. Numerous outcomes were obtained from this research. The
incorporation of 6% nano-silica in concrete with up to 30% fly ash significantly shortened
the dormant period and accelerated the rate of hydration reactions, which discounted some
of the retarding effect of class F fly ash on the rate of hardening concrete [22]. Furthermore,
the addition of nano-silica improved the early-age and the long-term compressive and
tensile strength. Moreover, it refined the pore structure of the fly ash concrete. Hence, the
nano-modified fly ash concrete presented a viable option for a suite of repair applications
in concrete pavements [22].

Youkun Cheng and Zhenwu Shi [23] conducted an experimental study on nano-silica
improving concrete durability of bridge deck pavements in cold regions. The materials
used in the study were OPC grade 42.5, fine aggregate, coarse aggregate, water reducer
agent, defoaming agent, and nano-silica. The technical parameters of the used nano-silica
are 15 nm average grain diameter, 99.5% purity, globospherite crystal form, 300 m2/g
specific surface area, 0.05 g/cm3 apparent density, and white color. It was found out that
the addition of nano-SiO2 in bridge deck pavement concrete improved the durability of
the concrete effectively, prolonged the service life of the bridge deck pavement, reduced
the early onset of damage to bridge deck pavement, and reduced repair and maintenance
costs; consequently, using it has significant social and economic value [23]. Furthermore,
the incorporation of nano-silica greatly improved frost resistance, resistance to CI− ion
permeability, and abrasion resistance of concrete. Nano-silica incorporated into concrete
effectively absorbed Ca(OH)2, which is released in the early stage of hydration of cement
and increased the content of hydrated calcium silicate, which improved the interface
between the hardened cement paste and aggregate [23].

Comparison between Nano-Silica and Micro-Silica

Both of them are not crystalline materials (amorphous); therefore, they will not dis-
solve in concrete. Nano-silica is more reactive than micro-silica, because it contains more
silicon dioxide content. Nano-silica has a smaller particle size than micro-silica. Con-
sequently, it has a larger surface area. Therefore, nano-silica has a larger impact on the
reactivity, strength development, and the refinement of the pore structure of the concrete.
The weight per unit volume (bulk density) of nano-silica is lighter than both as produced
and densified micro-silica due to its lighter mass. Both of them have a specific gravity
of 2.2, which is lighter than Portland cement. Thus, adding nano-silica or micro-silica
will not increase the density of the concrete. Nano-silica has a larger specific surface than
micro-silica due to its smaller particle size. However, due to its smaller particle size, it
has a higher water demand. Thus, it is necessary to use a water-reducing admixture or a
superplasticizer in the mixture.

The purpose of this study is to develop nano-silica sustainable concrete mixtures
and evaluate the fresh and mechanical properties of the developed nano-silica concrete
mixtures. Furthermore, the purpose is to study the morphological characteristics of nano-
silica concrete.

2. Materials and Methods
2.1. Materials

The materials used to prepare the concrete mixtures are nano-silica (NS), ground
granulated blast furnace slag (GGBS), Portland cement (OPC), water, 20 mm aggregate,
10 mm aggregate, 5 mm washed sand, 5 mm crushed sand, red dune sand, and mega
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flow 1000 polycarboxylate superplasticizer. The characteristics of nano-silica are 99+%
SiO2, 20 nm average particle size, spherical morphology of particles, ≤120 m2/g specific
surface area, hydrophilic surface performance, amorphous crystallographic structure,
0.03–0.05 g/cm3 bulk density, white color, 5.5–6.5 pH, ≤6.0 wt% loss on drying (110 ◦C/2 h),
and ≤10.0 wt% loss on calcination (850 ◦C/2 h). The chemical analysis of the GGBS is 33.0
SiO2, 0.28 IR, 14.7 AL2O3, 0.4 Fe2O3, 39.7 CaO, 7.7 MgO, 0.08 SO3, 0.86 S, 0.42 Na2O, 0.29
Mn2O3, 1.9 LOI corrected for sulfide, 0.01 Cl−, and 98.8 glass content. The Portland cement
was manufactured to comply with BS EN 197–1:2000 CEM I, grade 42.5 N and ASTM
C-150-2000 Type I. The chemical composition of the Portland cement is 20.5 SiO2, 0.34 IR,
5.0 Al2O3, 3.9 Fe2O3, 64.2 CaO, 1.5 MgO, 2.1 SO3, 0.50 Na2O, 2.6 LOI, 0.02 Cl−, and 6.6 C3A.
Mega flow 1000 polycarboxlate superplasticizer is a high range water reducer (HRWR),
and it was selected due to the high demand for water that occurs with the addition of
nano-silica to the concrete mixture.

2.2. Mix Proportions

Two different cases were studied in this experiment: the influence of nano-silica
addition on the durability and strength of concrete mixtures that consist of a 70% dosage of
GGBS (M1, M2, and M3) and 30% dosage of GGBS (M4, M5, and M6). M1 and M4 were
used as control mixturesm because they contain zero nano-silica dosage. On the other
hand, M2 and M3 incorporated 1% and 2% dosages of nano-silica, respectively, and their
various test results were compared with their control mixture, M1. Similarly, M5 and M6
incorporated 1% and 2% dosages of nano-silica, respectively, and their various test results
were compared with their control mixture M4. Table 1 shows a tabular summary of the
mix designs of all the mixtures.

Table 1. Concrete mix designs proportions of all the mixes.

Final Weights (Kg/m3)

Mix. OPC GGBS NS 20 mm
Agg.

10 mm
Agg.

5 mm Washed
Sand

5 mm
Crushed Sand

Red Dune
Sand Water Megaflow

1000 Total

M1 120 280 0 668 364 338 306 254 156 4.5 2491
M2 116 280 4 668 364 338 306 254 156 4.5 2491
M3 112 280 8 667 364 338 306 254 156 4.75 2490
M4 280 120 0 673 367 341 308 256 157 3.5 2506
M5 276 120 4 672 367 340 308 256 157 4 2504
M6 272 120 8 672 367 321 326 256 157 5 2504

2.3. Sample Preparation

The mixing process started by adding 20 mm crushed rock aggregate, 10 mm crushed
rock aggregate, 5 mm washed sand, 5 mm crushed rock sand, and uncrushed sand (dune
sand), respectively. After that, water was added while the mixer was running for half a
minute to allow the aggregate to absorb it. In a different bucket, nano-silica was mixed
with Megaflow 1000 polycarboxlate superplasticizer and some water until it dissolved
completely. Then, GGBS and Portland cement were added to the immobile concrete mixer.
Once they were added, water along with the mixed solution of dissolved nano-silica,
water, and Megaflow 1000 polycarboxlate superplasticizer were added while the mixer was
running for two minutes for the concrete to disperse in the mixer. Three batches of 20 L were
mixed to cast twelve cubes (100 × 100 × 100 mm), three cylinders (150 × 300 mm), three
small cylinders (100 × 200 mm), and three beams (500 × 100 × 100 mm) for each mixture.
The total number of specimens was seventy-two cubes, eighteen cylinders, eighteen small
cylinders, and eighteen beams. The specimens were cured in 25 ◦C temperature to be tested
after 1, 3, 7, and 28 days. The cubes, cylinders, and beams were cast to be tested for the
compressive strength, modulus of elasticity, and modulus of rupture, respectively. The
small cylinders were sliced to (100 × 50 mm) samples to be tested for the Rapid Chloride
Permeability Test (RCPT). For the scanning electron microscopy (SEM) test, to ensure that
the specimens were representatives and they contained different concrete components,
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they were taken from the center of the small cylinders by slicing a thin disk using a saw-cut
machine. After that, a small concrete piece was taken from the middle of the sliced disk.
Then, the small concrete piece was placed at the bottom of a mounting cup. In a separate
mixing cup, a resin was prepared by mixing ClaroCit powder with ClaroCit liquid. Once
the resin was prepared, it was poured in the mounting cup over the concrete piece. Next,
the mounting cup was placed in an oven for half an hour for the resin to solidify. Afterward,
the solid resin, which contains the concrete piece, was taken out of the mounting cup and
its surface was polished, as shown in Figure 1.
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2.4. Test Methods

The following tests were carried out to determine the fresh properties, mechanical
properties, and morphological characteristics of the six nano-silica concrete mixtures in
this study.

a. The slump and flow tests of concrete were carried out in the lab according to ASTM
C143/C143M-15a and BS 1881: Part 105: 1984, respectively. The slump and flow tests were
indicators of the concrete’s workability.

b. The density (unit weight) of freshly mixed concrete was carried out according to
ASTM C138/C138M-17a. This test is a great tool in controlling the quality of the newly
mixed concrete. A high or low unit weight gave different indications such as that the
concrete suffered from high or low air content, high or low water content, or change of the
ingredients’ proportions had taken place.

c. The compressive strength test was performed according to BS 1881: Part 116: 1983.
Compressive strength is one of the main structural design requirements to ensure that
the structure will be able to carry the intended load [24]. The test was performed on
cubical specimens by applying axial compressive load with a specified loading rate until
failure took place after 1, 3, 7, and 28 days of curing. Three cubical (100 × 100 × 100 mm)
specimens were tested at each day and the results were reported as an average of the three
tests’ results.



Appl. Sci. 2021, 11, 3041 10 of 21

d. The modulus of elasticity of concrete cylinders was carried out according to ASTM
C 469-02. For a homogeneous isotropic and linear elastic material, the proportional constant
between normal stress and normal strain of an axially loaded member is the modulus of
elasticity or Young’s modulus [24]. A slowly increasing longitudinal compressive strength
was applied to a cylindrical specimen. Longitudinal strains are determined using either
a bonded or unbonded sensing device that measures the average deformation of two
diametrically opposite locations to the nearest 5 millionths of strain [25]. The applied load
and longitudinal strain are recorded when the longitudinal strain is 50 millionths and when
the applied load is equal to 40% of the cylinder compressive strength [25]. Three cylindrical
(150 × 300 mm) specimens were tested after 28 days of curing for each mixture, and the
results were reported as an average of three tests’ results.

e. The modulus of rupture of concrete beams was performed according to ASTM
C293/C293M-16. Three (500 × 100 × 100 mm) beams were tested in the three-point loading
apparatus after 28 days of curing for each mixture and the results were reported as an
average of the three tests’ results. The load was continuously applied at a specified rate
until rupture [24]. The modulus of rupture was calculated when the fracture initiates
in the tension surface within the middle third of the span length by using the following
equation [24].

R =
3PL
2bd2 (1)

where

R = Flexure strength, MPa
P = Maximum applied load, N
L = Span length, mm
b = Average width of the specimen, mm
d = Average depth of the specimen, mm

f. The rapid chloride permeability test was carried out according to ASTM C1202.
Originally developed in the early 1980s, and standardized as ASTM in 1991, the rapid
chloride permeability test is now being used extensively in specifications, quality control,
and concrete durability research [26]. The RCPT is performed by monitoring the amount
of electrical current that passes through a sample 50 mm thick by 100 mm in diameter in
6 h [27]. Throughout the test, a 60V DC voltage was maintained across the ends of the
specimen. One lead is immersed in a 3.0% salt (NaCl) solution and the other in a 0.3 M
sodium hydroxide (NaOH) solution [27]. A qualitative rating was concluded about the
permeability of the concrete against chloride penetration based on the passing charge
through the specimen in which a >4000 Coulombs charge passing was classified as high, a
2000 to 4000 Coulombs charge passing was classified as moderate, a 1000 to 2000 Coulombs
charge passing was classified as low, a 100 to 1000 Coulombs charge passing was classified
as very low, and a <100 Coulombs charge passing was classified as negligible. Three
cylindrical (50 × 100 mm) specimens were tested after 28 days of curing for each mixture,
and the results were reported as an average of the three tests’ results.

g. Microstructure analysis using scanning electron microscopy (SEM) according to
ASTM C1723. The SEM provides images that can range in scale from a low magnification
(for example, 15×) to high magnification (for example, 50,000× or greater) of concrete
specimens such as fragments, polished surfaces, or powders [28]. These images can
provide information indicating compositional or topographical variations in the observed
specimen [28]. The SEM functions by generating an electron beam over the surface of
the concrete specimen. The beam impinges on the specimen and produces signals, which
can be detected as backscattered electrons (BE or BSE), secondary electrons (SE), and X-
rays [29]. Backscattered electrons (BSE) and secondary electrons (SE) images were taken of
one specimen for each mixture after 28 days of curing
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3. Results
3.1. Slump/Flow

The slump and flow tests were performed in the lab at three different times, which
were immediately, thirty minutes, and sixty minutes after the concrete mixing process, as
shown in Table 2. The specific surface of nano-silica’s particles was large due to its small
size, which increases the water demand of the concrete mixes. Therefore, as the nano-
silica dosage increased from one mixture to another, the Megaflow 1000 polycarboxylate
superplasticizer dosage was increased to maintain the same water/cement ratio (0.36) in
all the mixtures.

Table 2. Slump/flow test results.

Mix. Initial Slump
(mm)

Slump after 30 min
(mm)

Slump after 60 min
(mm)

Initial Flow
(mm)

Flow after 30 min
(mm)

Flow after 60 min
(mm)

M1 240 240 240 630 630 600
M2 230 220 220 590 580 580
M3 220 220 130 470 400 0
M4 240 240 240 600 620 600
M5 230 220 200 620 520 460
M6 230 160 110 520 0 0

Comparing the initial slump and flow test results of (M2 and M3) to (M1) and (M5
and M6) to (M4) showed that adding nano-silica reduced the slump and the flow spread of
the mixtures, which in consequence reduced the workability of the concrete. Furthermore,
comparing the slump and flow test results after 30 and 60 min to the initial slump and flow
test results showed that using nano-silica reduced the setting time, because the nano-silica
accelerated the hydration process. Moreover, the 30% GGBS concrete mixtures (M5 and
M6) required more high range water reducer (HRWR) superplasticizer dosages as the
nano-silica dosage increased from one mixture to another to maintain the water/cement
ratio, compared to the 70% GGBS concrete mixtures (M2 and M3). Therefore, the 30% GGBS
mixtures (M5 and M6) had higher water demand in comparison to the 70% GGBS mixtures
(M2 and M3). Finally, the mixtures that contain a 2% dosage of nano-silica (M3 and M6)
had a significant slump and flow reduction especially after sixty minutes compared to
the mixtures that contain a 1% dosage of nano-silica (M2 and M4). Thus, as the dosage of
nano-silica increased, the workability of the concrete decreased.

3.2. Density (Unit Weight)

The unit weight test was conducted on the freshly mixed concrete in the lab. Results,
which are shown in Figure 2, illustrated that incorporating 1% and 2% dosages of nano-silica
reduced the unit weight of M2 and M3 by 3.8% and 1.6%, respectively, when compared to
the control mixture (M1).

On the other hand, adding a 1% dosage of nano-silica did not increase nor decrease
the unit weight of M5 compared to the control mixture M4, while adding a 2% dosage
of nano-silica increased the unit weigh of M6 by 1.1% for the control mixture (M4). In
general, the percentage increase or decrease that took place for all the mixtures was low
when compared to their respective control mixtures, which indicates that the addition of
nano-silica does not densify nor shrink the unit weight of the concrete.
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3.3. Compressive Strength

The compressive strength test was performed after one day, three days, seven days,
and 28 days of curing. The compressive strength test results, which are average of three
specimens for each mixture, are shown in Table 3.

Table 3. Compressive strength test results.

Mix. 1 Day–Compressive
Strength (MPa)

3 Day–Compressive
Strength (MPa)

7 Day–Compressive
Strength (MPa)

28 Day–Compressive
Strength (MPa)

M1 25.5 48.7 61.7 71.8
M2 25.6 44.9 52.8 57.9
M3 21.1 43.3 54.2 59.1
M4 20.8 39.9 55.6 63.1
M5 23.6 43.0 60.1 64.5
M6 25.5 41.3 55.9 64.1

For the 70% GGBS concrete mixtures, the incorporation of 1% of nano-silica at one day
almost did not affect the compressive strength, while the incorporation of 2% of nano-silica
at one day reduced the compressive strength by 17.3% for the control mixture (M1). After
three days, adding 1% and 2% dosages of nano-silica to the 70% GGBS concrete mixtures
reduced the compressive strength by 7.8% and 11.1%, respectively, when compared to
the compressive strength of M1. Unlike the one-day and the three-day compressive
strength results, the seven-day compressive strength of M3 was higher than M2 by 1.4 MPa.
However, both seven-day compressive strength results of M2 and M3 were lower than
the control mixture M1, as shown in Figure 3. At 28 days, the percentage decrease in
compressive strengths of M2 and M3 compared to the control mixture M1 increased
remarkably to 19.4% and 17.7%, respectively. The reduction in compressive strength that
took place in the mixtures that incorporated nano-silica (M2 and M3) can be attributed to
the consumption of calcium hydroxide, which was released by the Portland cement during
the hydration process, by the high dosage of GGBS. Therefore, this would leave almost no
chemical hydration between nano-silica and calcium hydroxide. In terms of compressive
strength, it is not recommended to use nano-silica with the 70% GGBS concrete mixtures.

For the 30% GGBS concrete mixtures, the addition of 1% and 2% dosages of nano-
silica increased the one-day compressive strength by 2.8 MPa and 4.7 MPa, respectively,
compared to the control mixture (M4). Unlike the one-day compressive strength, the
combination of 30% GGBS and 1% nano-silica (M5) improved the three-day compressive
strength more than the combination of 30% GGBS and 2% nano-silica (M6), as demonstrated
by Figure 4.
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At seven days, the addition of 2% nano-silica to the 30% GGBS concrete mixture
(M6) almost had an equal compressive strength to the control mixture (M4) with a minor
percentage increase of (0.5%). On the other hand, the addition of 1% nano-silica to the 30%
GGBS mixture (M5) improved the seven-day compressive strength by (8.1%) in comparison
to the control mixture (M4). At 28 days, M5 had a compressive strength of 64.5 MPa, which
is 2.2% higher than the control mixture (M4), while M6 had a compressive strength of
61.4 MPa, which is 2.7% lower than the control mixture (M4). In general, the improvement
in the compressive strength for the 30% GGBS concrete mixtures that incorporated nano-
silica can be ascribed to the high pozzolanic activity and the nano-filler effect of nano-silica,
which makes the concrete’s microstructure denser, compact, and homogeneous. Most of the
compressive strength’s improvement took place within the first seven days. Furthermore,
the 1% dosage of nano-silica had a greater impact on the compressive strength development
of the 30% GGBS concrete mixtures compared to the 2% dosage of nano-silica. One possible



Appl. Sci. 2021, 11, 3041 14 of 21

reason is that the combination of 30% GGBS and 1% nano-silica reacted more efficiently with
released calcium hydroxide from the Portland cement during the hydration process to form
the additional calcium-silicate-hydrate gel. Another possible reason is the agglomeration
effect. Nanoparticles, due to their small size, have high inter-particle van der Waal’s forces,
causing the nanoparticles to agglomerate [1]. Therefore, the optimum dosage of nano-silica
to be added to the 30% GGBs concrete mixture is 1%.

3.4. Modulus of Elasticity

The modulus of elasticity test was performed after 28 days of curing. The results are
shown in Figure 5. For the 70% GGBS concrete mixtures, the incorporation of 1% nano-silica
increased the Young’s modulus remarkably by 42.6% compared to the control mixture (M1).
On the other hand, the incorporation of 2% nano-silica increased the Young’s modulus by
2.7% for the control mixture (M1), which is less than M2. Similarly, the addition of 1% of
nano-silica to the 30% GGBS concrete mixtures had a greater effect than the 2% dosage of
nano-silica by 4.4% as illustrated in Figure 5. Nano-silica decreased the deformation of the
concrete specimens by nano-filling the pores, which caused the modulus of elasticity of the
mixtures to increase.
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3.5. Modulus of Rupture

The modulus of rupture test was performed after 28 days of curing. The maximum
applied load and the calculated modulus of rupture are shown in Table 4. The addition of
1% and 2% dosages of nano-silica increased the flexural strength of 70% GGBS concrete
mixtures (M2 and M3) by 3.4% and 35.9%, respectively, compared to the control mixture
(M1). Therefore, the flexural strength of the 70% GGBS concrete mixtures increased as the
nano-silica’s dosage increased.

Table 4. The modulus of rupture of all the mixtures.

Mix. Maximum Applied Load (KN) Modulus of Rupture (MPa)

M1 15.6 11.7
M2 16.1 12.1
M3 21.2 15.9
M4 19.2 14.4
M5 20.2 15.0
M6 17.0 12.7
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Similarly, the addition of a 1% dosage of nano-silica increased the flexural strength
of the 30% GGBS concrete mixture (M5) by 4.2% compared to the control mixture (M4).
However, the 2% dosage of nano-silica decreased the modulus of rupture of M6 by 11.8%
compared to the control mixture (M4). This possibly due to the agglomeration effect, the
mixing process, or the released calcium hydroxide from the Portland cement during the
hydration process was not consumed efficiently by the 2% dosage of nano-silica.

3.6. Rapid Chloride Permeability (RCP)

The average passing charges of three specimens and the penetrability class as specified
by ASTM C 1202 of each mixture are shown in Table 5. Partially replacing the Portland
cement with 1% and 2% dosages of nano-silica improved the resistance of the 70% GGBS
concrete mixtures (M2 and M3) to chloride penetration by 34.8% and 52.7%, respectively,
when compared to the control mixture (M1). Therefore, the chloride ingress of the 70%
GGBS concrete mixtures decreased as the nano-silica dosage increased. On the other hand,
the partial replacement of cement with 1% dosage of nano-silica reduced the passing
charges of the 30%

Table 5. RCPT results of all the mixtures.

Mix. Charge Passing (Coulombs) Penetrability Class

M1 775.5 Very low (100 to 1000 Coulombs)
M2 505.5 Very low (100 to 1000 Coulombs)
M3 367.0 Very Low (100 to 1000 Coulombs)
M4 1458.3 Low (1000 to 2000 Coulombs)
M5 614.7 Very low (100 to 1000 Coulombs)
M6 967.0 Very low (100 to 1000 Coulombs)

GGBS concrete mixture (M5) by 57.8% with respect to the control mixture (M4),
changing the penetrability class from low to very low. Similarly, the 2% nano-silica addition
reduced the chloride ingress of the 30% GGBS concrete mixture (M6) by 33.7% and changed
the penetrability class from low to very low when compared to the control mixture (M4).
However, the addition of a 2% dosage of nano-silica was not as effective compared to the
1% dosage of nano-silica in improving the resistance of the 30% GGBS concrete mixtures
against chemical attacks. In general, adding small dosages of nano-silica had a noticeable
effect on decreasing the conductivity of the concrete and refining the pore structure of all
the mixtures due to the pozzolanic reaction and the nano-filler effect of nano-silica, which
made the microstructure of the concrete mixtures more homogeneous and less porous.
Consequently, this improved the resistance of the concrete mixtures against the physical
penetration of chloride ions. Thus, nano-silica addition improves the durability of the
concrete making it more sustainable.

3.7. Scanning Electron Microscopy (SEM)
SEM Images Analysis

Figure 6A–C shows the secondary electron and backscattered electrons images of the
70% GGBS concrete mixtures (M1, M2, and M3), respectively, while Figure 7A–C shows the
secondary electron and backscattered electrons images of the 30% GGBS concrete mixtures
(M4, M5, and M6), respectively. The secondary electron images show the cementitious
paste–aggregate interface and the microstructure of the concrete mixture. On the other
hand, the backscattered electron images show the micro-cracks that took place in the
cementitious paste–aggregate interface and other areas of the specimen. Generally, the
70% GGBS mixtures, due to incorporating 70% dosage of GGBS, have homogeneous
microstructures and great interface structure, which is shown clearly in the SE and BSE
image of M1 (Figure 6A). However, using 1% and 2% dosages of nano-silica further refined
the microstructure and increased the bond strength of the cementitious paste–aggregate
interface by nano-filling the micro-cracks and the pores, as shown in (Figure 6B,C). The 2%



Appl. Sci. 2021, 11, 3041 16 of 21

dosage of nano-silica had a more pronounced effect compared to 1% dosage of nano-silica
in refining the microstructure and the interface structure of the 70% GGBS mixtures.
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Therefore, as the nano-silica’s dosage increased, the microstructure’s homogeneity and
bond strength of cementitious paste–aggregate interface increased. Furthermore, the SE
and BSE images of the 70% GGBS concrete mixtures reinforced the drawn conclusion from
the rapid chloride permeability test results that the incorporation of nano-silica improved
the pore structure of the concrete, which results in the reduction of the ingress rate of water
and chloride ions due to the packing ability of nano-silica. Thus, nano-silica incorporation
improved the durability of the concrete. The SE and BSE images of the control mixture
of the 30% GGBS concrete mixtures (M4) illustrate that the cementitious paste–aggregate
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bond is as weak as the micro-crack in the interface is wide as shown in Figure 7A. Moreover,
the microstructure contains micro-cracks and voids. The addition of 1% and 2% dosages of
nano-silica improved the cementitious paste–aggregate interface’s bond significantly, as
there are almost no visible micro-cracks shown at 2.00 KX and 500 X SEM magnification in
Figure 7B,C. Furthermore, the microstructure of M5 and M6 became more homogeneous,
dense, and compact due to the nano-filler effect of nano-silica, which refined the pore
structure of the 30% GGBS concrete mixtures. Additionally, the SE and BSE images of
the 30% GGBS concrete mixtures show greater improvement in terms of cementitious
paste–aggregate interface’s bond due to the incorporation of nano-silica when compared to
the 70% GGBS concrete mixtures. All in all, nano-silica addition increases the sustainability
of the concrete by enhancing its durability.

4. Conclusions

This research presents the influence of nano-silica on the properties of the 70% and 30%
GGBS concrete mixtures in terms of strength and durability. Fresh and hardened concrete
tests along with the rapid chloride permeability test and scanning electron microscopy
were applied to each mixture. Based on the obtained results, the following conclusions
were drawn:

• Adding 1% of nano-silica to the 30% (GGBS) mixture (M5) increased the one-day,
three-day, seven-day, and 28-day compressive strength by 13.5%, 7.8%, 8.1%, and 2.2%,
respectively, compared to the control mixture (M4), whereas adding 2% of nano-silica
to the 30% (GGBS) mixture (M6) had less influence on the strength development
compared to the 1%. This is possibly due to either the agglomeration effect, the
mixing process, or the released calcium hydroxide from the OPC during the hydration
process being consumed more efficiently by the combination of 30% (GGBS) and 1%
nano-silica. The majority of the compressive strength’s development, which was
caused by the addition of nano-silica, was within the first seven days. On the other
hand, adding 1% and 2% of nano-silica to the 70% (GGBS) mixtures decreased the
28-day compressive strength by 19.4% and 17.7%, respectively, compared to the control
mixture (M1). The reduction in compressive strength associated with the addition
of nano-silica could be due to the released calcium hydroxide from the OPC in the
hydration process being consumed entirely by the 70% (GGBS).

• Nano-silica increased the Young’s modulus due to the nano-filler effect, which reduced
the concrete’s deformability, making it brittle.

• The modulus of rupture of the 70% (GGBS) mixtures (M2 and M3) increased by 3.4%
and 35.9% due to the incorporation of 1% and 2% of nano-silica, respectively. On the
other hand, the flexural strength of the 30% (GGBS) mixtures had similar behavior as
the 28-day compressive strength.

• The RCP test results illustrated that adding nano-silica to the 70% and 30% (GGBS) mix-
tures reduced the chloride ingress due to the high pozzolanic activity and the packing
effect of nano-silica, which made the microstructure of concrete more homogeneous
and less porous.

• The SEM images show that adding nano-silica increased the bond strength of the ce-
mentitious paste–aggregate interface and made the microstructure more homogeneous
due to the nano-filler effect and the accelerated hydration process. The effect of adding
nano-silica on the microstructure and the interface structure was more pronounced on
the 30% (GGBS) mixtures in comparison to the 70% (GGBS) concrete mixtures. The
scanning electron microscopy (SEM) images confirmed the drawn conclusion from
the (RCPT) results that nano-silica improves the concrete’s durability.

• Nano-silica’s particles are small, which makes its specific surface large. Consequently,
its water demand is large. Comparing the nano-silica mixtures to their respective
control mixtures showed that the addition of nano-silica reduced the slump and
the flow spread values, which indicated that nano-silica had a negative influence
on the workability of the concrete due to its high water demand. Furthermore, as
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the nano-silica dosage increased, the workability of mixtures decreased. Moreover,
comparing the slump and flow results after thirty and sixty minutes to the initial
values demonstrated that nano-silica accelerated the hydration process and reduced
the setting time.

• Due to its high resistance to water penetration and chemical attacks, nano-silica
concrete can be used in construction of marine and coastal structures where the
reinforced concrete is subjected to harsh environments. Furthermore, it can be used in
construction of high-rise buildings, because it allows thereduction in sizes of reinforced
concrete members such as columns.

Author Contributions: H.H.A. was responsible for conducting the laboratory experiments and
analyze the re-sults. A.K.A.-T. was responsible to advice and discuss the results. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: There is no restriction on the data; the authors can provide publicly
any data that is required.

Acknowledgments: The authors gratefully acknowledge the support of CONMIX LTD, especially
Vishal Sharma, Manas Singh, and Mohammed Mobain for providing the materials, laboratory, and
help through the processes of mixing, casting, curing, and performing numerous tests. The authors’
deepest thanks also go to the American University of Sharjah for providing the facilities and the
equipment that enable conducting such a study. Many thanks go to Ansari and Thomas Job who
helped in performing many tests at the university.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shaikh, F.U.A.; Supit, S.W.M.; Sarker, P.K. A study on the effect of nano silica on compressive strength of high volume fly ash

mortars and concretes. Mater. Des. 2014, 60, 433–442. [CrossRef]
2. Heikal, M.; Ali, A.I.; Ismail, M.N.; Ibrahim, S.A.N. Behavior of composite cement pastes containing silica nano-particles at

elevated temperature. Constr. Build. Mater. 2014, 70, 339–350. [CrossRef]
3. Aleem, S.A.E.; Heikal, M.; Morsi, W.M. Hydration characteristic, thermal expansion and microstructure of cement containing

nano-silica. Constr. Build. Mater. 2014, 59, 151–160. [CrossRef]
4. Du, H.; Du, S.; Liu, X. Durability performances of concrete with nano-silica. Constr. Build. Mater. 2014, 73, 705–712. [CrossRef]
5. Yu, J.; Zhang, M.; Li, G.; Meng, J.; Leung, C.K. Using nano-silica to improve mechanical and fracture properties of fiber-reinforced

high-volume fly ash cement mortar. Constr. Build. Mater. 2020, 239, 117853. [CrossRef]
6. Adak, D.; Sarkar, M.; Mandal, S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr. Build.

Mater. 2014, 70, 453–459. [CrossRef]
7. Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y. Properties of concrete incorporating nano-silica. Constr. Build. Mater. 2012, 36,

838844. [CrossRef]
8. Bastami, M.; Baghbadrani, M.; Aslani, F. Performance of nano-silica modified high strength concrete at elevated temperatures.

Constr. Build. Mater. 2014, 68, 402–408. [CrossRef]
9. Behfarnia, K.; Salemi, N. The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater.

2013, 48, 580–584. [CrossRef]
10. Zhuang, C.; Chen, Y. The effect of nano-SiO2 on concrete properties: A review. Nanotechnol. Rev. 2019, 8, 562–572. [CrossRef]
11. Berra, M.; Carassiti, F.; Mangialardi, T.; Paolini, A.E.; Sebastiani, M. Effects of nanosilica addition on workability and compressive

strength of portland cement pastes. Constr. Build. Mater. 2012, 35, 666–675. [CrossRef]
12. Lsingh, P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials-

A review. Constr. Build. Mater. 2013, 47, 1069–1077. [CrossRef]
13. Haruehansapong, S.; Pulngern, T.; Chucheepsakul, S. Effect of the particle size of nanosilica on the compressive strength and the

optimum replacement content of cement mortar containing nano-SiO2. Constr. Build. Mater. 2014, 50, 471–477. [CrossRef]
14. Mukharjee, B.B.; Barai, S.V. Influence of Nano-silica on the properties of recycled aggregate concrete. Constr. Build. Mater. 2014,

55, 29–37. [CrossRef]
15. Ghafari, E.; Arezoumandi, M.; Costa, H.; Julio, E. Influence of nano-silica addition on durability of UHPC. Constr. Build. Mater.

2015, 94, 181–188. [CrossRef]

http://doi.org/10.1016/j.matdes.2014.04.025
http://doi.org/10.1016/j.conbuildmat.2014.07.078
http://doi.org/10.1016/j.conbuildmat.2014.02.039
http://doi.org/10.1016/j.conbuildmat.2014.10.014
http://doi.org/10.1016/j.conbuildmat.2019.117853
http://doi.org/10.1016/j.conbuildmat.2014.07.093
http://doi.org/10.1016/j.conbuildmat.2012.06.044
http://doi.org/10.1016/j.conbuildmat.2014.06.026
http://doi.org/10.1016/j.conbuildmat.2013.07.088
http://doi.org/10.1515/ntrev-2019-0050
http://doi.org/10.1016/j.conbuildmat.2012.04.132
http://doi.org/10.1016/j.conbuildmat.2013.05.052
http://doi.org/10.1016/j.conbuildmat.2013.10.002
http://doi.org/10.1016/j.conbuildmat.2014.01.003
http://doi.org/10.1016/j.conbuildmat.2015.07.009


Appl. Sci. 2021, 11, 3041 21 of 21

16. Quercia, G.; Spiesz, P.; Husken, G.; Brouwers, H.J.H. SCC modification by use of amorphous nano-silica. Cem. Concr. Compos.
2014, 45, 69–81. [CrossRef]

17. Ramesh, N.; Eramma, H. Behaviour of GGBS and nano-silica on strength properties of concrete. Int. J. Res. Eng. Technol. 2016, 5,
142–148.

18. Prasada Rao, D.V.; Anil Kumar, U. An experimental investigation on strength properties of concrete containing micro-silica and
nano-silica. Int. J. Civ. Eng. Technol. 2014, 5, 89–97.

19. Maitri, M.; Hemalatha, T.; Rama Chandra Murthy, A. Investigation on mechanical properties of silica and GGBS incorporated
cement mortar. Int. J. Res. Eng. Technol. 2015, 4, 30–34.

20. Zhang, H.; Zhao, Y.; Meng, T.; Shah, S.P. The modification effects of a nano-silica slurry on microstructure strength, and strain
development of recycled aggregate concrete applied in an enlarged structural test. Constr. Build. Mater. 2015, 95, 721–735.
[CrossRef]

21. Xu, J.; Wang, B.; Zuo, J. Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach.
Cem. Concr. Compos. 2017, 81, 1–10. [CrossRef]

22. Ghazy, A.; Bassuoni, M.T.; Shalaby, A. Nano-modified fly ash concrete: A repair option for concrete pavements. ACI Mater. J.
2016, 113, 231–242. [CrossRef]

23. Cheng, Y.; Shi, Z. Experimental study on Nano-SiO2 Improving concrete durability of bridge deck pavement in cold regions. Adv.
Civ. Eng. 2019, 2019, 1–9. [CrossRef] [PubMed]

24. Mamlouk, M.S.; Zaniewski, J.P. Material for Civil and Construction Engineers; Pearson Education: Harlow, Essex, UK, 2011.
25. Russell, H.G. HPC Bridge Views. Federal Highway Administration and the National Concrete Bridge Council. November 2010.

Available online: http://www.hpcbridgeviews.com/i64/Article4.asp (accessed on 2 April 2016).
26. Bentz, D.P. A virtual rapid chloride permeability test. Cem. Concr. Compos. 2007, 29, 723–731. [CrossRef]
27. Joshi, P.; Chan, C. Rapid Chloride Permeability Testing; Hanley-Wood, LLC: Washington, DC, USA, 2002.
28. ASTM C1723-16, Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy. ASTM Interna-

tional. 2010. Available online: https://www.astm.org/Standards/C1723.htm (accessed on 10 October 2016).
29. Balendran, R.V.; Pang, H.W.; Wen, H.X. Use of scanning electron microscopy in concrete studies. Struct. Surv. 1998, 16, 146–153.

[CrossRef]

http://doi.org/10.1016/j.cemconcomp.2013.09.001
http://doi.org/10.1016/j.conbuildmat.2015.07.089
http://doi.org/10.1016/j.cemconcomp.2017.04.003
http://doi.org/10.14359/51688642
http://doi.org/10.1155/2019/5284913
http://www.ncbi.nlm.nih.gov/pubmed/30629220
http://www.hpcbridgeviews.com/i64/Article4.asp
http://doi.org/10.1016/j.cemconcomp.2007.06.006
https://www.astm.org/Standards/C1723.htm
http://doi.org/10.1108/02630809810232718

	Introduction 
	Materials and Methods 
	Materials 
	Mix Proportions 
	Sample Preparation 
	Test Methods 

	Results 
	Slump/Flow 
	Density (Unit Weight) 
	Compressive Strength 
	Modulus of Elasticity 
	Modulus of Rupture 
	Rapid Chloride Permeability (RCP) 
	Scanning Electron Microscopy (SEM) 

	Conclusions 
	References

