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Featured Application: We analyzed the production of different auxins and the presence of the
ability to solubilize phos-phates and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase
enzyme in a consortium of four bacteria. The consortium was inoculated in an open field ex-
periment on carrots, with very positive impacts on the development of the plant and on the soil
microbial community.

Abstract: The present work aimed to study suitability of a consortium of Azospirillum brasilense,
Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, and Burkholderia ambifaria as biofertilizers.
Strains were assayed for plant growth-promoting characteristics (i.e., auxins production, phosphate
solubilizing capability, and 1-aminocyclopropane-1-carboxylate deaminase activity). The consortium
of four bacteria was then inoculated on carrot seeds and tested in an open field experiment. During
the open field experiment, plant growth (morphological parameters, chlorophylls, and carotenoids),
soil chemical analysis, and molecular and physiological profiles of soils were investigated. Each
strain produced different amounts of indole-3acetic acid and several indole-derivates molecules.
All strains showed phosphate solubilization capability, while 1-aminocyclopropane-1-carboxylate
deaminase activity was only detected in H. seropedicae and B. ambifaria. The bacterial consortium of
the four strains gave interesting results in the open field cultivation of carrot. Plant development was
positively affected by the presence of the consortium, as was soil fertility and microbial community
structure and diversity. The present work allowed for deepening our knowledge on four bacteria,
already known for years for having several interesting characteristics, but whose interactions were
almost unknown, particularly in view of their use as a consortium in a valid fertilization strategy, in
substitution of agrochemicals for a sustainable agriculture.

Keywords: Azospirillum brasilense; Gluconacetobacter diazotrophicus; Herbaspirillum seropedicae; Burkholde-
ria ambifaria; Daucus carota; microbial inoculation; soil biodiversity; auxins; phosphate solubilization;
1-aminocyclopropane-1-carboxylate deaminase activity

1. Introduction

The development of low consumption energy technologies is of growing relevance in
sustainable agriculture to allow sustainable food production while supporting an increasing
world population. One possible low energy and environmentally friendly technology is
the utilization of plant growth-promoting bacteria (PGPB), which are microorganisms
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that live in association with plants, covering practically all their surfaces and colonizing
their interior, the xylem vessels in particular [1]. Among PGPB strains inoculated to
increase agricultural productions, Azospirillum is one of the most well-known. Azospirillum
brasilense, together with Gluconacetobacter diazotrophicus [2], Herbaspirillum seropedicae [3],
and Burkholderia ambifaria [4] strains live in association with crop plants.

Carrots host a specific microbial biomass, composed of Gram positive and negative
bacteria, actinomycetes, and fungi, that change according to agronomic management [5].
Furthermore, as reported by Nithya and Babu, cocci are the predominant endophytic
bacterial community compared to other salad vegetables, namely cucumber, onion, and
tomato. This crop is particularly suitable for Fucino plateau, the main agricultural produc-
tive area of the Abruzzo region where the greatest carrots production is obtained [6]. This
consortium has already demonstrated to have positive effects on the growth of Allium cepa
L. [7], Artemisia eriantha Ten [8], Cannabis sativa L. [9], Lycopersicon esculentum L. [10], and
ancient Triticum [11]. Based on these positive effects, we hypothesized that a A. brasilense,
G. diazotrophicus, H. seropedicae, and B. ambifaria consortium could be a valid biostimulant
tool for Daucus carota L.

Strains belonging to PGPB can promote plant growth and development through
different mechanisms. Among them, the production of auxins plays an important role in
plant growth stimulation [12]. The best-known molecule belonging to this class is indole-3-
acetic acid (IAA). Soil bacteria differ in their IAA synthesizing capability depending on
soil fertility status and organic matter content [13]. Bacteria use this phytohormone to
interact with plants as part of their colonization strategy. Furthermore, this IAA can also be
a signalling molecule in bacterial communication [14].

Plant growth and development promotion ascribed to PGPB is also due to their
ability to solubilize soil nutrients, such as phosphorus [15]. The plant growth-promoting
(PGP) strains with this capability are known as phosphate-solubilizing bacteria (PSB) and
can convert inorganic and inaccessible forms for the absorption of phosphate (PO4

3−)
into available ones (e.g., HPO4

2−, H4PO4−) [16]. This conversion is usually mediated
by the organic acids produced by PSB, which induce the release of phosphates from
insoluble complexes by using various approaches (i.e., lowering soil pH, chelation, and
mineralization) [17].

The bacteria belonging to PGPB also help plants to counteract stress-related to biotic
and abiotic factors that play an essential role in diminishing crop productivity [18,19].
This stress affects plant–water relation at cellular and whole plant level, causing specific
and unspecific reactions and damage [18]. However, PGPB possess different mecha-
nisms counteracting them. The decrease of the deleterious synthesis of “stress ethylene”,
through 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme, is one of these
principal mechanisms [18]. The direct precursor of ethylene in the biosynthetic pathway is
ACC [20]. The enzyme ACC deaminase catalyzes the cleavage of ACC to ammonia and
α-ketobutyrate, decreasing the synthesis of stress ethylene [21]. The presence and activity
of this enzyme have been detected in several PGPB species [22,23].

Several techniques can be applied to investigate changes in the microbial community.
Among these, 16S rRNA analysis by Next Generation Sequencing (NGS) allows us to study
the genomes of culturable and unculturable bacteria in soil [24]. Furthermore, changes
in metabolic activity provide information on any changes in the soil microbiome. The
Community Level Physiological Profiling (CLPP) by Biolog®EcoPlates™ is widely applied
to study the differences in soil metabolic activities [25].

In the present work, we hypothesized that the consortium of A. brasilense, G. diazotroph-
icus, H. seropedicae, and B. ambifaria can positively affect crops of D. carota through several
direct and indirect mechanisms. To test this hypothesis, we investigated the PGP traits of
these strains (i.e., auxin’s production, ACC deaminase activity detection, and phosphate
solubilizing capability). Bacteria were also combined in a consortium and inoculated on
carrot seeds to evaluate their effects on this valuable species in a field experiment where
plant growth and development traits were investigated. We also assessed the bacterial con-
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sortium’s possible influence on the soil microbial community by CLPP and DNA extraction
and NGS and soil chemical composition, after the crop.

2. Materials and Methods
2.1. Bacterial Strains and Media

The investigated PGPB strains were: Azospirillum brasilense Cd, provided by Y. Okon
(Hebrew University of Jerusalem, Israel) and isolated from Cynodon dactylon root; Burkholde-
ria ambifaria PHP7, provided by T. Heulin (C.P.B., CNRS, France) and isolated from Zea
mays root, and G. diazotrophicus Pal5 and Herbaspirillum seropedicae Z67, both provided by
the late J. Döbereiner (Embrapa Agrobiology, Seropédica, Brasil) isolated from Saccarum
officinamrum stem and Sorgum bicolor root, respectively [10]. The selective media used for
their cultivation were: OK [26] for A. brasilense; LGI [27] for G. diazotrophicus; J-NFb [28]
for H. seropedicae and KB [29] for B. ambifaria. The common medium T4 was also used [10].
Broth cultures were grown in flasks incubated at 30 ◦C in a rotary shaker (150 rpm).

2.2. IAA Production and HPLC-FL Analysis

First tests were performed on bacteria grown on their specific cultural medium with
three different amounts of tryptophan (Trp) (0, 200, 400 µg mL−1), sterilized by filtration,
and added after cooling to the specific medium. To grow all the bacteria together, the
common medium T4 was used. To test auxins production, bacterial cultures in different
combinations (i.e., single, couples, and four together) were grown in T4 medium with and
without (control) the addition of Trp (200 µg mL−1). Colony forming units and optical
densities of each strain were recorded up to the stationary phase. Dry weight of bacterial
biomass was obtained by keeping 10 mL cultures at 80 ◦C up to constant weight.

Supernatants were collected after centrifugation at 5000× g for 30 min, were adjusted
to pH 2, and the resultant solution was eluted through a C-18 Sep-Pak cartridge [30]. The
cartridge was washed with distilled water and IAA was eluted with methanol containing
10 µg mL−1 butylated hydroxytoluene (Sigma, St. Louis, MO, USA). The methanol solution
with IAA was evaporated under vacuum and auxin was dissolved in 400 µL methanol for
HPLC analysis according to the method of Forni et al. [30] modified as follows. Reverse-
phase HPLC analyses (Pharmacia biotech P-900) were performed using a column C-18
(5 µm) (4.6 × 250 mm, Alltech). The gradient phase was 25 min, with 10–35% (v/v)
acetonitrile containing 1% (v/v) acetic acid and a flow rate of 1 mL min−1.

A fluorescence detector (Jasco FP-1520) was set up with an excitation wavelength of
280 nm and an emission wavelength of 350 nm. The standard stock solutions (purchased
from Sigma) were prepared in methanol. Standards were injected as a single solution
as well as a mixture of all standards, and corresponding peak areas were recorded. The
detection limit was determined by the analysis of samples with known concentrations
of analyte and by establishing the minimum level at which the analyte can be reliably
detected (LOD = 8 pmol; LOQ = 28 pmol) [31]. The concentration of the compound was
determined using external standards. IAA concentration was calculated according to a
calibration curve made with the standard (R2 = 0.999; y = (x − 0.5804)/0.0893) and results
were expressed as nmol mg dry weight−1.

2.3. ACC Deaminase Activity

The evaluation of ACC deaminase (EC: 4.1.99.4) activity was performed following
the protocol reported by Brígido et al. [32], utilizing fructose instead of glucose for A.
brasilense in DF salt minimal medium. A calibration curve was calculated with differ-
ent concentration of the standard α-ketobutyrate (Sigma) in 0.1 M TRIS-HCl (pH 8.0)
(R2 = 0.9945; y = 0.004x + 0.0063) and detecting the absorbance of the reaction mixture at
540 nm (Spectrophotometer VARIAN Cary 50 Bio). The protein amount was determined
by Bradford method [33]. ACC deaminase activity of the strains was expressed as µmol
α-ketobutyrate h −1 mg protein −1.
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2.4. Phosphate Solubilization Capability

The bacterial strains were screened for phosphate solubilization in Pikovskaya’s agar
plates [34]. 10 µL of A. brasilense, G. diazotrophicus, H. seropedicae, and B. ambifaria were
spotted on Pikovskaya’s agar plates and incubated at 30 ◦C for 7 days. Positive phosphate
solubilization was estimated through the presence of clearing zones around the colonies.
The assay was repeated five times.

Quantitative estimation of phosphate solubilization was carried out on broth cul-
tures, utilizing NBRIP medium and supernatant recovery procedure as described by
Nautyal et al. [35], and a colorimetric estimation procedure proposed by Olsen and
Sommers [36]. For A. brasilense assays, cultivations were also carried out in modified
Pikovskaya’s agar and NBRIP liquid media, with the addition of fructose instead of glucose
(F- Pikovskaya and F-NBRIP).

2.5. Inoculum Preparation and Seed Treatment

Maestro F1 carrot cultivar was used in this study (Vilmorin, Paris, France). Bacteria
were prepared in liquid T4 medium [10] and kept with constant shaking at 30 ◦C for
24 h. Cell density of each strain was determined spectrophotometrically by comparing
the obtained 600 nm optical densities with growth calibration curves. The consortium
was obtained by mixing the four strains to a final density of 1010 cells mL−1 and seeds
were treated with this solution by 20 min dipping, followed by overnight oven drying at
30 ◦C (final density on seeds 106 cells g−1 determined by plate counting method). Control
seeds were treated with the same procedure but using autoclaved working inoculum as a
dipping solution.

2.6. Field Experiments and Plant Sampling

A one-year field experiment was carried out during the May-October 2018 grow-
ing season at the Agricola Scipioni field (Avezzano, Italy, 42◦02′26.31” N, 13◦46′45.02” E,
650 m a.s.l.). The climate is relatively continental, with mean annual precipitation ranges of
650–800 mm. The experiments were arranged on a randomized complete block designed
with four replicates. The treatments under comparison were represented by seeds inocu-
lated with bacteria (SIB) and autoclaved bacterial application (control). Carrots were sown
on June 2018 with a pneumatic seeder (Serie SNT, Agricola Italiana SNC, Massanzago, PD,
Italy) at a rate of 250 seeds m2. The previous crop was potatoes (Solanum tuberosum L.),
which were harvested in the middle of October 2017. The soil was previously fallow and
was ploughed and harrowed twice before sowing.

The experimental units consisted of a 30 m2 (5.0 m × 6.0 m) plots with 5 plant
tandem rows spaced 5 cm apart. The crop was only protected against fungal disease
through the application of Azoxystrobin (Amistar, Syngenta Italia, Milano, MI, USA) at
the dose of 0.8 L ha−1 at development stage 45 [37]. Starting from the development stage
41 (roots beginning to expand, diameter > 0.5 cm), 30 carrot plant samples within each
experimental unit were randomly collected. In total, 3 sampling dates, corresponding to
development stage 41, development stage 45 (50% of the expected root diameter reached),
and harvest (development stage 49 [37], middle October 2018) were considered. Plants
were separated into the aerial part and carrots root (referred as ‘roots’) and their dry matter
(%) were determined after oven drying at 80 ◦C, until constant weight was obtained. The
estimation of carotenoids (roots) and chlorophylls (aerial parts) contents were carried out
on 80% acetone extracts and obtained following the methods and calculations proposed
by Tavarini et al. [38] and Porra et al. [39], respectively. Results were expressed as mg
100 g−1 FW.

2.7. Soil Analyses

Before sowing and at the head emergence phenological phase (development stage
49), 5 soil sub-samples for each experimental unit were randomly collected on the row
spacing at 0–10 cm depth. The sub-samples were thoroughly mixed to obtain a composite
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and homogenized soil sample. Soil chemical analyses were carried out according to the
methods described by the Italian Ministry of Agricultural, Food and Forestry Policies [40].

Homogenized soil samples were sieved (<2 mm) to remove plant roots, fauna, and
debris and were subjected to community level physiological profiles (CLPP) and rRNA
16S analysis. CLPP was assessed with Biolog EcoPlate™ (Biolog Inc., Hayward, CA, USA),
following the method described by Weber and Legge [41] and the calculations of AWCD
and the Shannon–Weaver index (H) proposed by Garland [42]. For each sample, three
independent plates were set up.

From each sample, genomic DNA was extracted three times utilizing the NucleoSpin®

Soil kit (Macherey Nagel, Düren, Germany), following the manufacturer’s protocol. DNA
quantification of the samples was obtained through Qubit dsDNA HS (High Sensitivity)
Assay Kit and Qubit Fluorometer (ThermoFisher Scientific, Waltham, MA, USA). The three
replications of each sample were pooled in equimolar mixtures and sent to Bio-Fab Research
Srl (Roma, Italy) for further processing. DNA was amplified with a specific 16S protocol for
the amplification of Bacteria and Archaea, using 300 bp Paired-End 16S community sequenc-
ing on the Mi-Seq Illumina platform (Bio-Fab Research, Roma, Italy) [43]. The 16S V3 and
V4 region were targeted by gene-specific sequences [44], adding Illumina adapter overhang
nucleotide sequences (Forward Primer = 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAGCCTACGGGNGGCWGCAG; Reverse Primer = 5′-GTCTCGTGGGCTCGGAGATGT
GTATAAGAGACAGGACTACHVGGGTATCTAATCC). The bioinformatic workflow was
as follow: control of the quality of the reads; count after filtering; assembly of the ampli-
cons; construction of the classifier on the database; taxonomic assignment. The Ampli-
con Sequence Variant (ASV) clustering was performed with DADA2 plugin by qiime2-
2020.2 version [45]. The classifier was trained by the fit-classifier-naive-bayes plugin
on the specific region of V3-V4 extracted from 16S file of database SILVA 132 release
(https://www.arb-silva.de/ accessed on 6 March 2021). The similitude chosen for Taxa
assignment was performed with a similitude of 97%. Taxonomic assignments were checked
with LPSN service (https://lpsn.dsmz.de accessed on 6 March 2021). The Quality Check
report is shown in Table S1 of Supplementary material. Diversity indices were calculated
using R (R Foundation for Statistical Computing, Vienna, Austria) with the statistical
package vegan v2.5-7 [46].

2.8. Statistical Analysis

Data of IAA and microbiological analysis on broth cultures and soil chemical anal-
ysis were analyzed by one-way or two-way analysis of variance (ANOVA) based on the
number of factors present using XLSTAT 2016 software (Addinsoft, Paris, France). One-
way ANOVA was also applied on experimental field results according to a randomized
block design with four replications, to test (F-test) the effects of bacterial application on
the selected variables (R software—R Foundation for Statistical Computing, Vienna, Aus-
tria). Separation of the means was set at 1% and 5% (p < 0.01 and p < 0.05, respectively)
level of significance by LSD test. Prior to ANOVA, data were tested for normality and
homoscedasticity assumptions.

3. Results
3.1. IAA Production

In Figure 1A, IAA concentrations produced by single strains with and without Trp
are reported. For G. diazotrophicus and H. seropedicae, IAA concentrations were higher than
respective controls (p < 0.05) while for A. brasilense and B. ambifaria no significant difference
were shown (p > 0.05). H. seropedicae was the best IAA producer; however, if we consider
the number of cells present in the medium (Figure 1B) G. diazotrophicus showed the highest
production, followed by A. brasilense. Lowest IAA production was shown by B. ambifaria.
Average values of IAA concentrations were recorded when the four strains were grown
together (Figure 2A). As shown in Figure 2B, the CFU mL−1 obtained for each strain from
mixed broth cultures were similar to those obtained by single cultures.

https://www.arb-silva.de/
https://lpsn.dsmz.de
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In Figure 2A, IAA concentrations found in binary broth cultures in the presence and in
the absence of Trp are shown. Except for binary culture of B. ambifaria + H. seropedicae, the
IAA concentrations in Trp-added medium were higher than control (p < 0.05). Generally,
IAA range concentrations were similar to those obtained by single cultures. However,
in the absence of Trp, the presence of A. brasilense negatively influenced the synthesis of
auxins. In Figure 3, the CFU mL−1 obtained for each strain from each binary culture are
shown. Slight differences in their loads were recorded for A. brasilense, B. ambifaria, and G.
diazotrophicus in the different binary cultures. Instead, H. seropedicae loads recorded strong
decreases when cultured with B. ambifaria and G. diazotrophicus in the presence and in the
absence of Trp, respectively.
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3.2. Trp and Indole Derivates Characterization

The Trp and indole derivates (IAC and IAM) concentrations in single and combined
strains broth cultures, with and without Trp addition, were assessed by HPLC-FL (Table 1).
Trp was detected in almost all broth cultures. For the binary culture of G. diazotrophicus +
H. seropedicae with Trp addition, there was no detection while for H. seropedicae, the quan-
tification was not allowed due to the presence of numerous and overlapped peaks (data
not shown). The highest Trp concentration was shown by A. brasilense + B. ambifaria culture
with Trp addition. For A. brasilense + G. diazotrophicus combination, lowest concentrations
were recorded when Trp was not provided. This behavior was common for almost all
cultures. Only in A. brasilense and B. ambifaria + H. seropedicae cultures, the control showed
higher concentrations of Trp than those with Trp added. IAC was produced in a relevant
amount by most of the strains while IAM was produced only in a low amount, and only
without the addition of Trp. Once again, the quantification of H. seropedicae Trp-added
culture was not possible due to the presence of numerous and overlapped peaks (data
not shown). Best IAC concentrations were recorded in H. seropedicae control, while the
highest IAM concentrations were recorded in A. brasilense + B. ambifaria binary culture with
Trp addition.

3.3. ACC Deaminase Activity

Concerning ACC deaminase, the activity was present only in H. seropedicae (1.83± 0.04µmol
α-KB h−1 mg proteins−1) and B. ambifaria (3.7 ± 0.07 µmol α-KB h−1 mg proteins−1). No
ACC deaminase activity was detected in A. brasilense, in G. diazotrophicus cultures, and
when the four strains were grown together.
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Table 1. Trp, IAC (indole-3-acetaldehyde) and IAM (indole-3-acetamide) concentrations detected in single strains and
combined strains broth cultures with and without Trp addition by HPLC-FL.

Bacteria
Trp IAC IAM

nmol (mg dry wt cells)−1 nmol (mg dry wt cells)−1 nmol (mg dry wt cells)−1

A_C 2.23 f 0.93 de -
A_T 1.05 hi 0.50 fg <LOQ/LOD
B_C 0.44 j–m 0.40 gh -
B_T 0.80 ij 0.29 h -
G_C 1.20 g–h <LOQ -
G_T 4.30 d 0.82 e
H_C 3.68 e 8.10 a -
H_T Nq Nq Nq
4B_C 0.52 j–l 0.37 gh 0.09 c
4B_T 4.86 c 1.02 cd -

A+G_C 0.05 mn 0.32 h -
A+G_T 12.97 b 2.04 b -
A+B_C - - -
A+B_T 18.02 a - 2.66 a
A+H_C - 0.10 i -
A+H_T 0.59 jk 0.62 f 0.91 b
B+G_C 0.22 k–n <LOQ
B+G_T 2.16 f 0.33 h 0.10 c
B+H_C 1.50 g 1.10 c -
B+H_T 0.13 l–n 0.33 h -
G+H_C - - -
G+H_T - - 0.06 c
F-test * ** **
LSD 0.40 0.15 0.16

In the table: A, A. brasilense; B, B. ambifaria; G, G. diazotrophicus; H, H. seropedicae; C, broth culture without Tryptophan; T, broth culture
added with Tryptophan; LOQ = limit of quantification; LOD, limit of detection; Nq, not quantifiable, the production was very high and
overlapped with other peaks. Error bars are standard error of the means. Results followed by different letters are significantly different
according to Fisher’s LSD test (p < 0.05) following one-way ANOVA. * p < 0.05; ** p < 0.01.

3.4. Phosphate Solubilization Capability

The strain growth on agar plates of Pikovaska medium allowed underlining that in
the presence of glucose, phosphate solubilization is a capability shared by G. diazotrophicus,
H, seropedicae, and B. ambifaria. For these strains, clearing zones around the colonies were
observed, especially for G. diazotrophicus. In contrast, for the A. brasilense strain clearing
zones were observed only when the cultures were grown in modified Pikovaska medium
(F- Pikovaska), with fructose instead of glucose.

Similar results were obtained for NBRIP liquid medium: the colorimetric assay carried
out on supernatants of broth cultures showed that the strain with the highest concentration
of phosphate was G. daizotrophicus (20.84± 2.65 µg PO4

3− mL−1), followed by H. seropedicae
(15.64 ± 0.72 µg PO4

3− mL−1) and B. ambifaria (9.18 ± 1.65 µg PO4
3− mL−1). A. brasilense

in this estimation also showed positive results only in F-NBRIP broth cultures, with a
phosphate solubilization capability of 12.40 ± 1.34 µg PO4

3− mL−1.

3.5. Field Experiment

Results of chemical analyses of pre-sowing, untreated, and treated soil samples col-
lected at DS (Development Stage [37]) 49, are shown in Table 2.

Among the different parameters analyzed, the initial soil pH—before sowing—(PS)
recorded a slight decrease (p < 0.05; n = 3) in the presence of the bacterial inoculation (SIB),
while for the control no significant changes were recorded (p > 0.05; n = 3). Concerning
the pre-sowing soil sample, SIB recorded significant increases of total N, total organic
C and organic matter (p < 0.01; n = 3), while the control recorded significant decreases
of the same parameters (p < 0.01; n = 3). Moreover, the bacterial presence in SIB was
able to decrease electrical conductivity (p < 0.01; n = 3) and to positively influence soil
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nutrients. In comparison to pre-sowing soil, Na+ and K+ showed a decrease (p < 0.01;
n = 3) and Ca2+ and Mg2+ concentrations were statistically similar (p > 0.05; n = 3). Best
concentrations of available p were recorded for SIB (p < 0.01). For the control soil, except
for Na+ (statistically similar to PS, p > 0.05; n = 3), lower concentrations of all nutrients
were recorded than PS and SIB soils (p < 0.01; n = 3). The ecological indexes calculated
on soil community level physiological profiles are shown in Table 3. Bacterial inoculum
positively affected soil microbial communities’ physiological profile, improving the overall
carbon source metabolic activity of soil. The SIB AWCD (average well color development,
index of carbon source utilization) and H (diversity) indexes, determined at DS 49, were
significantly higher than the control ones (p < 0.05; n = 3), while for the R index (richness),
no significant differences were shown.

Table 2. Soil chemical analysis results recorded in the development stage (DS) 49 during the growing season (May-October).
The table shows the effects of bacterial application on soil chemical parameters. Means followed by different letters are
significantly different according to Fisher’s LSD test.

Parameter
Treatment

F Test LSD
PS Control SIB

pH 7.67 a 7.65 a 7.52 b * 0.09
Total N (g Kg−1) 2.05 b 1.95 c 2.15 a ** 0.09

TOC (g Kg−1) 16.67 b 14.33 c 18.67 a ** 1.15
OM (g Kg−1) 28.67 b 24.65 c 32.11 a ** 1.99
EC (µs cm−1) 0.44 a 0.38 b 0.33 c ** 0.03
Na (mg Kg−1) 31.50 a 30.50 a 17.25 b ** 3.07
Ca (mg Kg−1) 3055.50 a 2997.75 b 3082.25 a ** 31.61
Mg (mg Kg−1) 150.15 a 127.25 b 145.25 a ** 7.91
K (mg Kg−1) 421.00 a 284.00 c 311.50 b ** 18.46

Available P (mg P2O5 Kg−1) 300.25 b 155.00 c 350.75 a ** 9.42

PS, pre-sowing; SIB, seed inoculated with bacteria. * p < 0.05; ** p < 0.01.

In Table 3 the diversity indexes calculated on NGS results are shown. Calculated
diversity indexes are in line with findings obtained for CLPP analysis. For the SIB condition,
Diversity and Richness values were higher than the control.

Table 3. Indexes calculated on community level physiological profile results recorded in development stage (DS) 49 during
the growing season (May-October). The table shows the effects of bacterial application on AWCD (average well color
development), H (Shannon), and R (Richness) indexes. Means followed by different letters are significantly different
according to Fisher’s LSD test.

Parameter
Treatment

F Test LSD
Control SIB

CLPP
AWCD 1.35 1.47 * 6.03

H 3.28 3.31 * 1.91
R 29 30 n.s. -

NGS
H 6.07 6.11 - -

Simpson 1-D 0.9968 0.9971 - -
Chao-1 571.6 587 - -

SIB: seed inoculated with bacteria. * p < 0.05; n.s. = not significant. Degrees of freedom: Blocks, 3; Treatment, 1; Residual, 3.

Figure 4 reports the relative abundances of common genera found in control and
SIB samples. The relative abundance of Adhaeribacter, Bacillus, Lysobacter, Marmoricola,
MND1, Nitrospira, Pseudarthrobacter, and RB41 was higher in SIB soil samples than in the
control. Instead, Chryseobacterium, Flavobacterium, Gemmatimonas, Hydrogenophaga, Massilia,
Pontibacter, Sphingobacterium, Sphingomonas, and Stenotrophomonas were more numerous
in the control. Unknown ASVs (amplicon sequence variants) included Acidobacteria,
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Actinobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes, while Uncultured
ASVs included Bacteroidetes and Gemmatimonadetes (Table S2). In general, there was a
more balanced microbial community in the SIB sample, in which the Phyla Bacteroidetes
and Proteobacteria did not predominate in the same way as in the control (Figure 5).
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Plant growth and development parameters recorded in the open field experiment are
shown in Table 4. Root and aerial part length were significantly affected by seed bacterial
treatment only in DS 49 (5.4% and 7%, respectively). However, seed inoculation with our
PGPB consortium significantly improved total plant growth, as well as dry weights of
roots and shoots in all developmental stages. For these parameters, SIB treatment shows
a significant difference from the control plants in all stages. Pigments’ amount was also
influenced by the inoculum at late maturation. For both chlorophyll and carotenoids
contents, SIB treatment exhibited the best values than the control in 45 and 49 DS, while
there were no significant differences in 41 DS.

Table 4. Plant growth and development parameters recorded in different development stage (DS)
during the growing season (May–October). The table shows the effects of bacterial application
on Root Length, A.P. Length and Total Length (root + a.p.), Dry Weight (DW) of Root and AP,
Carotenoids (Car), and Chlorophyll (Chl a + b). Means followed by different letters significantly
different according to Fisher’s LSD test.

Parameter D.S.
Treatment

F Test LSD
Control SIB

Root Length (cm)
41 15.1 15.9 n.s. -
45 18.9 20.6 n.s. -
49 16.6 b 17.7 a * 1.05

A.P. Length (cm)
41 27.0 30.7 n.s. -
45 54.1 59.3 n.s. -
49 56.7 b 60.7 a * 2.94

Total (cm)
41 42.1 b 46.6 a * 3.88
45 73.0 b 79.9 a * 4.16
49 73.4 b 78.4 a * 3.98

DW Root (%)
41 9.0 b 9.8 a * 0.71
45 10.9 b 11.7 a * 0.60
49 12.9 b 13.6 a ** 0.23

DW A.P. (%)
41 4.6 b 5.1 a * 0.35
45 6.1 b 6.6 a * 0.45
49 8.2 b 8.8 a * 0.54

Car (mg 100 g−1FW)
41 2.4 2.6 n.s. -
45 9.5 b 9.8 a * 0.15
49 12.2 b 12.7 a * 0.41

Chl a + b (mg 100 g−1FW)
41 373.6 376.1 n.s. -
45 393.6 b 395.3 a * 2.13
49 401.4 b 403.6 a * 1.40

SIB: seed inoculated with bacteria. * p < 0.05; ** p < 0.01; n.s. = not significant. Degrees of freedom: Blocks, 3;
Treatment, 1; Residual, 3.

4. Discussion

Among plant growth-promoting substances, IAA has positive effects on root elon-
gation, cell division, and proliferation of root hairs [47]. Our strains demonstrated good
production rates in vitro, both in single and mixed culture. The presence of IAA in the con-
trol cultures is probably due to the production of Trp or other precursors by some bacteria
(in T4 medium no Trp or auxins were detected). The IAA production has been already re-
ported by different authors for H. seropedicae [48], B. ambifaria [49], and G. diazotrophicus [50].
The high level of IAA synthesized by A. brasilense is in line with the literature. This strain
is considered an excellent producer through several metabolic pathways [51–53].

The indole-derivates molecules were detected in all samples, suggesting the presence
of different auxins pathways in all bacterial species. IAC was detected in all samples
grown in single and mixed cultures, both in the presence and in the absence of Trp. IAC, in
some cases, has been produced in higher concentrations than IAA. The IAM pathway was
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detected in A. brasilense but only in the presence of Trp. Our data suggest that in B. ambifaria
this pathway is not active, while in G. diazotrophicus is not always active. In H. seropedicae,
it was difficult to discriminate because of the numerous close and/or overlapping peaks
in the chromatograms (data not shown). Pedraza [54] also found that in G. diazotrophicus,
IAM is not always active. Also, the recent work by Rodrigues et al. [55] demonstrated that
G. diazotrophicus cultures supplemented with Trp produce IAA via the indole-3-pyruvic
acid (IPyA) pathway (Trp→ IPyA→ indoleacetaldehyde (IAAld)→ IAA); in this study,
the involvement of an L-amino acid oxidase gene cluster in the biosynthesis of IAA was
also shown. In H. seropedicae the difficult discrimination is similar to the case of Arthrobacter
spp. [30]. However, according to genomic studies of Pedrosa et al. [56], there are four
possible pathways in this strain to produce IAA from Trp. The most probable is via IPyA to
IAA catalyzed by tryptophan transaminase and indole pyruvate ferredoxin oxidoreductase.
Genes of the other possible metabolic pathways have been mapped in the genome: (1) Trp to
IAA via IAM; (2) from IAM to IAC via indole-acetonitrile and (3) Trp to IAA via tryptamine
and IAAld [56].

Considering that many bacteria require Trp supplement to synthesize significant
amounts of IAA, the question arises as to whether enough levels of this hormone are
available inside the plant. The outcome of the interaction between the plant and PGPB
includes stimulation of plant growth and yield, modification of the plant’s pool of growth
regulators—resulting in stimulation of plant growth [51], scavenging of plant metabolites—
particularly the toxic ones—for their growth and, last but not least, nitrogen fixation.
Auxin’s synthesis reaches its maximum at stationary phase, indicating a cell density-
dependent production [53] generally associated with quorum sensing auto-inductor pro-
duction. The auto-inductor molecules have a community regulatory function which can
be closely related to plant colonization. However, further studies are necessary, partic-
ularly at a community level, to understand the role played by IAA and auxins in the
communications between bacteria and bacteria and host plant.

The competitive behavior showed by B. ambifaria for Trp uptake, could be also ex-
pressed in field conditions where this bacterium is very common, particularly in Europe
in maize rhizosphere [57]. This competitiveness can explain the failure of some strain’s
inoculation in field trials. However, even if a lower amount of IAA was obtained by mixing
the four bacterial strains, a positive effect on plant growth and yield has still been recorded
for this consortium [9–11,19,58]. This situation is possibly related to the establishment
of a community inside the host-plant, which confers to the consortium the capability of
colonization and competitiveness toward the autochthonous microbial community [10].

Several Burkholderia species showed ACC deaminase activity; except for B. ambifaria—
for which enzymatic activity was never detected previously—18 species of the genus
exhibited ACC deaminase activities in the range from 2 to 15 µmol of ketobutyrate h−1 mg
protein−1 [59]. The presence of the ACC deaminase gene (acdS) has been reported in H.
seropedicae SmR1 and species and strains belonging to the same genus [23]. Moreover, the
presence of acdR (ACC deaminase regulatory protein), which is necessary for optimum
ACC deaminase expression in the presence of ACC, has been reported in this genus as well.
The lack of ACC deaminase activity in A. brasilense and G. diazotrophicus may be related to
the N2-fixing activity of these bacteria. In some Rhizobia, the expression of acdS is under
the regulation of the nitrogen fixation (nifH) promotor, linking ACC deaminase with nodule
formation [60]. In Mesorhizobium loti MAFF303099, the NifA protein has been reported
to play a regulating role of ACC deaminase expression, which occurs only inside formed
nodules [60]. However, since no records are present in literature about G. diazotrophicus, we
cannot exclude that the behavior of ACC deaminase is similar to M. loti. Instead, findings
so far, suggest that acdS gene is not present in Azospirillum genus and absence of activity
in some strains has been already reported in the literature [61]. Moreover, the absence of
ACC deaminase activity when the four strains were cultured together might be due to the
N2-fixing activity of G. diazotrophicus that inhibits, in single culture as well as in mixed
cultures, the use of ACC as a nitrogen source.
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The synthesis of IAA and the presence of ACC deaminase activity [62], suggest that
bacteria utilize the tryptophan precursor—exudated by roots—and synthesize and excrete
IAA. The latter, in turn, can be taken up by the plants and, together with the pool of
endogenous plant-synthesized hormone, can stimulate plant cell proliferation and/or cell
elongation. In the meantime, IAA stimulates the synthesis of ethylene in the plant, through
the transcription of the enzyme ACC synthase that catalyzes the formation of ACC, which
can be released by the plants, and then taken up by bacteria, acting as an ACC sink [62].
A further step forward, is when bacteria possessing the acdS gene can cleaved ACC by
ACC deaminase. Bacterial ACC deaminase, which is generally present at a relatively low
level, is induced by the increasing amounts of ACC deriving from the stress induction by
ACC synthase in the plant [62]. The net result is the lowering of plant ethylene synthesis,
which is particularly helpful in reducing stress ethylene, which is deleterious for the plants.
Comprehension of the competitiveness of PGPB, based on their characteristics, is rather
complex, though several studies are consistent with the possession of ACC deaminase
activity facilitating bacterial competitiveness or persistence in the environment.

The phosphate solubilizing capability underlined for the four strains has important
environmental and economic consequences. Nowadays, the phosphate supplementation
in agriculture is commonly obtained by means of synthetic chemical fertilizers. The
application of these products not only represents a huge cost for the farmers but also
contributes to environmental pollution. The phosphate supplementation is obtained
only through continuous fertilization campaigns and the chemical compounds applied,
which lead to a stratification of inaccessible forms of phosphates in soils. Inoculation of
PSB, instead of synthetic chemical compounds, could support plant nourishment whilst
mobilizing immobilized phosphorous in lightly productive and unproductive agricultural
soils [17] and preserving soils from losses of this essential chemical element [63]. Inoculation
of PSB—belonging mainly to Rhizobium, Pseudomonas, Azotobacter, and Bacillus genera—has
been already used as an alternative fertilization strategy, obtaining increasing phosphorous
availability, without changing the soil composition [17].

Most of the literature concerning interactions of PGPB and plants, describe in vitro or
greenhouse growth experiments; only a few articles contain field experiment and consider
the PGPB effects on plant growth promotion and soil health. In our case, we obtained a
positive influence of PGPB treatment on all investigated plant-growth and development
parameters and, notably, in soil fertility status. Thus, the PGPB stimulant properties—
underlined with the broth cultures assays—were confirmed by the field experiment results.

Indeed, soil health was positively influenced in terms of fertility. The application
of PGPB consortium increased total organic carbon, organic matter, and available P and
allowed to keep good concentrations of the other nutrients until harvest. Soil resources
have been exploited to the fullest, allowing the plants to access resources not otherwise
available. This phenomenon must be ascribed to the ability of PGPB strains to mobilize
nutrients and to fix atmospheric nitrogen [64]. Similar results are already reported by other
authors [65,66] and are mandatory for an effective plant growth promotion.

Bacterial inoculum presence also promoted positive changes in soil microbial commu-
nity physiological profile. PGPB are already known to increase exudation from roots of
host plants, which may, in turn, support the growth of microorganisms and/or influence
their metabolic activity [67]. Amplitude and variability of substrate spectra metabolized by
soil microbial populations are considered an indirect index of community biodiversity [68],
including in the case of ectomycorrhizal [69] and endophytic fungi [70].

Based on NGS results, seed bacterization was able to alter the soil bacterial community
composition. Diversity and Richness values were higher in the presence of the bacterial
treatment. Also, the comparison of the abundances among the common genera found in the
control and SIB samples underlined an alteration of the community structure. The effects
of PGPR on soil microbial community has also been underlined by other authors [71–74]
with transient or long-term effects [75]. In contrast, other authors reported no changes in
microbial community structure [76] or only slight changes [77] after inocula application. In
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any case, the ways that PGPB perform modifications have not yet been clarified [78]. A
major number of developmental stages should be taken into account to study soil microbial
community changes during crop growth. A recently published article by Wang et al. [79]
reports the resilience of the autochthonous soil microbial community. In any case, the
improvement of soil microbial diversity provides stability and support to ecosystem func-
tions linked to biogeochemical cycling [80]. The microbial composition and richness of the
soil support various ecosystem functions (e.g., crops’ productivity and diversity, carbon
assimilation, and cycling of nutrients) [80–82].

This positive effect on soil health and PGP properties were made evident by inoculated
plants thriving, especially at harvest. Among PGP properties that induced this status, one
key feature was certainly the ability to synthesize IAA described previously for all inves-
tigated strains. This hormone, in fact, like other auxins stimulates cell elongation—with
consequent better development of plants—and is recognized to have a positive influence
on chlorophyll a and b synthesis [83]. Besides, the phosphate solubilizing activity detected
in all strains also contributed to this growth stimulation. A. brasilense, B. ambifaria, G. dia-
zotrophicus, and H. seropedicae metabolites solubilized phosphorus and made this essential
element available for absorption. Therefore, inoculated plants had better nourishment for
their growth with respect to the control ones. Moreover, B. ambifaria and H. seropedicae may
have supplied a contribution in lowering stress ethylene, thus giving the possibility for
inoculated plants to thrive.

The increase of plant dry matter in response to PGPB inoculation is commonly reported
in the literature [9,84]. This increase has to be ascribed mostly to N2-fixation [85]. N2-
fixation promotes plant N uptake [86] and the synthesis of essential elements—modulating
hormones, enzymes, and siderophores [87] implicated in plant growth and development.
Furthermore, the positive influence of PGPB on all pigment fractions was previously
described by different authors and, for plant growth, also under stress conditions [88].

5. Conclusions

In summary, the results obtained allowed us to assess the positive influence on carrots
growth and development in an open field-experiment, exerted by all PGPB strains investi-
gated. The positive effect can be ascribed to the different pathways of auxins production,
phosphate solubilizing capability and, for H. seropedicae and B. ambifaria, also to enable ACC
deaminase activity. All plant-growth and development parameters were positively affected
by bacterial inoculation. Seed inoculation also affected soil fertility status and microbial
communities’ physiological and molecular profiles, underlying that these strains could
be useful in improving agricultural productions whilst safeguarding health and microbial
diversity of soils. Further analysis is need to confirm the effects of bacterial inoculation on
the soil microbial community, including other microbial techniques. The latter can produce
some biases (e.g., NGS includes DNA from dead cells and culturable techniques exclude
uncultured taxa); therefore, a study with complementary advanced methods could help
to assess the validity of the results (e.g., fluorescence in situ hybridization to ascertain the
presence of whole active cells). Future studies should also include the presence of and
the connections among other microbial groups relevant to the soil biome, such as fungi,
microfauna, and viruses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11073274/s1, Figure S1: Alpha diversity rarefaction curves of the microbial richness of
Control and SIB samples according to their respective Sample Size. Alpha diversity rarefaction curve
was obtained by PAST 4.03, Table S1: Filtered Read Paired-End(PE), raw and post-QualityCheck(QC)
amplicons (non-chimeric) obtained for Control and SIB (seed inoculated with bacteria) samples,
Table 2: Distribution of microbial taxa (%) within Control and SIB (seed inoculated with bacteria)
soils. Data were processed by excluding the abundances of ASVs < 1%.
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