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Abstract: In the design of the six degrees of freedom (6-DOF) flight simulation system, the unmodeled
dynamic, transient performance and steady-state performance of the system are generally concerned.
Considering that the model of flight simulation system is highly nonlinear and requires high response
speed and high stability, this paper applies L1 adaptive controller to the control of flight simulation
platform. The controller has a low-pass filter in feedback loop to avoid high frequencies in the control
signals, and the required transient performance can be enhanced by increasing the adaptive gain,
which can improve the transient, stability, and smoothness of the flight simulator platform. The
performance of the L1 adaptive controller is obtained by comparison with the traditional model
reference adaptive controller (MRAC). In addition to maintaining the good transient response of
MRAC, the L1 adaptive controller improves the stability of the system. The output amplitude of
the actuator is reduced by 39.95%, which effectively reduces the performance requirements of the
actuator. Some additional experimental evaluations are carried out to show the performance of
the controller.

Keywords: L1 adaptive control; Stewart; Gough; flight simulator; MRAC

1. Introduction

According to Boeing’s annual statistics on flight accidents, LOSS-OF-CNOTROL In-
Flight (LOC-I) has become the primary cause of fatal commercial aviation fatalities [1–4],
and there is no effective way to avoid the aircraft entering all abnormal conditions. There-
fore, the pilot should adequately train by practicing the recovery technique many times on
flight simulators before maneuvers on a real aircraft. However, for safety reasons, the train-
ing of upset recovery can only be carried out on aerobatics or flight simulators [5]. Thus, the
flight simulator becomes the only tool that can safely, cost-effectively, and systematically
carry out such abnormal state correction training [6]. Abnormal states such as high-altitude
stall, wind shear, and turbulence are usually accompanied by the abnormal attitude of the
aircraft and the large changes of angular velocity and acceleration, which involve higher
requirements of the transient characteristics and anti-high frequency interference ability of
the flight simulator control system. The six degrees of freedom (6-DOF) Stewart-Gough
platform is used in the design of flight simulators because of its advantages of multi-DOF,
high precision, and high load. Research on control strategy of the platform is the key to
improve the motion fidelity of simulator.

In the last decades, there have been some remarkable attempts to control the Stewart-
Gough flight simulator platform in the task space [7–10]. Two classes of approaches are
being actively studied to maintain the performance of the platform in the presence of
parameter uncertainties: Robust control [11–14] and adaptive control [15–18]. The model
reference adaptive controller (MRAC) is a typical structure of the adaptive control system.
One advantage of the MRAC method is that the accuracy of the platform will be improved
over time, because the MRAC mechanism constantly extracts parameter information from
tracking errors. However, when the adaptive rate is small, a large amplitude of control
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signal is easy to appear during the transient. When the adaptive law is large, the system will
have high-frequency oscillation. The improvement of the transient performance of adaptive
controllers has been addressed from various perspectives in numerous efforts [19–26].
Among these efforts, the achievement of L1 adaptive control proposed in literature [26] is
the most outstanding, and the L1 adaptive controller is applied to the control field of flight
simulation platform. Due to the advantage of the separation of control law and adaptive
law, the low-pass filter is added to the control input to avoid the high-frequency noise in
the control signal. The structure diagram of L1 adaptive flight simulation control system is
shown in Figure 1.

Figure 1. Structure diagram of the L1 adaptive flight simulation control system.

An L1 adaptive controller for Stewart-Gough platform is presented in this paper.
In this method, L1 gain is introduced to ensure the asymptotic stability of the system.
Another feature is the introduction of the low-pass filter in the design of control rate to
avoid high frequency in the control signal, and the filter can also be used to reduce the
output amplitude of the actuator in transient state. This paper is organized as follows.
Section 1 states the background of L1 adaptive control development. Section 2 gives the
dynamic model of the Stewart-Gough flight simulation platform. In Section 3, the L1
adaptive controller based on 6-DOF Stewart-Gough flight simulator is designed, and its
simulation results analysis is in Section 4. Finally, in Section 5, the paper is summarized.

2. Dynamic Model of Stewart-Gough Flight Simulation Platform

In this paper, the dynamic model of Stewart-Gough flight simulation platform is built
based on the virtual working principle. The experimental platform is shown in Figure 2.
The virtual work equation, according to the authors of [27], is:

δqTτ + δxT
p F̂p + ∑6

i

(
δxT

i1 F̂i1 + δxT
i2 F̂i2

)
= 0, (1)

where δq = [δq1 . . . δq6]
T denotes the virtual displacement vector of actuated joints,

τ = [dτ1 . . . dτ6]
T denotes the force and torque vector acting on the actuated joints, and

δxp =
[
δxp, δyp, δzp, δθxp , δθyp , δθzp

]T
denotes the virtual variables of a contacting point of

the moving platform. Furthermore, δxi1 =
[
δxi1 , δyi1 , δzi1 , δθxi1

, δθyi1
, δθzi1

]T
represents the

virtual variables vector of the upper legs center of gravity (c.o.g.). Similarly, δxi2 denotes
the virtual displacement vector c.o.g. of down legs, F̂p denotes the inertial forces at the
c.o.g. of the moving platform, and F̂i1 and F̂i2 are the inertial forces at the c.o.g. of up legs
and at the c.o.g. of the down legs, respectively, which are defined from the relationship,
according the authors of [27], as:

F̂p =

[
fd + mpg−mp

..
xp

nd − Ip
.

ωp −ωp × Ipωp

]
= τd,p −Mp

..
xp − Cp

.
xp − Gp, (2)
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F̂i1 =

[
mi1 g−mi1

..
xi1

−Ii1
.

ωi1 −ωi1 × Ii1 ωi1

]
= −Mi1

..
xi1 − Ci1

.
xi1 − Gi1 , (3)

F̂i2 =

[
mi2 g−mi2

..
xi2

−Ii2
.

ωi2 −ωi2 × Ii2 ωi2

]
= −Mi2

..
xi2 − Ci2

.
xi2 − Gi2 , (4)

where Mp, Mi1 , and Mi2 denote the mass matrix of the moving platform, of the up legs,
and of the down legs given in Equation (5); and Cp, Ci1 , and Ci2 denote the Coriolis and
centrifugal matrix of the moving platform, of the up legs, and of the down legs given
in Equation (6). Furthermore, Gp, Gi1 , and Gi2 denote the gravity vector of the moving
platform, of the up legs, and of the down legs given in Equation (7).

Mp =

[
mp1 0

0 Ip

]
Mi1 =

[
mi11 0

0 Ii1

]
Mi2 =

[
mi21 0

0 Ii2

]
, (5)

Ci1 =

[
0 0
0 ωi1 × Ii1

]
Ci2 =

[
0 0
0 ωi1 × Ii1

]
Cp =

[
0 0
0 ωp × Ip

]
, (6)

Gp =

[
−mpg

0

]
Gi1 =

[
−mi1 g

0

]
Gi2 =

[
−mi2 g

0

]
, (7)

Figure 2. Six degrees of freedom (6-DOF) flight simulation experiment platform.

The virtual displacement δq of the actuated joints and the virtual displacement of the
center of gravity δxi1 and δxi2 of the legs, however, must be compatible with the kinematic
constraints imposed by the virtual displacement of the moving platform. Therefore, it
is necessary to obtain the Jacobian matrix Jp and Ji1 , Ji2 of the virtual displacement from
the center of gravity of the actuated joints and the legs to the virtual displacement of the
moving platform. For the Stewart-Gough platform, according to Tsai LW in [5], we have:

δq = Jpδxp, (8)

δxi1 = Ji1 δxp, (9)

δxi2 = Ji2 δxp, (10)

Substituting Equations (8)–(10) into (1) yields:

JT
p τ + F̂p + ∑6

i

(
JT
i1 F̂i1 + JT

i2 F̂i2

)
= 0, (11)
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Substituting Equations (5)–(7) into (11) and simplifying yields the general closed-form
dynamic formulation of Stewart-Gough platform represented by Equation (12).

M
..
X + C

.
X + G = F, (12)

where M denotes the mass matrix of the Stewart-Gough platform given in Equation (13),
C denotes the Coriolis and centrifugal matrix of the Stewart-Gough platform given in
Equation (14), G denotes the gravity vector of the Stewart-Gough platform given in Equa-
tion (15), F denotes the generalized actuated force and external disturbance force of the
Stewart-Gough platform given in Equation (16), and X denotes the vector of moving plat-

form motion variables X =
[

xp, yp, zp, θxp , θyp , θzp

]T
.

.
X denotes the moving platform twist

vector, and
..
X denotes the moving platform acceleration vector.

M =
(

Mp + ∑6
i

(
JT
i1 Mi1 Ji1 + JT

i2 Mi2 Ji2

))
, (13)

C =
(

Cp + ∑6
i

(
JT
i1 Ci1 Ji1 + JT

i2 Ci2 Ji2 + JT
i1 Mi1 Ji1 + JT

i2 Mi2 Ji2

))
, (14)

G =
(

Gp + ∑6
i

(
JT
i1 Gi1 + JT

i2 Gi2

))
, (15)

F = JT
p τ + τd,p, (16)

3. Controller Design
3.1. The Architecture of the MRAC Adaptive Controller

L1 adaptive control is developed on the basis of MRAC. Therefore, we consider the
architecture of the 6-DOF Stewart-Gough flight simulation platform based on MRAC given
by Figure 3 [28].

Figure 3. Closed-loop model reference adaptive controller (MRAC) architecture.

The state equation and output equation of the 6-DOF Stewart-Gough flight simulation
platform is:

.
x(t) = Apx(t) + Bpup(t)

y(t) = cTx(t) (17)

where x(t) ∈ Rm denotes the state of the system, Ap ∈ Rm×m denotes the state matrix,
Bp ∈ Rm×n denotes the input matrix, up(t) ∈ Rn denotes the control input, cT ∈ Rm×m

denotes the output matrix, and y(t) ∈ Rn denotes the output of the system.
The reference system of the Stewart-Gough flight simulation platform, given by [29]:

.
x(t) = Amx(t) + bkgum(t)

y(t) = cTx(t) (18)
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where Am ∈ Rm×m denotes a Hurwitz matrix, b ∈ Rm denotes a known constant vector,
(Am, b) is controllable, and kg = lim

s→0

(
1/
(

cT(sI − Am)
−1b
))

denotes a known constant,

which can ensure that the system has zero steady-state error when the input is constant.
The model reference adaptive controller is given by:

up(t) = K̂(t)um(t) + F̂(t)x(t) + δ̂(t) (19)

where K̂(t) ∈ Rm×m denotes the feed-forward gain matrix of the system, F̂(t) ∈ Rm×n denotes
the feedback compensation matrix of the system, and δ̂(t) denotes the input disturbances.

3.2. The Architecture of the L1 Adaptive Controller

In order to ensure that the input and output of uncertain linear systems can track
the input and output of the reference system in real time, we can reform the MRAC of
the Stewart-Gough flight simulation platform given in Equation (18) into the following
control structure:

.
x(t) =

(
Ap − BpFT

)
x(t) + BpK(t)u(t) + Bp

(
FT − F(t)

)
x(t) + Bp δ̂(t)

y(t) = cTx(t) (20)

where the system is divided into a linear time invariant (LTI) and linear time varying (LTV)
system. After simplification, the system yields [30]:

.
x(t) = Amx(t) + b(ω(t)u(t) + θ(t)x(t) + σ(t))

y(t) = cTx(t) (21)

where x(t) ∈ Rm represents the state of the system, u(t) ∈ Rn represents the control
input, cT ∈ Rn×m represents the output matrix, b ∈ Rm×n represents the known constant
matrix, y(t) ∈ Rn denotes the regulated output, ω(t) ∈ Rn×n denotes the input uncertainly
parameter of the model, θ(t) ∈ Rn×m is the uncertainly parameter of the model itself, and
σ(t) ∈ Rn×1 represents the unmatched disturbances. Am ∈ Rm×m represents a Hurwitz
matrix, and (Am, b) is controllable and Am − A = bθ(t).

For the linear time invariant parameterized system in Equation (21), we give the
following state observer model:

.
x̂(t) = Am x̂(t) + b

(
ω̂(t)u(t) + θ̂(t)x(t) + σ̂(t)

)
ŷ(t) = cT x̂(t) (22)

where ω̂(t), θ̂(t) and σ̂(t) denote the parameter estimates of ω(t), θ(t) and σ(t). The block
diagram of the closed-loop system is shown in Figure 4.

Next, we use Lyapunov stability theory to obtain adaptive law, considering the fol-
lowing Lyapunov function candidate [30]:

V = eT(t)Pe(t) +
1
Γ

(
ω̃T(t)ω̃(t) + θ̃T(t)θ̃(t) + σ̃T(t)σ̃(t)

)
(23)

where e(t) = x̂(t)− x(t), ω̃ = ω̂(t)− ω(t), θ̃ = θ̂(t)− θ(t), σ̃ = σ̂(t)− σ(t) denotes the
tracking errors between state predictor and system, Γ > 0 denotes the adaptation gain, and
P = PT > 0 denotes the solution of equation AT

mP + PAm = −Q, Q > 0. The adaptive laws
can be obtained by solving algebraic Lyapunov equation. Using projection operator [16]
Proj(·, ·) to prevent parameter drift, we have:

.
θ̂(t) = ΓProj

(
θ̂(t),−bT Pe(t)xT(t)

)
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.
ω̂(t) = ΓProj

(
ω̂(t),−bT Pe(t)uT(t)

)
.
σ̂(t) = ΓProj

(
σ̂(t),−bT Pe(t)

)
(24)

Figure 4. Closed-loop L1 adaptive controller architecture.

The fundamental difference between the MRAC in Figure 3 and the predictor-based
of L1 adaption in Figure 4 is the design of the control law. The design of error signal and
controller are not independent in MRAC system, but they are independent in L1 adaptive
control system. Therefore, in order to ensure the stability of the system, besides using
the Lyapunvo theory to design the stability of the error signal, the stability design of the
control law is also needed. The control law is design through gain feedback, given by [31]:

u(s) = −kD(s)
(
η̂(s)− kgr(s)

)
(25)

where r(s) and η̂(s) denote the Laplace transforms of r(t) and η̂(t) , ω̂(t)u(t) + θ̂(t)x(t) +
σ̂(t), kg , −1/

(
cT A−1

m b
)

denotes the constant matrix, k > 0 denotes the feedback gain,
and D(s) denotes the strictly proper transfer function, leading to a strictly proper stable [32]:

D(s) =
ωKD(s)

1 + ωKD(s)
(26)

In which

L , max
θ∈Θ
‖ θ ‖L1, max

i

(
∑

j

∣∣θij
∣∣)

H(s) , (sI − Am)
−1b

G(s) , H(s)(1− C(s)) (27)

The controller needs to satisfy the following L1-norm conditions for the stability of
the system [33]:

‖ G(s) ‖L1 L < 1 (28)

4. Experiment Verification
4.1. Plant

The modeling parameters required for the experiment are from the 6-DOF Stewart-
Gough flight simulator platform shown in Figure 2, and the dynamic model and the L1
adaptive controller were implemented in MatLab. The platform was composed of six
cylinders, six universal hinges, and two platforms. The lower platform was fixed on the
foundation plane. With the help of the telescopic motion of six cylinders, the motion of the
upper platform with six degrees of freedom (X,Y,Z,α,β,γ) in space can be completed, so that
all kinds of space motion posture can be simulated. The upper end points of six cylinders
formed three fulcrums of the upper platform, and the lower end points of six cylinders
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formed three fulcrums of the lower platform. The upper and lower three fulcrums were,
respectively, on the assumed circle, and were divided equally by 120 degrees, which were
the vertices of two equilateral triangles. The geometric and inertial parameters of the
platform are shown in Table 1.

Table 1. Platform geometric and inertial parameters.

Variable Value Units

radiuslower 0.504 m
radiusupper 0.504 m

θAi [30,30,150,150,270,270] deg
θBi [0,60,120,180,240,300] deg
mp 28.7 kg
mi1 2.77 kg
mi2 0.54 kg
ci1 0.5456 m
ci2 0.305 m

Ixx,p 1.13 kg m2

Iyy,p 1.13 kg m2

Izz,p 2.23 kg m2

Ixx,ci1
0.21 kg m2

Iyy,ci1
0.21 kg m2

Izz,ci1
0.001 kg m2

Ixx,ci2
0.0677 kg m2

Iyy,ci2
0.0677 kg m2

Izz,ci2
0.000114 kg m2

g [0,9.8,0] N/kg

4.2. Path Planning

We built the dynamic model of the flight simulation platform according to Equa-
tion (12), and the controller calculated the required actuator force or torque to make the
robot follow the desired translation and orientation trajectory. We used the translation and
orientation variable as the coordinate of the platform defined by X = [x θ]T , in which the
translation is represented by x =

[
xp yp zp

]T , while the moving platform orientation is

represented by θ =
[
θxp θyp θzp

]T
. Both of the translation and orientation planning were

built using a sinusoidal motion given by:

r =
[

xplan
θplan

]
=

 xr + Arsin
(

ωplant
)

Aosin
(

ωplant
)  (29)

We used the twist velocity variable as the coordinate of the platform defined by
.
r =

[
vplanωplan

]T
, and the twist velocity planning was obtained after differentiating the

Equation (30) given by:

.
r =

[
vplan
ωplan

]
=

 Arωplancos
(

ωplant
)

Aoωplancos
(

ωplant
)  (30)

The values used in path planning of the 6-DOF Stewart-Gough flight simulation
platform simulations are given in Table 2.
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Table 2. Platform geometric and inertial parameters.

Variable Value Units

x0 [0, 0, 0.48]T m
.
x0 [0, 1.0, 0]T m2

rstep [0.2, 0.3, 0.78, 0.25, 0.5, 1.0]T m
.
rstep [0, 0, 0, 0, 0, 0]T m2

xr [0, 0, 0.2]T m
Ar [0.2, 0.3, 0.14]T m
Ao [0.25, 0.5, 1.0]T deg

ωplan 1.6 rad/s
k 80 -
L 150,000 -

ωn diag[10,10,10,10,10,10] -
ξ diag[0.7,0.7,0.7,0.7,0.7,0.7] -
ω ω ∈ [0.8, 1.2] -

θ(t) |θ(t)| ≤ 3800 -
σ(t) |σ(t)| ≤ 400 -

4.3. Control System

In the initial position x0 = [0 0 0.48]T and
.
x0 = [0 1.0 0]T of the flight simulation

platform, we calculated the dynamics equation parameters of the system in Equation (12)
according to the geometrical and inertial parameters in Table 1.

A =

[
06×6 I6×6
06×6 −M−1

0 C0

]
B =

[
06×6
M−1

0

]

M0 =



39.1978 −0.0000 0.0000
−0.0000 39.1978 −0.0000
0.0000 −0.0000 33.8082

0.0000 0.2242 −0.0000
−0.2242 0.0000 −0.0000
0.0000 0.0000 −0.0000

−0.0000 −0.2242 0.0000
0.2242 0.0000 −0.0000
−0.0000 −0.0000 −0.0000

1.7788 −0.0000 −0.0000
−0.0000 1.7788 0.0000
−0.0000 0.0000 4.6912



C0 =



0.0000 0.6085 0.0000
0.6085 −0.0000 −11.4379
0.0000 4.5986 0.0000

0.6912 −0.0000 0.5702
0.0000 −0.6912 −0.0000
0.2422 −0.0000 0.0000

0.6909 0.0000 −0.2422
0.0000 −0.6909 −0.0000
−0.0000 −0.0000 0.0000

−0.0000 −0.0610 0.0000
0.0610 0.0000 −0.0000
−0.0000 1.1043 −0.0000


G0 =

[
0 0 329.5711 0 0 0

]T (31)

where M0, C0, and G0 denote the initial date of M, C, and G.
According to the 6-DOF Stewart-Gough flight simulation platform dynamic equation

shown in Equation (12), we chose the following differential equation as the reference model:

..
X + 2ξωn

.
X + ω2

n = ω2
n (32)

where ξ ∈ R denotes the damping ratio and ωn denotes the undamped natural frequency.
The state equation of the reference model is:

.
x(t) = Amx(t) + bkgum(t) (33)

where

Am =

[
06×6 I6×6
−ω2

n −2ξωn

]
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b =
[

06×6 M−1
0

]T

kg = −
(

cA−1
m b
)−1

(34)

Further, we can derive the initial value of ω(0), θ(0), and σ(0), where

ω̂(0) = [I6×6]

θ̂(0) =
[

M0ω2
n 2M0ξωn − C0

]
σ̂(0) = [−G0] (35)

The L1 adaptive controller was designed based on Equations (22), (24), and (25)
as follows: .

x̂(t) = Am x̂(t) + b
(
ω̂(t)u(t) + θ̂(t)x(t) + σ̂(t)

)
.

ω̂ j(t) = ΓProj
(

ω̂j(t),−bT Pe(t)uT(t)
)
{j,j}

.
θ̂i(t) = ΓProj

(
θ̂i(t),−bT Pe(t)xT(t)

)
{i,:}

.
σ̂(t) = ΓProj

(
σ̂(t),−bT Pe(t)

)
(36)

where [ ]{j,j} j = [1, . . . , 6] denotes the jth row jth column element of the matrix [ ], and

[ ]{i,:} i = [1, . . . , 12] denotes the ith row vector of the matrix [ ],. The control signal is
given by:

D(s) =
ωKD(s)

1 + ωKD(s)
(37)

where D(s) = 1/s, K = kI6×6 , k > 0.

η̂(t) , ω̂(t)u(t) + θ̂(t)x(t) + σ̂(t)

It can be derived straightforwardly that L = 150,000, while ‖ G(s) ‖L1 L can be
obtained. Figure 5 shows λ =‖ G(s) ‖L1 L with respect to the bandwidth of the low-pass
filter ω. Let ω = 0.8, obtain k = 80 that satisfies the L1-gain upper bound. Table 2 has the
constant values used in the L1 adaptive controller.

Figure 5. λ with respect to ω.

In the design of the L1 controller, we needed to estimate the boundary of parameters. Here,
we mainly used the experimental method to estimate the boundary of ω, θ and σ. Take the param-
eter boundary estimation of σ as an example. First, set a larger boundary, then make the platform
control input r =

[
0.2sin(πt), 0.3sin(πt), 0.48+ 0.14sin(πt), π

12sin(πt), π
6 sin(πt), π

3 sin(πt)
]

and impose external disturbance on the moving platform to obtain the accurate boundary of
parameter σ under the complex state of the moving platform. The curve data of parameter σ is
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shown in Figure 6, and the bounds of σ is |σi(t)| ≤ 400 , i = [1, . . . , 6]. Further, we can obtain
the following conservative bounds for the unknown time-varying signals for the implementation
of the projection operator, ωi ∈ [0.8 1.2], i = [1, . . . , 6]; |θi(t)| ≤ 3800 , i = [1, . . . , 6].

Figure 6. Curve trajectory of parameter σ in complex state.

4.4. Simulation Results

In the experimental verification, we tested the step response and frequency response
of the control system. The numerical simulation included two parts. The first part tested
the MRAC and L1 control performance of r = [0.2 0.3 0.78 0.25 0.5 1.0], as illustrated
in Figure 7. The second part tests tested the MRAC and L1 control performance of
r =

[
0.2sin(πt), 0.3sin(πt), 0.48 + 0.14sin(πt), π

12 sin(πt), π
6 sin(πt), π

3 sin(πt)
]
, as illus-

trated in Figure 8. Because of space limitation, we only give the simulation data of position
DOFs, and the attitude DOFs are similar to it.

The simulation results of the MRAC are shown in Figure 7a,c,e and the L1 adaptive
controller shown in Figure 7b,d,f for step reference inputs r = [0.2 0.3 0.78 π/12 π/6 π/3].
We found that both of MRAC and the L1 adaptive controller had the same instantaneous
response characteristics. Therefore, we could improve the transient response time by
changing the state matrix Am to meet the requirements of abnormal attitude, large angular
velocity, and acceleration changes of the aircraft in the abnormal flight state.

From Figure 7g,h, it can be seen that the instantaneous output peak of L1 adaptive
controller was significantly lower than that of MRAC. Taking the output of No.2 leg driver
(u2) of the Stewart simulator as an example, the instantaneous output peak value of MRAC
controller was 438 mNm, while the instantaneous output peak value of leg 2 corresponding
to L1 adaptive controller was 263 mNm, which reduced 39.95% of the peak output. The
results show that the L1 adaptive controller improved the instantaneous performance of
the actuator and reduced the requirement for the performance of the actuator without
changing the response speed.

It can be seen from Figure 8 that the L1 adaptive controller can filter out the high-
frequency signals in the control variables and add the low-frequency signals to enhance the
smoothness of flight simulator motion and improve the motion sense effect of abnormal
state recovery training on the flight simulator.
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Figure 7. Performance of MRAC and L1 adaptive controller for r = [0.2 0.3 0.78 0.25 0.5 1.0]. (a) X-position curve of the
platform when using MRAC controller; (b) X-position curve of the platform when using L1 adaptive controller; (c) Y-position
curve of the platform when using MRAC controller; (d) Y-position curve of the platform when using L1 adaptive controller;
(e) Z-position curve of the platform when using MRAC controller; (f) Z-position curve of the platform when using L1

adaptive controller; (g) Torque u curve of the platform when using MRAC controller; (h) Torque u curve of the platform
when using L1 adaptive controller.
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Figure 8. Performance of MRAC and L1 adaptive controller for r =
[
0.2sin(πt), 0.3sin(πt), 0.48 + 0.14sin(πt), π

12 sin(πt),
π
6 sin(πt), π

3 sin(πt)
]
. (a) X-position curve of the platform when using MRAC controller; (b) X-position curve of the platform

when using L1 adaptive controller; (c) Y-position curve of the platform when using MRAC controller; (d) Y-position curve of the
platform when using L1 adaptive controller; (e) Z-position curve of the platform when using MRAC controller; (f) Z-position curve of
the platform when using L1 adaptive controller; (g) Torque u curve of the platform when using MRAC controller; (h) The torque u
curve of the platform with L1 adaptive controller.
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5. Conclusions

In this paper, an L1 adaptive controller was used in the control of the 6-DOF Stewart-
Gough flight simulation platform. The main contribution of this work is the design of
a 6-DOF simulation platform for L1 adaptive controller. Compared with the traditional
MRAC architecture, the L1 adaptive controller achieves the separation design of tracking
error signal and control input signal. Based on the stability design of tracking error of
traditional adaptive control, the L1 adaptive control considers the stability design of control
input, which tolerates higher adaptive gain and improves the transient performance of
the system. When designing the controller, this architecture will not affect the error signal.
It allows high adaptive gain and can easily track the control input so as to improve the
transient performance and robustness of the system.

The addition of low-pass filter not only improves the instantaneous performance of L1
adaptive controller without changing the response speed but also reduces the requirement
for the performance of the actuator. It can also filter out the high-frequency signal in the
control variables and add the low-frequency signal to the actual system to improve the
smoothness of flight simulator motion and improve the training effect of abnormal state
recovery on the flight simulator. Finally, the algorithm complexity of L1 adaptive controller
is a little high, and reducing the amount of on-line calculation is the main research direction
of this paper.
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