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Abstract: Analytical approximations for the acoustical properties of a rigid-porous matrix perforated
by labyrinthine slits are developed using classical theories for sound propagation in tortuous slits
and for sound absorption by double porosity materials. Predictions of enhanced low-frequency
absorption result from a combination of pressure diffusion and labyrinth tortuosity if there is a
high permeability contrast between the matrix and the labyrinthine slit. Additional insight into the
predicted influence of the properties of the porous matrix is gained by considering the matrix porosity
to be provided by inclined micro-slits. Extra tortuosity can be introduced by alternating the width of
the labyrinthine slit. An alternating-width vertical-wall labyrinth perforation is predicted to lead to
low-frequency absorption peaks in a relatively low-flow-resistivity and low-porosity matrix. Example
predictions, even when using underestimates of labyrinth tortuosity, demonstrate the potential of
labyrinthine slit perforations for achieving narrowband deep sub wavelength absorption peaks from
thin hard-backed porous layers.

Keywords: sound absorption; labyrinthine perforations; porous materials; inclined slits

1. Introduction

Conventional ways of improving the low-frequency absorption by a porous layer are
to increase its thickness and to mount it with an air space between it and a rigid backing
surface. Restrictions on space and weight in aerospace or automotive applications make
such solutions impractical. Perforation of porous materials may improve their sound
absorption [1,2]. Long convoluted sound channels or labyrinths in a solid matrix result
in good impedance matching [3] and high absorption coefficients at wavelengths much
greater than the layer thickness [4]. However, computations for complex perforations and
for labyrinthine structures use numerical methods such as Finite Element Modelling. This
paper offers analytical approximations for predicting the result of making labyrinthine slit
perforations in a rigid-porous layer. An array of narrow labyrinthine slits in a non-porous
solid may be considered as if it were a porous material with highly tortuous slit pores.
In this paper, contiguous units, each of which contains a labyrinthine slit, are considered
to form a rigid-porous solid acting, acoustically, as an effective fluid layer. Analytical
approximations for the acoustical properties of horizontal- and vertical-wall labyrinths in a
non-porous matrix use the classical result for sound propagation in a rigid-porous medium
with tortuous slit-like pores [5]. Then the dual-porosity theory [6,7] is used to predict the
results of incorporating labyrinthine slits in a matrix of a rigid-porous material with high
flow resistivity. The influence of additional tortuosity due to changes in labyrinthine slit
cross section [8] is considered. Useful narrowband low-frequency absorption is predicted
to result from pressure diffusion and tortuosity effects. Example predictions suggest
that labyrinthine slit perforations in porous materials offer a great potential for deep sub
wavelength narrowband absorption peaks.
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2. Labyrinthine Slits Formed by Walls Parallel and Normal to the Layer Surface

Consider a plane wave at normal incidence on a layer of contiguous rectangular unit
cells, each of which contains a single labyrinthine slit of width b with N folds in the slit
formed by walls of length | and width w. The walls are either parallel to (Figure 1a) or
normal to (Figure 1b) the surface on which the wave is incident. In this paper, the former
arrangement is called a horizontal-wall labyrinth and the latter arrangement is called a
vertical-wall labyrinth. Associated parameters are given H or V subscripts.
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Figure 1. (a) Unit cells containing a single labyrinthine slit, formed by walls either (a) parallel to or (b) normal to the
insonfied surface, detailing the associated dimensions, zigzag approximations to streamline paths (broken lines) and

path lengths.

The shortest paths through the slit labyrinths are approximated by the zigzag paths
represented by broken lines in Figure 1a,b. The corresponding tortuosity values (Tyz, Tyz)
are underestimates since the fluid streamlines must pass around the internal walls. On the
other hand, calculations of tortuosity (Tyc, Tyc) using piecewise linear paths along the
centres of the labyrinthine slits are overestimates since the streamlines will curve around
corners. Expressions for labyrinth tortuosity corresponding to Figure 1a,b and according
to these streamline path length estimates are given in Equations (1) to (4), respectively.
Predictions in this paper assume the zigzag path approximations.
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The expressions for bulk, (), and surface, ()g, porosities of the horizontal- and
vertical-wall labyrinth structures in Figure 1 are given in Equations (5) to (8),

Qpy = {[Nb(I+b+w)]/[((N+1)w+ Nb)(I + b+ 2w)]}, (5)
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Qs = b/ (1 + b +2w) ®)
Opy = {[(N+1)(I + b+ w)b]/[((N +2)w + (N +1)b)(I + b+ 2w)]}, )

The complex density, (o1 (w)), complex compressibility, (Cr. (w)), propagation constant,
(kr(w)), and normalised impedance (Z] (w)) of an effective fluid medium equivalent to a
labyrinthine slit structure are, respectively [5],

pL(w) = (T/Qp)p(w), p(w) = po/H(A), H(A) =1~ tanh (AV=i)/ (A=), Cr(w) = QpC(w) ©
c<w> = (pocoz)-l [v - w - DH (wmm))] A= (b/2)\/wopo/n, 10)

= w\/oL(W)CL(W), Zi(w) = (Qspoco) ' v/pL(w)/Cr(w)

00, ¢o, Npr and y are den51ty, sound speed, Prandtl number and dynamic viscosity in
air, respectively, ()p is either Qpy or Qpy, Qg is either Qg or Qgy and T is either Ty or
Tyz. Time dependence e~ '“! is understood where i = /(—1).

3. Labyrinthine Slit Perforations in a Rigid-Porous Matrix

With sufficient scale separation between the characteristic matrix pore size and the
labyrinthine slit width, a labyrinthine perforation in a porous matrix may be regarded as
a dual-porosity system. If there is a high permeability contrast between the matrix and
the labyrinth, the resulting bulk complex density, p4,1, and complex compressibility, Cyp,
are [6],

_ -1
pan ) = |+ EB0 ) i) = Culw) + (1 - O F(@)Culw@), @)

where p;; and C;,; represent the complex density and compressibility of the rigid-porous
matrix and F;(w) is the pressure diffusion function.
For a high permeability contrast, F;(w), is given by [6,7]

Fi(w) = [1+z;;;’,33<(‘g))] D(w) = w+\710M ):(1—QB)<(L/32)Z> (12)
_ 8D(0) 2(I+w)((N +1)w+ Nb) _ (1-0p)PR
M(w) = A2(1—Qp)’ Aa= (N+2)w+Nb+1 ' “a = Qo D(0) 13

where D(w) is a dynamic pressure permeability function, D(0) is the static pressure
permeability involving half the width, L, between perforation openings at the surface and
Ay is a pressure diffusion length. (), and 0;, denote the porosity and flow resistivity of the
porous matrix, respectively. In a horizontal-wall labyrinth, the distance between adjacent
slit openings, L, is (I + w). In a vertical-wall labyrinth, the distance between adjacent slit
openings is [(N + 1)w + Nb].

In Figure 2a, |F;(w)]| is plotted as a function of frequency for a 10-fold vertical-wall
labyrinthine slit perforation, in which a 3 mm wide labyrinthine slit is formed by 1 mm
wide, 45 mm long walls, in a porous matrix in which the pores have the form of micro-slits
(0.04 mm wide slits inclined at 70° to the normal, porosity 0.9). The acoustical properties of
a matrix of parallel identical slits of width bs inclined at 6 to the normal are given by Equa-
tions (9) and (10) with Qp replaced by Q;, b replaced by bs and T = Ty, = 1/(cos(8))? [5].
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Figure 2. (a) Plot of the modulus of the pressure diffusion correction function, |F;(w)|, against frequency for a vertical-wall
labyrinthine slit (w = 1 mm, b = 3 mm, [ =45 mm, N = 10) in a slanted slit pore matrix (0.04 mm wide slits at 70° to the
normal, porosity 0.9). (b) Plot of the corresponding imaginary part of the double porosity bulk modulus.

The flow resistivity, o, due to slit-like pores is calculated from [5]

_12uT

- ar 14)

where T, (), b are appropriate for the labyrinthine slit or inclined slit matrix.

The flow resistivity of the labyrinthine slit in a non-porous matrix (3.5 kPa s m~2) is
much smaller than that (1297 kPa s m~2) of the porous matrix. Figure 2b shows the corre-
sponding prediction for the imaginary part of the bulk modulus, Ky, (w) = 1/Cypr (w),
which shows a peak near the pressure diffusion frequency (97.5 Hz).

Figure 3 shows predictions of normal incidence absorption spectra assuming 5.8 cm
thick hard-backed layers of rockwool or melamine foam with parameters according to
the Johnson—-Champoux-Allard-Lafarge (JCAL) model (see Table 1) with and without
horizontal-wall labyrinthine slit perforations. The frequency range plotted in the figures is
restricted to below 1 kHz since the low-frequency performance is of most interest. As with
other forms of perforation [1,2], the higher permeability contrast between the perforation
and the porous matrix yields the more significant change in low-frequency absorption.
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Figure 3. Normal incidence absorption spectra predicted for 5.8 cm thick hard-backed porous layers of rockwool and
melamine foam described by the JCAL parameters listed in Table 1 with horizontal-wall labyrinthine slit perforations
(w=5mm, b =55 mm, | =40 mm, N =5 as shown on the right). Also shown (dash dot lines) are predictions for these
materials without perforation.
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Table 1. JCAL model parameter values assumed for rockwool [2] and melamine foam [9].
Material/Parameter O omkPasm2 T ko m? A um A pm
rockwool 0.94 135 2.1 33 x 107 49 166
melamine foam 0.99 12 1.01 1.5 x 1077 100 400

Figure 4a,b show predictions of normal incidence absorption coefficient spectra for a
5 cm thick hard-backed very-high-flow-resistivity slanted slit matrix with (solid line) and
without (dotted line) horizontal- and vertical-wall labyrinthine slit perforations, respectively.

1 1
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Figure 4. Normal incidence absorption spectra predicted for a 5 cm thick hard-backed inclined slit matrix (0.04 mm wide

slits at 70° to the normal, porosity 0.9) with (solid lines) and without (dotted lines) (a) a horizontal-wall labyrinthine

slit perforation (w = 2 mm, b =4 mm, [ = 40 mm, N = 8) and (b) a vertical-wall labyrinthine slit perforation (w = 1 mm,

b =3mm, [ =45mm, N = 10). The dash-dot lines represent predictions for the labyrinthine slit perforations in a non-porous

solid matrix.

The absorption peaks at 240 Hz in Figure 4a and 170 Hz in Figure 4b correspond
to the layer thickness being 1/28th and 1/40th of the incident wavelength, respectively.
Also shown are absorption spectra predicted for the labyrinthine slit perforations in a
non-porous rigid solid structure (broken black lines in Figure 4a,b) which result in rather
narrow absorption peaks.

For a horizontal-wall configuration such as that shown in Figure 1a, if the wall
width, labyrinthine slit width and slit folding number and hence the corresponding layer
thickness, (N + 1)w + Nb, are fixed, then the tortuosity and hence the frequency of the
lowest-frequency absorption peak are determined by the wall length. In a vertical-wall con-
figuration such as that shown in Figure 1b, if the wall width, wall length, and labyrinthine
slit width and hence the layer thickness, [ 4- b + 2w, are fixed, then the tortuosity and hence
the frequency of the lowest-frequency absorption peak are dominated by the number of
folds in the slit, N. These influences are illustrated in Figure 5a,b.
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Figure 5. Normal incidence absorption coefficient spectra predicted for 0.05 m thick hard-backed layer composed from a
inclined slit matrix (0.04 mm wide slits at 70° to the normal, porosity 0.9) with (a) varying wall length in a horizontal-wall
labyrinthine slit perforation (w = 1 mm, b = 5.1 mm, N = 8); [ = 0.04 m (solid line), I = 0.08 m (dotted line), / = 0.12 m
(dash-dot line) or (b) varying slit folding number in a vertical-wall labyrinthine slit perforation (w = 1 mm, b = 3 mm,
I =45 mm, N =5 (continuous line), N = 10 (blue dotted line), N = 15 (black broken line). The low absorption dash-dot lines
represent predictions for the respective labyrinthine slit perforations in a non-porous solid matrix.

In a horizontal-wall labyrinth with fixed w, b and N, increasing the wall length, [,
is predicted to decrease the frequency of the lowest-frequency absorption peak but to
decrease its magnitude also. Similarly, in a vertical-wall labyrinth with fixed w, b and I,
increasing the slit folding number, N, is predicted to decrease the frequency and magnitude
of the lowest-frequency absorption peak.

4. Alternating-Width Vertical-Wall Labyrinthine Slit Perforation in a Porous Matrix

If a slit has abrupt changes in cross section along its length, the fluid streamlines
are perturbed and, as a result, the tortuosity is increased. Consider the vertical-wall
labyrinthine slit shown in Figure 6 in which the slit width alternates between b and
b(1 + ). The broken line in Figure 6 indicates the assumed zigzag approximation to the
streamline path.

MZ+4q+1]

(w+b(1+8)/2

(N +2)w+ (N + 1)b(1+g)

Figure 6. A vertical-wall labyrinthine slit with alternating widths.

The tortuosity of this labyrinthine architecture, T4z, is the product of that resulting
from the zig-zag approximation of the streamline path and that due to the changes in cross
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section [8] which is the second factor in Equation (15). Similarly, the tortuosity, Towc, with
the slit centre line path approximation is given by Equation (16).

Tawz
%[\/12+(h(1+5)+w)2+\/12+(b+w)2]+\/12+(b+w)2/4+\/(l+b/2)2+(b(1+5)+w)2/4+w/2—(l+b+2w) 2
- I+b+2w (15)
2+9)
X [4(1(1-&-35)]
Nb _ 2 2
Tawe = 4 2 2+0)+ (N-1)(w+1) (2+49) (16)
I+b+2w 4(1+9)
The corresponding complex density and compressibility are given by [9],
tanh(Aqp4/(—1)
pleo) = Taw G, o) = QLG gy () = po [1 -l 1 | )

/\1 = (b/Z),/wpo/ , )\2 = (b/2)(1+(5)\/a}]p0/ , Cllz(w) = (pQCOZ)_l [’)/ — (’)/ — 1)H(/\1’2\/(NPR))}

For the alternating-width vertical-wall labyrinth shown in Figure 6, the distance
between adjacent slit openings is [(N + 1)w + Nb]. The pressure diffusion function for the
alternating-width labyrinthine slit perforation, F; 4 (w), is obtained from Equations (12),

(13) and (18).
1 [(N+1)w+Nb+(N+1) (b5/2)]? - b(N+1) (w+b+1)+5 (14+b)(6-1) _ 2[(N+1)w+Nb][(N+2)w+(N+1)b])
D(0) = (1 QB){ n }Q = Tbe2e) (N2 (Np(ir )] M = T e vaarome - (18)

A consequence of the increased tortuosity due to alternating slit width is that, for a
given layer thickness, wall length and porous matrix, a low-frequency absorption peak at a
target frequency can be achieved with a lower slit folding number than required with a
uniform labyrinthine slit width. This is illustrated in Figure 7.

1 X
alternating width vertical wall perforation, N = 6,in
= 09 1 | inclined slit matrix
E uniform width vertical wall perforation, N = 10, in
S s b inclined slit mabrix = ===
= ; inclined slit matrix (no perforation) ==—===
§ - alternating width vertical wall labyrinth, N = & == = =
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Figure 7. Normal incidence absorption coefficient spectra predicted for 0.045 m thick hard-backed
layers consisting of either alternating width (w =1 mm, b =3 mm, / =40 mm, § =7, N = 6, continuous
line) or constant width (w = 1 mm, b = 3 mm, [ =40 mm, N = 10, broken line) vertical-wall labyrinth
in a slit pore matrix (0.04 mm wide slits at 70° to the normal, porosity 0.75). The dash-dot line is the
prediction for the same non-uniform labyrinthine perforation in a non-porous solid and the dotted
line is the prediction for the slit pore medium (no perforation).
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The absorption peak at 170 Hz, corresponding to the layer thickness of 4.5 cm being
1/45th of the incident wavelength, is predicted for either a ten-turn 3 mm wide labyrinthine
slit or a six-turn labyrinthine slit with alternating widths of 3 and 27 mm.

A second consequence of the extra tortuosity associated with alternating the width
of a vertical-wall labyrinthine slit is that a narrow-band low-frequency absorption peak is
predicted even if it is used to perforate a relatively low-flow-resistivity and low-porosity
matrix. This is illustrated in Figure 8. A low-frequency high-absorption peak at 200 Hz
is predicted for a 6-fold alternating-width vertical-wall labyrinthine slit perforation in a
4.5 cm thick matrix containing 0.3 mm wide slits at 60° to surface normal with a porosity
of only 0.1. A lower absorption peak at 220 Hz is predicted for a 10-fold 3 mm wide
labyrinthine perforation in the same porous matrix. 0.3 mm wide micro-slits are readily
manufacturable using a commonly available 3D printing method [10].

1

alternating width vertical wall perforation, ¥ = 6, in
0.9 inclined slit matrix

uniform width vertical wall perforation, N = 10, in
inclined slit matrix == = -

0.8 inclined slit matrix (no perforation) —— 4 ——
alternating width vertical wall labyrinth, V = 6 == = =

Normal incidence absorption coefficient

0 100 200 300 400 500 600 700 800 900 1000
Frequency Hz

Figure 8. Normal incidence absorption coefficient spectra predicted for 0.045 m thick hard-backed
layers consisting of either an alternating width (w =1 mm, b =3 mm, [ =40 mm, § =8, N =6,
continuous line) or a constant width (w =1 mm, b =3 mm, [ = 40 mm, N = 10, broken line) vertical-
wall labyrinthine slit in a slit-pore matrix (0.3 mm wide slits at 60° to the normal, porosity 0.1). The
dash-dot line is the prediction for the same labyrinthine slit perforation in a non-porous solid and the
dotted line is the prediction for the slit pore medium alone (no perforation).

If an alternating-width labyrinthine slit perforation is created in a lower-flow-resistivity
and low-porosity matrix, then the tortuosity of the porous matrix is predicted to have a
strong influence. This is illustrated by the predictions in Figure 9, where, keeping all other
parameters the same, increasing the tortuosity of the matrix from 1 (matrix slits normal
to surface) to 8.55 (matrix slits inclined at 70° to the normal) reduces the frequency of the
lowest-frequency absorption peak from 300 to 210 Hz.
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Figure 9. Normal incidence absorption coefficient spectra predicted for an alternating-width vertical-
wall labyrinthine perforation (w =2 mm, b = 4.5 mm, | = 41 mm, 6 = 6, N = 6) in a 0.05 m thick
hard-backed micro-slit matrix (porosity 0.1, 0.4 mm wide slits) in which tortuosity is varied through
slit inclination at 0° (continuous line) or 45° (broken line) or 70° (dotted line) to the normal.

5. Concluding Remarks

Analytical approximations to the acoustical effects of horizontal- or vertical-wall
labyrinthine slit perforations in a high-flow-resistivity porous matrix have been developed
and used to predict potentially useful low-frequency narrow-band sound absorption from
hard-backed layers with deep sub wavelength thickness. The predicted effects combine the
influences of labyrinthine slit tortuosity and pressure diffusion.

Both horizontal- and vertical-wall labyrinthine slits with constant width can have
very high values of tortuosity. However, vertical-wall labyrinthine perforations with
alternating widths offer even higher tortuosity due to the changes in slit cross section,
thereby enabling predictions of useful low-frequency performance using fewer slit folds or
a lower-flow-resistivity and lower-porosity matrix than would be needed for a labyrinthine
slit perforation of constant width.

The predictions reported in this paper are based on zigzag approximations of the
tortuous paths in the labyrinths. Comparisons of the example estimates in Table 2 based
on zigzag and centre line paths in various labyrinthine slits suggest that estimates that
correspond to paths along the centre lines could be at least 25% higher than the zigzag
path estimates.

Table 2. Example lower and upper estimates of labyrinthine slit tortuosity.

w m b mm I mm N THZ THC TVZ TVC 5 TAWZ TAWC
5 5.5 40 5 9.25 11.2 13.1 19.9 4 29.3 40.3
1 3 40 6 86.8 90.2 28.5 34.2 7 84.1 102.2
1 3 45 10 114.9 119.1 81.2 95.6 8 264.5 353.4

More accurate tortuosity estimates could be established by numerical simulations of
steady inertial fluid flow in relevant configurations. These and other numerical simulations
outlined elsewhere [11] will be used, together with measurements on 3D-printed examples,
to investigate the accuracy of the analytical approximations for absorption coefficient
spectra due to labyrinthine slit perforations in porous materials.

Similar approximations could be derived for the acoustical properties of a three-
dimensional rectangular labyrinthine perforation in rigid-porous matrix which has the
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potential for yet greater streamline path tortuosity and, thereby, even lower-frequency
narrowband absorption peaks if used in a thin hard-backed porous layer.
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