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Abstract: In a bid to help address the environmental footprints associated with products and services,
life cycle assessment (LCA) applications have become increasingly popular throughout the years. This
review summarizes some important methodological developments in recent years, such as the advent
of dynamic LCA, as well as highlighting recent LCA applications in the context of plastics/recycling
with a focus on their methodological choices. Furthermore, this review aims to offer a set of possible
research lines to improve the gap between LCA and decision-making (policy). It was found that the
majority of reviewed papers are mostly conservative in their methodological practice, employing
mostly static analyses and making little use of other methods. In order to bridge the gap between
LCA and policy, it is suggested to broaden system boundaries through the integration of dynamic
modelling methods, incorporating interactions between fore- and background systems, and including
behavioral components where relevant. In addition, advanced sampling routines to further explore
and assess the policy space are recommended. This is of paramount importance when dealing with
recycling processes as the molecules/polymers constituting the output of those processes have to be
benchmarked in terms of costs and, crucially, their sustainability character against virgin ones.
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1. Introduction

The 20th century marked an era in which advances in polymer science and technology
allowed humankind to explore and use many new functional chemical products such
as plastics and rubbers. Since then, many polymeric products have been responsible for
a marked improvement of (engineering) materials. Examples include, amongst others,
polyethylene terephthalate (PET) (often used in consumer bottles) and polytetrafluoroethy-
lene (PTFE) for non-stick coatings in cooking pans, among other materials. [1,2] However,
back in those pioneering days, few could have foreseen that by 2025, the oceans might
contain as much as 250 million metric tons of plastic [3]. The scale and magnitude of these
environmental problems are now clear and must be reduced with urgency. Obviously,
methods to identify the range of possible environmental impacts of (chemical) products is
an important step to prevent such problems being exacerbated or reemerging in the future.

The life cycle assessment (LCA) is seen as one of the methods to estimate and quantify
the environmental impact of products, systems, and services by mapping mass and energy
balances [4]. The method has enjoyed widespread recognition and use, with a surge of
academic output throughout the past few decades. As a result of the many applications
and debates that have arisen, modifications and extensions have been proposed by various
authors [5,6]. One of those includes the use of temporal analysis, which is often referred to
as dynamic LCA (DLCA). Advantages of this approach include the ability to assess the
dynamics of systems, as conventional LCA often conveniently assumes linearity and a
steady state [7].
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This review intends to provide an overview and discussion of (modern) methods
used to perform DLCA, as well as some recent applications in the context of plastics and
recycling, to assess the current methodological state-of-the-art procedures in the field. An
attempt is made to identify areas of improvements to further advance the use of DLCA
methods in product design and end-of-life applications such as recycling in order to
improve the connection between model and policy. To this end, first an overview of LCA
and its modelling approaches is briefly described and discussed. This is followed by an
overview of DLCA and DLCA applications in plastics and recycling to summarize the main
methodological choices made in recent contributions. Finally, methodological issues are
discussed concerning DLCA and potential research lines are proposed to further enhance
the practice of using such methods to guide policy.

2. The Methodological Foundations and Advances in Life Cycle Assessment

The first foundations for LCA were laid back in the US in the 1960s, as scientific
communities around the world sought to capture the complexity of environmental issues.
Most notably, the first formalized attempt was made by Harry E. Teasly Jr., who during
that time was working for the Coca Cola company [8]. It took a while before the approach
moved away from its initial focus on energy until a broader sense of its use along with
standardization emerged in the 1990s [9]. These days, LCA has been standardized in
International Standards Organization (ISO) standards 14040 and 14044 [10,11]. The LCA
consists of 4 distinct phases, which can be seen below in Figure 1, and finds its applications
in a variety of settings (e.g., new product development or policy).
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2.1. The Four Phases According to ISO 14040/14044
2.1.1. Goal and Scope Definition

According to the ISO 14044 norms, the goal and scope of an LCA study must be
clearly defined, and any changes in goal and scope during the project must be documented.
After selection of the product system and a quantified description of a product’s function
(functional unit), flow charts are often used to map the processes that describe the product
system. The generic aim is a linear system definition [12]. It is recognized at this stage that
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it is important for the modeler to be aware of the goal of the analysis, as this determines
whether the LCA is either attributional or consequential [13]—which are both explained in
the section covering LCA approaches.

2.1.2. Inventory Analysis (LCI)

This phase in essence constitutes a simplified linear systems analysis which accounts
for all flows into and out of the system, depending on the chosen functional unit. It is one
of the most comprehensive phases in the LCA study and requires the modeler to make
various choices with respect to system boundaries, how to distribute and weigh inputs and
outputs, and whether or not to perform a closed or open loop analysis [12]. The obtained
model is typically static. As a consequence of the linear model, the results scale linearly
with the functional unit [13].

2.1.3. Impact Assessment (LCIA)

In this phase, the analyst aims to quantify the interaction of the product system with
the environment. To this end, impact categories, indicators and characterization models
need to be selected, and coupling the results from the inventory analysis to the chosen
impact categories [12,14].

2.1.4. Interpretation

In this phase, the findings of the inventory analysis and impact assessment are jointly
evaluated and should yield results consistent with the defined goal and scope, allowing
the analyst to draw conclusions and provide recommendations. The steps consist of [12]:

1. identifying significant issues based on the preceding inventory and impact assessment
phases;

2. a thorough evaluation to check whether the work is complete and consistent, as well
as sensitivity and or scenario analyses;

3. a set of recommendations, conclusions and limitations.

Mathematically, the structure of such an LCA model can be resembled in matrix
notation as follows:

s = A−1 f (1)

where s represents the scaling vector, A the technology matrix, and f the final demand
vector. The scaling vector indicates how much each process output is used with respect
to the functional unit, while the technology matrix contains rows indicating the products
(e.g., kg of plastic) and columns representing the unit processes (production of plastic) [15].

2.2. Types of LCA

While ISO 14044 documentation is clear about the standards that should be adhered
to in LCA analyses, modelers face various challenges. In particular, the inventory analysis
(LCI) and impact assessment (LCIA) are subject to a great variety of methodological
considerations depending on the chosen modeling approach. One can distinguish between
various streams of modelling approaches and corresponding accounting methods within
LCA. This section provides an overview and characterization of major developments in
LCA approaches.

2.2.1. Attributional vs. Consequential LCA

The differences between attributional and consequential LCA approaches in modelling
become clear in the life cycle inventory analysis phase, where, in case of an attributional
LCA (aLCA), modelers attribute inputs and outputs to the functional unit of the product
within a chosen temporal window by linking the unit processes of the system according to
a normative rule (e.g., based on physical processes or geographical boundaries [16]).

When a modeler uses consequential LCA (cLCA), the analysis is geared towards
describing how changes and decisions in the product system relate to the (environmental)
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flows of interest [17–19]. In essence, an aLCA assumes there is no interaction between
decisions made within the chosen system and the outside world, whereas cLCA does [20,21].
As a result, cLCA tends to yield more complex models which investigate impacts over a
wider range of temporal and spatial horizons, with models that are not necessarily static
and linear, as is the case with aLCA [20,22], although it should be noted that such models
are still far from being dynamic.

Another point of differentiation in LCA approaches refers to how the study looks at the
time component of the data and decisions of the product system. In some cases, the terms
‘prospective’ and ‘retrospective’ are used to respectively refer to studies that are concerned
with future situations or situations that occurred in the past [19]. It is important to note that
these terms are sometimes used loosely. For instance, [23] used the term ‘prospective’ in a
broader sense and used it to reflect an LCA that assesses consequences of decisions made
in the past, but evaluated at a later point in time. At the same time, prospective LCAs are
also coined ‘ex-ante’ or ‘anticipatory’ by others [24]; such applications will be discussed
later on.

The choice for a prospective or retrospective study usually has implications for the
system boundaries. Typically, these are expanded when a prospective LCA is performed
to include activities and corresponding emissions resulting from substitution due to the
new product system. In addition, the difference in the goal of the study is also reflected in
the methodological choices made in the LCI, as this phase is concerned with quantifying
the relevant flows. In particular, compiling the data can become problematic as the static
nature of the model requires an estimate of the data to be used within the chosen time
horizon. Questions might arise whether or not to average data within a time frame, or
to use marginal data. In case of a retrospective LCA, the latter is not used [23,25]. This
might be somewhat confusing, as the case of marginal vs. average data is typically also
a main difference between cLCA and aLCA [26]; cLCA tends to use marginal data in
order to reflect on what happens when changes are made within the product system.
Others [23] have discussed the notion that retrospective LCAs are useful to learn about life
cycles and subsystems and avoid undesirable impacts, while prospective LCAs are suitable
for decision-making by stating that both methods can be used for decision-making and
learning purposes.

There are some strong limitations to these types of LCA. For instance, [27] extensively
discussed inherent weaknesses in data quality, lack of consideration of temporal and spatial
effects, the problem with allocating flows to product systems by means of Input-Output
(I/O) tables, and uncertainty.

2.2.2. Allocation Methods: Accounting for the Environmental Impacts

In the context of recycling and end-of-life (i.e., products entering new lifecycles or
functions), various methods exist to allocate the emissions of product systems when they
face such multifunctionality. Recently, [28] proposed a framework to solve the allocation
problem that occurs when product systems are faced with multifunctionality, to avoid
inconsistent comparisons between methods and product systems. These include the cut-off
approach, system expansion, partitioning, end-of-life recycling method, waste mining
method, and 50/50 method. The choice for an aLCA or cLCA impacts how to credit
environmental burdens. Table 1 summarizes the suitability of the following accounting
methods in the context of aLCA and cLCA [28]:

(a) In the system expansion method, the co-functions that arise due to the new life cycle
that consumes the recycled product are incorporated in the functional unit [29]. This
method ensures proper accounting of the burdens and credits. In the consequential
approach it leads to substitution as conventional products and their impacts are
avoided.

(b) In the partitioning method, inputs and outputs of the system are allocated to functions
according to a set of criteria, thereby distributing the burden and impact among the
primary and recycled/co-products.
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(c) The cut-off approach refers to a situation in which the modeler or analyst excludes the
second function of the recycled product and only includes the products and processes
that are directly related to the functional unit. This means that waste management
and recycling functions are attributed to the second life cycle of the product [30,31].

(d) The waste mining method imposes the burdens associated with recycling on the
recycled material input of the system and no benefits are attributed to the production
of recycled material.

(e) The 50/50 method equally distributes credits and burdens between the different life
cycles as a sort of compromise and could be seen as a quick and dirty method in that
respect, although it is recommended by some [32].

(f) The end-of-life recycling method assigns benefits to the production of recycled mate-
rials since it mitigates the production of primary material. A quality correction factor
is used to account for the displacement of primary material as a result of the recycled
material use.

Table 1. Overview of accounting methods per LCA type, based on [28].

Accounting Method Attributional LCA Consequential LCA

System Expansion X X *
Partitioning X

Cut-off Approach X
Waste Mining X

50/50 X
End-of-Life Recycling X

* In the consequential approach, system expansion leads to substitution. Modelers can choose from the substitution
methods ‘Waste Mining’, ‘50/50’, and ‘End-of-Life Recycling’.

The main problem with all these methods is the intrinsic assumption of a linear,
static system, as well as the desire to try and allocate everything to a single (or multiple)
functional unit(s), instead of calculating total system outputs throughout its lifetime,
taking into account the dynamics of the system. When there are (multiple) loops and
multifunctionality, it matters for the modeler which method is chosen to allocate the
environmental burdens of a product as the model will yield different outcomes, but for
total system emission it does not matter; the outcome remains the same, no matter how
one allocates emissions to products and processes. Yet the conclusion of an LCA study is
very much dependent on the methodological assumptions and choices concerning these
allocation methods. This poses a serious risk of undermining the external validity of
such studies as their conclusions are strongly determined by the accounting method that
was selected, with risks of being skewed and leading to wrong policy advice. In a policy
context, [33] described the major differences that can occur depending on the choice of
allocation method. Other authors also found that these methodological choices can skew
results, especially if the uncertainty space of the model is not investigated rigorously [34].

It might be the case that the simplification necessary to express emissions per func-
tional unit in a static model leads to rather restrictive assumptions and a degree of reduction
that causes this sensitivity. It should be made clear that the merits of using a clear functional
unit are not challenged here, but the method of comparing outcomes of a study might
actually lead to a reduction that is inappropriate; the method of expressing emissions per
functional unit and using these as a basis of comparison in a policy context, instead of using
the total system output (i.e., total volumes of emissions and functions over time) given the
system boundary. Other authors [35] have also reflected on this issue from a supply chain
management perspective. The problem here is not only one of aggregation—which cannot
be avoided in many cases—but also of time dependency (e.g., how emissions are weighted
throughout time).

Secondly, in the linear and static approach, strong assumptions need to be made about
the recyclability of products in order to be able to perform allocation procedures when there
are recycling loops. For instance, in order to use some known standard equations for closed
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or open loop recycling systems, the modeler must, amongst others, estimate how often
a product will be recycled. Such a parameter is typically modelled as an exogenous and
constant fraction, whereas in reality it is more likely that this fraction is in fact endogenous,
i.e., there is heterogeneity and a distribution of how often a certain product can be recycled
with different pathways, depending on technological change, human behavior, and the
availability of waste management systems. Moreover, there may be significant accumula-
tion effects taking place that cannot be captured by a model that assumes equilibrium, and
could have a profound impact on model outcomes (e.g., nonlinear capacity constraints).
Again, when the study somehow aims to support decision-making at the policy level
of a company, NGO, government, or other stakeholder, model robustness is sensitive to
assumptions regarding its boundary, not just its data availability. Perhaps, in that respect,
more attention should be given towards system expansion methods, especially in cLCA, to
avoid skewed results.

2.2.3. Dynamic LCA

In the early years of this century, the concept of DLCA emerged. This was done in
response to the methodological limitations of traditional LCA methods which, amongst
others, do not consider factors that exhibit time varying behavior. Ever since, various
authors have contributed to the methodological discussion surrounding LCA and DLCA,
as well as numerous examples of applications of DLCA.

A recent PhD thesis [36] pointed out that it is essential to model temporal character-
istics in order to capture the transient behavior of complex processes and supply chains.
This is also due to the fact that the impacts of anthropogenic emissions are time dependent
due to absorptive capacities which depend on the concentration profiles temporally and
spatially. To introduce dynamism, the author created a tool to import the technology matrix
A (see Equation (1)) and include time dependency, which can be found in other works as
well [37,38].

Since the inventory step in the LCA describes production systems and such systems
are dynamic, it is likely that their dynamics are influential in the outcome of LCA stud-
ies [27,36]. Other authors [39] argue that especially for products with long life cycles, such
as, in their case, buildings, their performance might be affected significantly by economic,
environmental and societal changes. The timing of emissions matters in such cases. This
can be seen in another study [40], where the author performed a DLCA on renewable
energy and suggests that future developments and context is typically not considered in
regular LCA approaches, thereby “severely distorting the analysis of the environmental
characteristics of future energy systems”. This does not only play a role in production
systems or energy markets but has been observed by other authors as well in agricul-
tural systems, where dynamic factors can have a strong influence on the outcome of LCA
studies [41,42].

Other authors [37] performed a sensitivity analysis of temporal parameters in a
DLCA framework and showed that it is important to study the emissions’ profile during
the lifetime of the system, as well as several decades afterwards in order to understand
accumulation effects.

In a recent review paper on DLCA [7], which aimed to assess the state of the art
in DLCA applications and the various types of DLCA that were involved, the authors
distinguished between three types of LCA dynamisms:

1. dynamic process inventory: Potential future developments are accounted for in
unit-processes;

2. dynamic systems inventory: Potential future changes in components of the system
under study are modelled by switching between unit processes or behaviors;

3. dynamic characterization: adjusting factors to account for temporality in emissions of
for example, CO2 equivalency (future versus present day).

The vast majority (93%) of the papers they analyzed did not develop and use a fully
dynamic model, but only partially accounted for dynamism. They proceeded to assert
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that there are ample cases where the use of a partially dynamic LCA would provide better
decision support than the conventional static LCA, but at the same time also caution that
standards should be set as to how one should implement and report on (partially) dynamic
LCAs to improve consistency and avoid potentially skewed results, which could result
from arbitrary choices and assumptions in dynamism.

Indeed, it seems the literature regarding DLCA is still in its infancy, considering that
very few articles include fully dynamic models. As outlined above, the timing of emissions
and the efficiency and response of background systems play an important role. Here,
background systems are defined as being part of the supply chain, but outside the sphere
of influence of the decision-makers [43]. A prime example of how the timing of emissions
and the background system can strongly determine the sustainability of a product can be
found in [44], where the burning of wood pellets is shown to be much worse in terms of
greenhouse gas (GHG) emissions than using coal fired power in the short-term. The goal
of their study was to assess to what degree burning wood lowers CO2 emissions compared
to coal, and emphasized that such a question requires dynamic analysis. Figure 2 provides
a snapshot of their findings and particularly the time it takes to pay back the initial carbon
debt that is incurred when burning wood pellets. The scenarios 1 through 5 consider
the following:

(a) Scenario 1: Burning wood pellets has the same combustion, processing, and sup-
ply chain efficiency as coal. Interestingly, 25% of biomass harvested from the land
occurred through thinning;

(b) Scenario 2: Same as Scenario 1 but now with the actual efficiencies and supply chain
emissions for wood;

(c) Scenario 3: Scenario 2 but with 95% of biomass harvested (clear cut);
(d) Scenario 4: Clear cut, no regrowth of harvested wood, and no carbon emissions from

soil stocks;
(e) Scenario 5: Scenario 4 but with carbon emissions from soil stocks.

Even in highly unrealistic scenarios (S1 through S3) that are favorable for the biomass
configuration, it can take up to 80 years to pay back the carbon debt. These scenarios assume
optimistic wood cutting and forest management practices, no ecological disturbances such
as fires, erosion, disease, and supply chain emissions of wood equal to that of coal per
end-use energy. Scenarios that are not artificially favorable (S4 and beyond) show that
burning wood in fact increases CO2 emissions relative to coal.

Remarkably, another set of authors who published their LCA study around the same
time found that it only takes a few years to pay back the carbon debt under various
assumptions regarding conversion efficiency, biomass decay half-life period, and emission
factors (Figure 3). Even though there are some differences in estimating supply chain
emissions, both articles agree that up until the point of combustion, burning wood pellets
emits more CO2 than coal. Yet their outcomes suggest different conclusions concerning the
sustainability of burning wood pellets.

The differences exist mainly due to the fact that [45] (Figure 3), while including a
dynamic component in their study, is the only CO2 emissions model that pertains to the
decay of biomass in the counterfactual scenario—i.e., the wood pellets cause emissions due
to decay if they are not combusted. Moreover, [44], in addition to modelling decay, included
a more detailed and dynamic background of forest growth, capturing non-linearities and
feedback effects in the carbon cycle of biomass which depend on more factors than are
typically covered by conventional LCA methods. One of the reasons for these differences in
modelling is that in the LCA of [45], the wood pellets used in combustion are considered to
be sourced from wood waste and forest residues instead of dedicated harvest, and are thus
generated independently of bioenergy demand. Still, explicit modelling of the background
system (as was the case in [44]) is a more comprehensive and consistent way of yielding an
integrated assessment under various assumptions.
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This specific comparison serves as an example to show that the emissions profile
and dynamics of background systems (in this case forest growth and forest management)
play an important role in impact assessment, and are typically excluded in conventional
(static) LCAs. In addition, the lessons learned from this example may also be relevant
for biopolymer system analyses, as they too rely on the premise of fossil fuel substitution
through feedstock obtained from biomass.

In other work, [46] applied both dynamic process inventory and dynamic charac-
terization in their study. They developed characterization factors for global warming
dynamically and refuted the claim that corn-based ethanol has a better GHG impact than
gasoline, which they based on a static LCA. Another study found that, for 8.6% of the
database of product systems in LCI data, global warming impact scores were affected by
more than 10% if temporal effects were modelled in the background system [47].

2.2.4. Ex-ante LCA and Multi Method Approaches

As interest in LCA related methods and applications has risen throughout the last
decades, so have the number of publications and methodological advances in the field.
Recently, [48] discussed an application referred to as ‘ex-ante’ LCA. Rather than performing
an ‘ex-post’ LCA, the ‘ex-ante’ approach helps assess the projected future of emerging
technologies. This can be an instrumental tool in aiding technology design and develop-
ment, as early decisions in the design process often have far reaching consequences in
the future. Therefore, early decision support through ex-ante LCA can be instrumental
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in minimizing important footprints. The authors define ex-ante LCA as being studies
that compare scaled-up emerging technologies with evolved incumbent technologies and
scaled-up emerging technologies based on likely scenarios in terms of their future per-
formance when operational. In the context of bio-based chemicals, [49] found that when
starting at the process design phase of a new production process, ex-ante LCA yielded
good predictions of hotspots. This allows for an early identification of major contributions
to the emissions pertaining to a product’s life cycle.
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In another paper, [50] reviewed case studies pertaining to ex-ante LCA and proposed
a framework wherein the emerging technology should be compared with an incumbent
technology and interact with the background system at three different moments in time: the
current situation, the time at which the emerging technology reaches maturity, and, finally,
a point in time where the mature technology was implemented for a while already. In
terms of categorizing modelled aspects in their reviewed articles, they used the categories
‘Technology Development’, ‘Technological Learning’, and ‘Technology Diffusion’. The
majority of studies in their review sample only partially modelled at most two of these
aspects, while all are relevant in assessing the prospects of emerging technologies.

Due to its forward looking nature and evaluation of an emerging technology, ex-ante
LCA facilitates the practice of combining LCA with other methods such as technoeconomic
analysis (TEA), life cycle costing (LCC), social life cycle assessment (sLCA), multi criteria
decision analysis (MCDA), and others. Recently, [51] wrote a review on LCA of emerging
technologies and discussed the use of such and other methods in conjunction with LCA,
as well as the challenges that exist in performing LCA on emerging technologies at early
development stages. They identified an opportunity in further integration of LCA with
TEA. In other work, [24] systematically reviewed papers on prospective LCA for emerging
technologies. Even though they did not refer to these LCA studies as ‘ex-ante’, many of
them fit this terminology considering their scope and aim. They found that there was a
marked increase in such applications in recent years, but point out that there exists a lot
of uncertainty regarding transparency and justification of data quality in the applications
they reviewed. The same goes for system boundaries and how uncertainty was handled.
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They call for a more standardized approach in order to improve comparability between
such studies.

In other LCA studies where the aim is not necessarily to perform an ex-ante study,
there are ample opportunities to apply other methods to support or extend the analysis. For
instance, MCDA, TEA, and life cycle costing (LCC) are just a few examples of methods that
can be found in some recent applications, although these are not yet widely used. This also
includes the application of linear programming methods in consequential approaches, as
can be found in [52]. A recent stream of LCA called the life cycle sustainability Assessment
(LCSA) tends to embrace such a multi method approach [53,54]. Several years ago, [55]
performed a review on LCSA applications and found that methods to deepen LCSA were
lacking, proposing systems thinking and related tools as potentially valuable to deepen
the analyses.

3. An Overview of Recent Plastics and Recycling LCA Studies

A literature search was conducted in WorldCat to find peer-reviewed studies in the
past five years (2016–2020) that performed an LCA on plastic (products) and which explic-
itly cover end-of-life (EoL) and recycling to assess the current state-of-the-art information.
Figure 4 shows the search criteria and selection criteria for deriving the final list of papers
tabulated in Table 2.
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Figure 4. Selection criteria for reviewed papers.

The initial search yielded 75 hits, which were further refined after screening by se-
lecting only those papers with an LCA application relevant to recycling/end-of-life in
the context of plastics, resulting in 22 articles. To ensure we included applications that
pursued dynamic analysis, the title term was changed to ‘dynamic life cycle assessment’,
which yielded 7 additional results. While some of those articles are discussed in other
sections of this paper, none of them fell within the scope of plastics and recycling, so they
have been omitted from the comparison in this section. Moreover, this overview is not
meant to be exhaustive, but rather a snapshot of recent contributions that give insight
in the methodological considerations found in recent years. The papers are tabulated
according to the type of LCA, the choice of functional unit, system boundaries, dynamism,
accounting method (based on Table 1), interaction effects (feedback) with background
systems, multi-method, and how model uncertainty is accounted for.
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Table 2. Overview of recent papers covering end-of-life (EoL)/recycling of plastics from 2015–2020 in terms of methodological choices. aLCA: attributional LCA; cLCA: consequential LCA.

Authors LCA Type Functional Unit System Boundaries Dynamism Accounting Method Feedback Effects Multi-Method Model Uncertainty

[56] aLCA Mass Gate-to-grave/Gate-to-cradle No A form of partitioning * No No No
[57] aLCA Volume + Time Cradle-to-cradle No N/A * No No Sensitivity Analysis
[58] aLCA Area Gate-to-grave No Cut-off No No No
[59] aLCA Mass Cradle-to-grave No N/A * No Yes No
[60] aLCA Mass Gate-to-cradle No Cut-off No No Sensitivity Analysis
[61] aLCA Mass Gate-to-Gate No Partitioning No No No
[62] cLCA Mass Cradle-to-Gate No End-of-Life Recycling No Yes Sensitivity Analysis
[63] Ex-ante LCA Mass Cradle-to-Gate No System Expansion No No No
[64] cLCA Mass + Distance Gate-to-Grave/Cradle No End-of-Life Recycling No No Sensitivity Analysis
[65] cLCA Mass Gate-to-Grave/Cradle No System Expansion No No No
[66] aLCA Mass Gate-to-Cradle No Partitioning No No Sensitivity Analysis

[67] aLCA* Volume/Mass Gate-to-Grave/Cradle No Cut-off and System Expansion
(they call it substitution) No No No

[68] cLCA Mass Gate-to-Cradle No System Expansion No Yes Sensitivity Analysis
[69] aLCA Area Cradle-to-Grave/Cradle No N/A * No Yes No
[70] aLCA Mass Gate-to-Cradle No Cut-off and System Expansion No No No
[71] cLCA Mass Gate-to-Cradle No End-of-Life Recycling * No No* Sensitivity Analysis
[72] cLCA Mass/Volume Cradle-to-Grave/Cradle No End-of-Life Recycling * No No Sensitivity Analysis
[73] cLCA Mass Gate-to-Cradle/Grave No System Expansion No No Sensitivity Analysis
[74] cLCA Mass Gate-to-Gate No System Expansion No Yes No
[75] cLCA Mass Cradle-to-Gate* No N/A * No No Monte Carlo + Sensitivity Analysis
[76] cLCA Mass Gate-to-Cradle No End-of-Life Recycling No No Sensitivity Analysis
[77] aLCA Mass Gate-to-Cradle/Grave No Partitioning * No No Monte Carlo

* denotes methodological choices that were inferred from their original source.
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4. Results

Half of the investigated studies used an attributional approach. A further 10 out of 22
used a consequential approach, while only one study performed an ex-ante LCA. More
than 80% of the papers used mass as a functional unit. As can be seen in Table 2, a variety
of accounting methods were used, with system expansion and EoL recycling being the
most popular. There is one side note, however—in approximately 30% of the studies it
was not fully clear what method was used as the authors were not explicit about their
methodological choice in that respect. These studies have been denoted with an asterisk in
Table 2.

No dynamism or interaction effects (feedback) between background and foreground
systems were modelled in these sample papers. A total of five papers combined at least one
other method with LCA to enrich the outcome of their study. While it was clear that high
standards of data quality were met in these studies, it is rather unfortunate that parametric
uncertainty was only covered in half the contributions by means of sensitivity analysis, and
only in two cases were more robust and rigorous routines such as Monte Carlo simulation
considered. It has been found before that only applying sensitivity analysis can yield
misleading results [34].

5. Discussion

The current state of research seems to be in line with other studies on LCA practices,
as found, for example, in a review paper on LCA applications in the chemical industry [78].
In addition, no explicit additional methods were covered to provide the means necessary
for policy analysis, even though, in a larger context, it is clear that there are decision-makers
who need to decide upon waste management strategies that may or may not include certain
recycling methods. In essence, even though consequential approaches in particular are seen
as appealing tools for policy-makers [22,79], there still exists a gap between the modelled
system, which is a strong reduction of the real system, and the context of decision-making.
The gap between LCA and policy is also recognized by [33]. If LCA is to be used as
decision support for policy-makers, it should model interactions between relevant fore and
background systems, and not simply assume a static world.

Bridging the Gap?

As was outlined in the previous sections, a combination of methods is seen as a
promising new route for LCA studies to enrich their outcomes. Considering the importance
of the plastics industry, it would be an interesting and potentially important line of research
to set up LCA studies that actively seek to integrate multiple methods so as to enhance
the decision-making process at all relevant levels in industry and government. However,
despite the advent of new streams of LCA such as LCSA and ex-ante approaches, there still
exists a void that needs to be filled in order to better suit the needs of decision-makers. This
would especially be the case for more prospective oriented studies, as decisions in the near
future affect the real world system for many years to come. In such situations, it is desirable
to be able to project the evolution of a product system throughout time. Yet dynamism itself
is most likely not enough. To improve the models so that they can become a better support
for decision-making, it is also important that such models include behavioral feedbacks
where necessary, to capture interactions that exist between, for example, consumer behavior
and EoL processes, thereby being able to assess the potential impacts of consumer behavior
on emissions in the EoL phase(s).

As a prime example, consider the current worldwide crisis in plastics pollution,
specifically in the oceans. The availability of waste management systems and human
behavior are prime determinants of these environmental flows [3,80]. In a hypothetical
case, suppose decision-makers can select from three competing products or recycling
processes, which have different qualities (e.g., durability, disposability, and recyclability).
Besides differences in material and energy flows in these product systems resulting from
their functionality, the product qualities would likely affect the behavior of agents (for
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instance consumers) within the supply chain. From a policy perspective, such effects matter.
Yet conventional LCA does not offer any guidelines on how to include such effects and
therefore omits these processes.

No matter how accurate one’s data is on any supply chain for a particular product
configuration, or how efficient a new recycling process is, none of these really matter if
the real world system is subject to completely different behavior than assumed in any of
our models. While modelling human behavior or socioeconomic conditions might seem
hard or impossible, the exclusion of such variables is hard to justify when they are known
to be central to a problem. Basing decisions on strongly reduced models which are linear,
steady state, and exclude important feedbacks known to exist in the real world would be
uninformed at best, which is demonstrated by the biomass case discussed earlier.

To this end, there are other fields that might be able to deliver important contribu-
tions to the well-recognized LCA community. In particular, dynamic modelers active in
disciplines such as operations research (OR) might be able to help transform the static
approaches to dynamic ones through the use of discrete event simulation (DES), system
dynamics (SD), or agent-based modelling (ABM). These techniques have proven to be
effective in capturing behavioral components in value chains and creating models suitable
for policy analysis [81]. So far, to the best of the authors’ knowledge, there has been
little cross fertilization between LCA and such modelling methods. According to [55], the
first study that integrated SD into LCSA analyzed the sustainability of different vehicle
technologies [82]. Recently, [83] reported that they were able to successfully recreate an
LCA study in SD software, highlighting the integration of both methods as they reinforced
each other. Furthermore, [44] showed how dynamic analysis can answer broader research
questions (e.g., “Is X better than Y to improve Z?”), of particular importance at the level
of policy- and decision-makers. Another relatively recent paper by [84] used agent-based
modelling to assess possible emergent behavior at the LCI stage of an LCSA, thereby show-
ing it is feasible to incorporate ABM into the LC(S)A framework. Finally, [35] provided
an interesting characterization of LCA and how modelling principles from supply chain
management can contribute to the practice of LCA, by emphasizing the complex, nonlinear
character of supply chains, focusing on robustness of decisions rather than confidence
intervals for impacts, and how incentives matter, amongst others. They too recognize the
importance of focusing on the performance of the (product system) as a whole, rather than
per unit, as argued before.

Still, even though the inclusion of dynamic interactions and behavioral processes
would allow modelers to enrich their analyses, it does not solve the complexity of setting
system boundaries and related assumptions. There is also a need to be able to assess the
relative sensitivity of a model to its chosen boundaries, not just the parametric uncertainty,
as it is precisely the relatively narrow model boundaries of LCAs that hamper its ability
to accurately estimate real world impacts when evaluating policy options. As was seen
in Table 1, approximately half of the papers used sensitivity analysis to investigate the
possible behavior space of their models. Of course, Monte Carlo simulation and related
routines can further enhance these analyses, but this does not fundamentally address any
uncertainty that extends beyond parametric uncertainty.

Sometimes there is no prior knowledge on input or output distributions of certain
processes or variables or interconnections in the system, especially once the model bound-
ary is extended beyond the inclusion of only (bio)-physical flows. In addition, there might
be disagreement between modelers and stakeholders on what should be included in the
model boundary or how to model this appropriately. It is not unlikely that ex-ante or
consequential studies in particular face such problems, especially during the process of ex-
panding model boundaries. In these cases, dealing with what is known as deep uncertainty,
more advanced (sampling) methods can be an outcome as proposed by [85]. Such methods
also sample over the uncertainties that exist when adopting one or multiple policies and
how these interact with each other and the system under study, thereby exploring the
policy space. Here, policy refers to decisions. Thus, evaluating the effects of different
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system configurations in a cLCA setting could be seen as testing ‘policies’, for example.
The techniques proposed in that paper allow modelers to perform scenario discovery
analyses and robust decision-making, in line with the proposed value of supply chain
management principles outlined by [35] (e.g., robustness of decisions). Moreover, the use
of such methods for deep uncertainty also addresses one of the core issues raised by [86]
concerning the management of uncertainty in LCA.

In summary, three future research lines could be beneficial for LCA practitioners and
researchers active in modelling product systems for the plastics and recycling industry:

1. Mix methods by including dynamic modelling practices such as for example DES, SD,
and/or ABM to allow for the inclusion of temporal and spatial dynamics;

2. Use the aforementioned or other methods to model the dynamics between fore and
background systems and the wider context in order to facilitate policy analysis;

3. Use more rigorous sampling methods to investigate model behavior and consider
using tools and techniques pertaining to deep uncertainty to assess policy options
for their robustness, so that potential real world effects can be investigated and
policymakers can be supported in long term planning.

6. Conclusions

The majority of recent studies concerning plastics and recycling are still relatively
conservative in how LCAs are performed, while the methodological diversity in LCA has
expanded over the last decade. Future studies should consolidate new methodological
advances and consider integrating dynamic modelling practices and advanced sampling
methods to further strengthen the quality of LCA models as a support for decision-making,
as decision-makers have to make design or regulatory choices at a system level that
is higher and broader than what is typically modelled in an LCA. This is particularly
for consequential and ex-ante studies, as recent dynamic analyses have shown that a
steady-state approach can draw erroneous and misguided policy conclusions. In addition,
dynamism itself is not enough: LCA model boundaries must be broadened to provide
better support for policy making and early design choices in the life cycle of a new product
or system.

Author Contributions: Conceptualization, T.M.K.; methodology, T.M.K.; resources, A.I.V.; writing—
original draft preparation, T.M.K., G.H.J.; writing—review and editing, T.M.K., G.H.J., and A.I.V.;
supervision, A.I.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to F. Picchioni for useful discussions on the topics of
this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dhanumalayan, E.; Joshi, G. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos.

Hybrid Mater. 2018, 1. [CrossRef]
2. McKeen, L.W. 6-Polyester Plastics. In Permeability Properties of Plastics and Elastomers, 4th Ed.; McKeen, L.W., Ed.; Plastics Design

Library; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 95–114. [CrossRef]
3. McKinsey Center. Ocean Conservancy. Stemming the Tide: Land-Based Strategies for a Plastic-Free Ocean; Ocean Conservancy:

Washington, DC, USA; McKinsey Center for Business and Environment: Chicago, IL, USA, 2015; p. 47.
4. Sala, S.; Reale, F.; Cristóbal-García, J.; Marelli, L.; Rana, P. Life Cycle Assessment for the Impact Assessment of Policies. Life Thinking

and Assessment in the European Policies and for Evaluating Policy Options; European Commission: Ispra, Italy, 2016; Volume 28380.
[CrossRef]

5. Kloepffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89. [CrossRef]

http://doi.org/10.1007/s42114-018-0023-8
http://doi.org/10.1016/B978-0-323-50859-9.00006-3
http://doi.org/10.2788/318544
http://doi.org/10.1065/lca2008.02.376


Appl. Sci. 2021, 11, 3305 15 of 17

6. Guinée, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment:
Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 90–96. [CrossRef] [PubMed]

7. Sohn, J.; Kalbar, P.; Goldstein, B.; Birkved, M. Defining Temporally Dynamic Life Cycle Assessment: A Review. Integr. Environ.
Assess. Manag. 2020, 16, 314–323. [CrossRef] [PubMed]

8. Hunt, R.G.; Franklin, W.E. LCA—How it Came About. Int. J. LCA 1996, 1, 4–7. [CrossRef]
9. Klöpffer, W. The role of SETAC in the development of LCA. Int. J. Life Cycle Assess. 2006, 11, 116–122. [CrossRef]
10. ISO14040. Environmental management—Life Cycle Assessment—Part 1: Principles and Framework; ISO: Geneva, Switzerland, 1997.
11. ISO. ISO/IEC 14044:2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva,

Switzerland, 2006.
12. Klopffer, W.; Grahl, B. Life Cycle Assessment (LCA): A Guide to Best Practice; Wiley-VCH: Weinheim, Germany, 2014.
13. Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.;

Pennington, D.W. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications.
Environ. Int. 2004, 30, 701–720. [CrossRef]

14. Guinée, J.B. Selection of Impact Categories and Classification of LCI Results to Impact Categories. In Life Cycle Impact Assessment;
Springer Science & Business Media: Dordrecht, The Netherlands, 2015; pp. 17–37.

15. Heijungs, R.; Suh, S. The Computational Structure of Life Cycle Assessment; Kluwer: Dordrecht, The Netherlands, 2002.
16. Brander, M. Conceptualising attributional LCA is necessary for resolving methodological issues such as the appropriate form of

land use baseline. Int. J. Life Cycle Assess. 2016, 21, 1816–1821. [CrossRef]
17. Sonnemann, G.; Vigon, B. Global Guidance Principles for Life Cycle Assessment Databases: A Basis for Greener Processes and Products;

UNEP: Paris, France, 2011.
18. Soimakallio, S.; Cowie, A.; Brandão, M.; Finnveden, G.; Ekvall, T.; Erlandsson, M.; Koponen, K.; Karlsson, P.E. Attributional life

cycle assessment: Is a land-use baseline necessary? Int. J. Life Cycle Assess. 2015, 20, 1364–1375. [CrossRef]
19. Curran, M.A.; Mann, M.; Norris, G. The international workshop on electricity data for life cycle inventories. J. Clean. Prod. 2005,

13, 853–862. [CrossRef]
20. Ekvall, T.; Weidema, B.P. System boundaries and input data in consequential life cycle inventory analysis. Int. J. Life Cycle Assess.

2004, 9, 161–171. [CrossRef]
21. Martin, E.W.; Chester, M.V.; Vergara, S.E. Attributional and Consequential Life-cycle Assessment in Biofuels: A Review of Recent

Literature in the Context of System Boundaries. Curr. Sustain. Energy Rep. 2015, 2, 82–89. [CrossRef]
22. McManus, M.C.; Taylor, C.M. The changing nature of life cycle assessment. Biomass Bioenergy 2015, 82, 13–26. [CrossRef]

[PubMed]
23. Ekvall, T.; Tillman, A.M.; Molander, S. Normative ethics and methodology for life cycle assessment. J. Clean. Prod. 2005, 13,

1225–1234. [CrossRef]
24. Thonemann, N.; Schulte, A.; Maga, D. How to conduct prospective life cycle assessment for emerging technologies? A systematic

review and methodological guidance. Sustainability 2020, 12, 1192. [CrossRef]
25. ISO 14041 Environmental management—Life Cycle Assessment—Goal and Scope Definition and Inventory Analysis; ISO: Geneva,

Switzerland, 1998.
26. Jones, C.; Gilbert, P.; Raugei, M.; Mander, S.; Leccisi, E. An approach to prospective consequential life cycle assessment and net

energy analysis of distributed electricity generation. Energy Policy 2017, 100, 350–358. [CrossRef]
27. Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Part 1: Goal and scope and

inventory analysis. Int. J. Life Cycle Assess. 2008, 13, 290–300. [CrossRef]
28. Schrijvers, D.L.; Loubet, P.; Sonnemann, G. Developing a systematic framework for consistent allocation in LCA. Int. J. Life

Cycle Assess. 2016, 21, 976–993. [CrossRef]
29. Heijungs, R. Ten easy lessons for good communication of LCA. Int. J. Life Cycle Assess. 2014, 19, 473–476. [CrossRef]
30. Ekvall, T.; Tillman, A.M. Open-loop recycling: Criteria for allocation procedures. Int. J. Life Cycle Assess. 1997, 2, 155–162.

[CrossRef]
31. Frischknecht, R. LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk percep-

tion and eco-efficiency. Int. J. Life Cycle Assess. 2010, 15, 666–671. [CrossRef]
32. European Union. Commission Recommendation of 9 April 2013 on the Use of Common Methods to Measure and Communicate the Life

Cycle Environmental Performance of Products and Organisations; European Union: Brussels, Belgium, 2013; Volume 56.
33. Wardenaar, T.; Van Ruijven, T.; Beltran, A.M.; Vad, K.; Guinée, J.; Heijungs, R. Differences between LCA for analysis and LCA for

policy: A case study on the consequences of allocation choices in bio-energy policies. Int. J. Life Cycle Assess. 2012, 17, 1059–1067.
[CrossRef]

34. Cherubini, E.; Franco, D.; Zanghelini, G.M.; Soares, S.R. Uncertainty in LCA case study due to allocation approaches and life
cycle impact assessment methods. Int. J. Life Cycle Assess. 2018, 23, 2055–2070. [CrossRef]

35. Blass, V.; Corbett, C.J. Same Supply Chain, Different Models: Integrating Perspectives from Life Cycle Assessment and Supply
Chain Management. J. Ind. Ecol. 2018, 22, 18–30. [CrossRef]

36. Shimako, A. Contribution to the Development of a Dynamic Life Cycle Assessment Method. Ph.D. Thesis, INSA de Toulouse,
Toulouse, France, November 2017.

http://doi.org/10.1021/es101316v
http://www.ncbi.nlm.nih.gov/pubmed/20812726
http://doi.org/10.1002/ieam.4235
http://www.ncbi.nlm.nih.gov/pubmed/31840907
http://doi.org/10.1007/BF02978624
http://doi.org/10.1065/lca2006.04.019
http://doi.org/10.1016/j.envint.2003.11.005
http://doi.org/10.1007/s11367-016-1147-0
http://doi.org/10.1007/s11367-015-0947-y
http://doi.org/10.1016/j.jclepro.2002.03.001
http://doi.org/10.1007/BF02994190
http://doi.org/10.1007/s40518-015-0034-9
http://doi.org/10.1016/j.biombioe.2015.04.024
http://www.ncbi.nlm.nih.gov/pubmed/26664146
http://doi.org/10.1016/j.jclepro.2005.05.010
http://doi.org/10.3390/su12031192
http://doi.org/10.1016/j.enpol.2016.08.030
http://doi.org/10.1007/s11367-008-0008-x
http://doi.org/10.1007/s11367-016-1063-3
http://doi.org/10.1007/s11367-013-0662-5
http://doi.org/10.1007/BF02978810
http://doi.org/10.1007/s11367-010-0201-6
http://doi.org/10.1007/s11367-012-0431-x
http://doi.org/10.1007/s11367-017-1432-6
http://doi.org/10.1111/jiec.12550


Appl. Sci. 2021, 11, 3305 16 of 17

37. Shimako, A.H.; Tiruta-Barna, L.; Bisinella de Faria, A.B.; Ahmadi, A.; Spérandio, M. Sensitivity analysis of temporal parameters
in a dynamic LCA framework. Sci. Total Environ. 2018, 624, 1250–1262. [CrossRef] [PubMed]

38. Pigné, Y.; Gutiérrez, T.N.; Gibon, T.; Schaubroeck, T.; Popovici, E.; Shimako, A.H.; Benetto, E.; Tiruta-Barna, L. A tool to
operationalize dynamic LCA, including time differentiation on the complete background database. Int. J. Life Cycle Assess. 2020,
25, 267–279. [CrossRef]

39. Su, S.; Li, X.; Zhu, Y.; Lin, B. Dynamic LCA framework for environmental impact assessment of buildings. Energy Build. 2017, 149,
310–320. [CrossRef]

40. Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [CrossRef]
41. Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol.

2009, 2, 1–12. [CrossRef]
42. Lan, K.; Yao, Y. Integrating Life Cycle Assessment and Agent-Based Modeling: A Dynamic Modeling Framework for Sustainable

Agricultural Systems. J. Clean. Prod. 2019, 238, 117853. [CrossRef]
43. Tillman, A.M. Significance of decision-making for LCA methodology. Environ. Impact Assess. Rev. 2000, 20, 113–123. [CrossRef]
44. Sterman, J.D.; Siegel, L.; Rooney-Varga, J.N. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of

wood bioenergy. Environ. Res. Lett. 2018, 13, 015007. [CrossRef]
45. Madsen, K.; Bentsen, N.S. Carbon debt payback time for a biomass fired CHP plant—A case study from northern Europe. Energies

2018, 11, 807. [CrossRef]
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