
applied  
sciences

Review

Recent Progress Trend on Abrasive Waterjet Cutting of Metallic
Materials: A Review

Jennifer Milaor Llanto * , Majid Tolouei-Rad, Ana Vafadar and Muhammad Aamir

����������
�������

Citation: Llanto, J.M.; Tolouei-Rad,

M.; Vafadar, A.; Aamir, M. Recent

Progress Trend on Abrasive Waterjet

Cutting of Metallic Materials: A

Review. Appl. Sci. 2021, 11, 3344.

https://doi.org/10.3390/app11083344

Academic Editor: Andrea Spagnoli

Received: 19 March 2021

Accepted: 5 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; m.rad@ecu.edu.au (M.T.-R.);
a.vafadarshamasbi@ecu.edu.au (A.V.); m.aamir@ecu.edu.au (M.A.)
* Correspondence: j.llanto@ecu.edu.au

Abstract: Abrasive water jet machining has been extensively used for cutting various materials.
In particular, it has been applied for difficult-to-cut materials, mostly metals, which are used in
various manufacturing processes in the fabrication industry. Due to its vast applications, in-depth
comprehension of the systems behind its cutting process is required to determine its effective usage.
This paper presents a review of the progress in the recent trends regarding abrasive waterjet cutting
application to extend the understanding of the significance of cutting process parameters. This
review aims to append a substantial understanding of the recent improvement of abrasive waterjet
machine process applications, and its future research and development regarding precise cutting
operations in metal fabrication sectors. To date, abrasive waterjet fundamental mechanisms, process
parameter improvements and optimization reports have all been highlighted. This review can be a
relevant reference for future researchers in investigating the precise machining of metallic materials
or characteristic developments in the identification of the significant process parameters for achieving
better results in abrasive waterjet cutting operations.
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1. Introduction

Cutting is the process of applying a force to penetrate or separate a workpiece [1].
With current advances in technologies, there has been a rapidly increasing demand for
quality cut parts with complex geometries in the fabrication industry. Abrasive waterjet
machining (AWJM) is an advanced technology that can be used for cutting processes.
AWJM was developed from plain waterjet machines, wherein in 1980 abrasives were first
added to plain waterjets to cut industrial material [2]. AWJM allows for versatility in
machining an extensive range of materials, from the easiest to the most strenuous to cut.
AWJM is recognized as an implicit solution for machining metallic and heat-sensitive
materials without leaving a heat-affected zone (HAZ) or any residual stresses during the
machining process [3]. Among the various advanced machining technologies, AWJM has
exhibited significant emergence in manufacturing industries due to its extensive operations
and exceptional quality of cut of intricate profiles with a minimum cutting force on the
workpiece and yield of better dimensional accuracy due to insignificant distortion [4].
However, AWJM with proper process parameter settings remains a challenging procedure
for manufacturers. Therefore, an enhanced understanding of AWJM mechanisms and
modelling is needed to ensure more effective applications.

This review aims to address gaps in existing studies by foregrounding the leading
features of the abrasive waterjet (AWJ) cutting of metallic materials and providing signif-
icant, up-to-date research from the theoretical and experimental analysis. This paper is
structured to present AWJM mechanism advantages and applications, and identifies limita-
tions and current challenges faced by AWJ cutting, as well its process parameter functions
and influences. Accordingly, recent process parameter improvements and optimizations
are reviewed.
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1.1. Abrasive Waterjet Machining System

In the AWJM system, materials are removed using erosion processes. Erosion is a type
of wear with the manifestation of accelerating and the continuous collision of abrasive
particles in a high velocity in liquid form [4]. An example of a typical AWJM is shown in
Figure 1 [5]. The underlying operating structure of AWJM includes a high-pressure pump
system, a cutting head, a table and a computer-based controller [6].
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Figure 1. AWJM mechanism and components [5].

The computer-based controller is incorporated into the AWJM system, functioning
independently, which enables to download varied types of diagram programs. This com-
prises tools that are distinct to AWJM, such as manual or automatic cut in/out tools, tools
for the generation of cutting paths, collision prediction and resolution, tool assignment for
surface quality, etc. [7]. Mixing the granular abrasive with a high-pressure waterjet stream
makes the AWJM capable of machining. A high-pressure pump drives the pressurized
water in the nozzle system. This system includes an abrasive hopper, orifice, mixing
chamber and focusing tube. The water travels with a high level of velocity and is forced
out of the orifice in a very thin stream structure [8]. A hopper that includes a plastic
tube holds abrasive particles and dispenses them to the cutting head, where particles are
then drawn into a waterjet stream in the mixing chamber. The high-speed waterjet, set
alongside abrasive particles, is compounded and accelerated to create an abrasive waterjet.
The focusing tube directs the abrasive waterjet to its focal point when cutting a working
piece [9].

1.2. Abrasive Waterjet Erosion Mechanism

The AWJM process of removing material from a target workpiece emerges through
an erosive venture of abrasive particles travelling with high velocity [10]. Material re-
moval rates in AWJM transpire across two primary models, such as cutting and deforma-
tion/ploughing deformation wear mechanism [4]. Erosion mechanisms vary depending
on workpiece material and properties [11]. A workpiece can be categorized as ductile,
brittle or composite. In ductile materials, erosion can occur using two procedures, i.e.,
repeated plastic deformation and cutting action. In general, ductile erosion is applicable
to metals and other similar materials that are capable of a significant plastic deformation
process [12]. For the brittle materials erosion process, removal of material occurs through
crack propagation and chipping, resulting in contact stresses caused during the impact
of abrasive particles, which is then defined as the cracking method [13]. In the case of
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composite materials, abrasives penetrate the material and produce breakages that initiate
the formation of cracks, which in turn results in delamination [14].

1.3. AWJM Process and Advantages

The cutting process is a core method in the manufacturing industry. AWJM is highly
capable of machining from hard to soft materials at a very low machining force, which
avoids the destruction of the target workpiece’s properties [3]. Abrasive waterjet machin-
ing is a non-conventional cold processing technology used for material processing with
significant advantages [1,15], which has been the reasoning behind the rapidly progressing
application of AWJM, particularly in metallic materials [6]. The reduction of temperature is
carried through the presence of cooling water due to the presence of cooling water, which
renders AWJM [6].

Table 1 illustrates AWJM’s superiority compared to other non-conventional machines
based on experimental studies on various workpieces [8–10,16–21]. It substantiates AWJM
compared to other technologies, indicating versatility in cutting diverse material with a
wide range of thickness, absence of tool wear and flexibility in cutting intricate geometries.
Other machines such as EDM and ECDM involve the use of high-intensity energy to cut
hard metals and materials that are difficult to machine [8–10]. However, the usage of
high thermal heating sources causes craters, cracks, thermal damages, and destructively
tensile residual stresses; hence, materials that are low conductors of heat are very appli-
cable [10]. In AWJM applications, the absence of thermal distortion is achieved due to
its cold cutting process since the material temperature will not exceed 70 ◦C [22]. EDM
and ECDM generate hazardous solid, liquid, and gaseous products resulting in sludge
containing metal ions, acids, nitrate, oils and even traces of heavy metal ions due to anodic
electrochemical dissolution, which are very harmful to humans and the environment [17].
AWJM is also considered environmentally friendly and sustainable as it does not omit any
hazardous vapor; hence, AWJM generates waste such as abrasives that adversely affect the
environment. Sustainable manufacturing aims to achieve an efficient operation at the same
time, reducing the environmental effect [17]. Recycling and reusing these abrasives make
AWJM more economical, effective, and environmentally friendly [22–24]. The discussed
competitive advantages of AWJM have been the rational reason behind its expanding
utilization and continuous progression.

Table 1. Comparison of non-conventional cutting technologies [8–10,16–21].

Cutting Activity AWJM LBM EDM ECDM

Heated affected
zone (HAZ) No Yes Yes Yes

Material Distortion No Yes No Yes
Tool Wear No No Yes Yes

Material Removal
Rate (mm3/s)

Medium-slow
(approx. ≤ 2)

Fast (approx. 2–3) for
non-reflective
materials only

Medium (approx.1–2) Medium (approx.1–2)

Type of material

metals, composites,
natural, electrically,

non-conductive,
non-reflective

metals, composites,
natural, electrically,

non-conductive,
non-reflective surface

Only electrically
conductive such as

metals and composites

Only electrically
conductive such as

metals and composites

Material thickness
(mm) Ranging ≤ 304.8 Ranging ≤ 20 Ranging ≤ 304.8 Ranging ≤ 304.8

Type of shapes Complex and
complicated shapes

Complex and
complicated shapes Simple Simple

Burr formation Minimal High High Minimal
Hazardous vapour None fumes, gases CO & CH4 NaOH/NaNO3



Appl. Sci. 2021, 11, 3344 4 of 24

1.4. Abrasive Waterjet Machining Application

In the past and recent years, AWJM has gained high interest amongst researchers, as it
is a versatile tool that is used in almost all manufacturing processes and materials. Figure 2
presents the statistics of various workpieces utilized in AWJM applications, as established
from several reviewed publications [25–66]. The first chart (a) shows a generated summary
of various workpieces that have been employed in AWJM applications, while the second
chart (b) represents created synopsis material types for enhanced analysis based on several
research studies used from the year 2017 to 2020.
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publications reviewed in this work.

A number of studies in metal, composite, and natural materials discovered similar
quality defects such as surface roughness, striation marks and kerf geometry inaccura-
cies [25–66]. As shown in Figure 2a, aluminum alloy, which is a metallic material, has
captured the highest value of twelve (12) research studies, whilst natural material, rock, has
gained the least attention amongst these selected recent researches in AWJM application.
As illustrated in Figure 2b, metal materials have received the highest attention, attaining
58% of the population of these selected latest studies in AWJM performance. These are
difficult-to-cut materials that possess drawbacks related to their high alloying content (i.e.,
chromium and nickel), low thermal conductivity, high ductility, and low machinability
level [67]. It was noted that the mentioned quality issues and defects are highly influenced
by their material properties [68,69].

Varied types of materials possess divergent machinability due to their different me-
chanical and chemical properties, and a number of metallic materials identified as one of
the most hard-to-cut materials [28]. Figure 3 illustrates the typical machinability of several
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employed materials in abrasive waterjet (AWJ) cutting applications [69]. The machinability
index indicates the speed of the machining process.
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Cutting machinability can be estimated by several indices such as the forces merging
while cutting, cutting speed, surface quality of cut material, etc. [69]. Moreover, a higher
machinability index denotes a faster cutting speed which has been established based on
extensive cutting tests [69]. Figure 3 also demonstrates that tungsten carbide denotes
the lowest level of machinability, subsequently followed by ceramics and metals such
as stainless steel, Inconel and titanium; in this regard, these workpieces are the most
difficult-to-machine materials.

AWJM has also been recognized to be an effective technology in cutting non-conducting
material with a low machinability index. Research to date has explored differing operat-
ing mechanisms of AWJM for various industrial conditions and applications. Table 2
enumerates AWJM applications in different industry sectors with regards to specific
material usage [49,70–72], which shows that AWJM applications cover a vast range of
industrial domains.
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Table 2. AWJM materials and areas of application [49,70–72].

Materials Industrial Application
Type Workpiece

Natural Concrete, cement, ceramics, graphite, stone
or rock.

Mining, manufacturing and processing of ceramics and
graphite, building, construction, housing, and tile industry.

Metals Titanium, aluminium, stainless steel, and alloys. Automotive, marine, aerospace, architecture and civil,
medical, food industry, automotive, electronics industry.

Composites Wire glass, laminated glass, optic glass,
composites, and magnetic materials.

Aerospace, automotive, electronics industry, Glass,
decorations, promotional, optical fiber, and the
medical industry.

After expounding the machining mechanism and benchmarking performance against
other non-conventional technologies, in addition to enumerating the advantages and
applications of AWJM, it is essential to discern the technology’s current conditions, limita-
tions and process drawbacks that affect its technological effectiveness. A very high noise
(approximately 80 to 100 Db) is produced by AWJM during the machining process, and
acquisition costs are driven by the high-pressure pump, high volume of required water
quality, and purity [3,6,15,24]. Therefore, recent states of AWJM applications, boundaries,
and challenges, particularly in cutting operations, are further discussed in the succeeding
sections of this review.

2. Abrasive Waterjet Cutting Application Limitations and Challenges

AWJM is extensively used for cutting operations; hence, there is a necessity for
enhancing its performance. AWJ cutting processes still face challenges in quality and
productivity performance, mostly metallic material identified as one of the hard–to–cut
material due to its low machinability. There have been reported cutting defects when
using an abrasive waterjet machine. Damage may also vary depending on the material
to be machined [73]. The issue of material response to AWJM in terms of its behavior,
i.e., burr formation, high surface roughness, striation marks, distorted kerf geometry,
and delamination, has been studied since the beginning of AWJM applications in the
1980s [74,75]. Table 3 shows common AWJ cutting issues that have been restudied by
researchers, particularly metallic materials.

Table 3 details that previous works have encountered similar customary defects
inherent in this machine’s application for difficult-to-cut materials, particularly met-
als [15,62,76–78]. Several studies have shown that AWJ cutting has been broadly applied to
metallic materials with varied thicknesses. The AWJ cutting process has also been revealed
to contain similar defects, such as kerf taper, roughness and cracking of cutting metals
regardless of the thickness. A summary of recent studies applying AWJ cutting of metals
with varied thicknesses is itemized in Table 4.

As shown in Table 4, the kerf taper angle and surface roughness are major quality
issues identified in the AWJ cutting of metallic materials with varied thickness. Accordingly,
a machinability study performed by Khan et al. [79] detailed the AWJM performance in
cutting low alloy steel of different thicknesses (5, 10, 15, 20 mm). Their experiments revealed
that the material thickness impacts machine performance, such as the material removal
rate, surface roughness, and kerf wall inclination. Hence, it is necessary to investigate the
influence of material thickness for precise AWJM, as cutting operations involve various
thicknesses of product formation in fabrication industries.

The aforementioned issues are challenges to AWJ cutting performance. However,
these issues have been recently reinvestigated and it was concluded that AWJM perfor-
mance relies on its process parameters. Therefore, it is necessary to have a continuous
comprehensive study of process parameters to improve AWJ cutting performance, which
is discussed in the succeeding section.
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Table 3. AWJ cutting defects amongst various metallic materials [15,62,76–78].

Defects Material Images Key Findings and References

Cutting residue,
striation and roughness AISI 304
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Table 4. Quality defects in AWJ cutting of metallic with different thickness [18,61,77,80].

Year & Author Metallic Material Thickness Defects

Gnanavelbabu et al. 2018 [77] Ti6Al4V 5 mm KTA, MRR, Ra
Wang et al. 2019 [61] AA 6061-T6 5, 10, 25, 50 mm KTA

Yuvaraj et al. 2017 [80] AISI D2 Steel 60 mm Ra
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3. Abrasive Waterjet Cutting Process Parameters and Influences

The abrasive waterjet (AWJ) cutting process incorporates several independent process
parameters that directly affect the machine’s performances. As illustrated in the cause-
and-effect diagram of the AWJM process parameters given in Figure 4, the input process
parameters are categorized as follows (1) hydraulic, (2) nozzle, (3) material, (4) abrasive, and
(5) cutting. The input process parameters primarily affect the machining performance or
output parameters of AWJM application. Learning the specific functions of these influential
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variables will be fundamental towards development and improvement initiatives of quality
and efficiency of the entire cutting process.
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3.1. Abrasive Waterjet Cutting Input Process Parameters Functions and Influences

The AWJ cutting input process parameters are comprised of specific functions govern-
ing the execution of various machining operations.

3.1.1. Hydraulic System

The hydraulic system is the waterjet pressure denoted by (P) and measured in MPa
or PSI. A continuous flow of pressurized water generated from the AWJM water pressure
pump drives the cutting head controlled by an accumulator and pressure tubing [3,6].

Impacts of waterjet pressure: Waterjet pressure affects the distribution of water and
jet abrasive particles during material erosion processes. Naresh Babu, M. et al. [82] have
recommended that high-level pressure, with a value of 399 MPa, can acquire superior
surface quality in cutting brass-360. Additionally, Akkurt et al. [83] have utilized an ultra-
high-pressure (UHP) waterjet cutting system in evaluating deformation on materials with
the same composition but different thicknesses such as Al-6061 aluminum alloy, brass-
353, AISI 1030, and AISI 304 steel materials. Their experiment showed that a very high
waterjet pressure negatively affects the surface roughness as the thickness of the material
decreases. A high-level water pressure produces high velocity, resulting in a stronger
impact of abrasive particles [49]. Ultra-high-pressure (UHP) AWJM pumps provide water
pressure to the cutting head at continued pressures from 40,000 psi (276 MPa) to 87,000 psi
(600 MPa) and have progressed its industrial application since its commercialization due to
its wide range of application, i.e., 2D shape cutting, surface grounding, weight reduction
of space-borne mirrors, and various machining tasks tasks [84]. Pashmforoush et al. [85]
have observed that geometrical tolerances were obtained by increasing waterjet pressure
to a value of 300 MPa when cutting Hardox 400 steel. The achieved results denote that by
the increase of jet pressure, the surface quality improves and the geometrical errors are
reduced. This is similar to Khan et al. [79] as they have concluded that a jet pressure of
240 MPa can yield a high material removal rate for AWJ cutting of EN24 Steel 14. These
previous works established that waterjet pressure is directly proportional to the depth of
jet penetration and the material removal rate.

3.1.2. Abrasive System

The abrasive system is composed of abrasive material type, size, shape, and flow rate.
The abrasive mass flow rate is the stream of its particles alongside waterjet pressure, which
is typically measured in g/min [6].

Impacts of abrasive type: Abrasives are categorized into natural, zirconia alumina,
glass, steel, and copper. These types have inherent diverse characteristics such as the level
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of hardness and grit shape. In particular, Perec et al. [64] have conducted an experiment in
cutting titanium using different abrasives, i.e., garnet, olivine, and crushed glass abrasives.
Based on his experiments, garnet gave the highest material removal or cut penetration.
Later, they carried out a comparative investigation between garnet and corundum abrasive.
They concluded that corundum abrasive applications could be suggested within certain
economic circumstances due to the decreased lifespan of focusing tubes [86]. Furthermore,
it has been established that AWJ cutting performance is vastly affected by the density,
shape, and hardness of abrasives. Table 5 exhibits categories of abrasive materials utilized
in various industries, in conjunction with their details and properties.

Table 5. Abrasive material categories along with their properties and industrial applications [1,68,87,88].

Category Details A. Glass B. Natural

Abrasive types
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AWJM has capabilities in machining hard-to-cut materials because of its abrasive
particles. Table 5 showed a representation of each abrasive category characteristic, such as
particle shape, hardness, application, and industrial usage. The zirconia alumina group of
abrasives indicates dominance in hardness.

Hlavacova et al. [89] have linearly machined high-carbon steel DIN norm No.1.2436
(CSN EN 19437) plate 61–mm-thick using seven different abrasives: Australian garnet,
Ukraine garnet, olivine, corundum, chromite, and zirconium sized from 200 to 300 µm, and
unsorted Australian garnet. They discovered that corundum, which was approximately
equal to garnet, increased cutting speed at 20%. Garnet has a comparatively low wear of
focusing tubes when utilized [90]. A survey reported that 90% of users employ garnet as
an abrasive type during AWJM applications [4]. Other reasons behind the high usage of
garnet are attributed to its competitive price of approximately 0.48 €/Kg [24]. However, the
economic concern should be weighed against abrasive performance. Hence, the abrasive
type is governed by the hardness of the workpiece [17]. Therefore, a harder workpiece
requires a harder abrasive particle. In general, abrasive hardness directly exerts MRR and
the depth of cut on the material; accordingly, a harder abrasive indicates higher MRR and
DOC, leading to a higher machining efficiency.

Impacts of abrasive size: Abrasives come with varied sizes or mesh corresponding to
their specific conditions or grades. The particle grain mass and volume directly impinge
on kinetic energy, which influences AWJM output parameters [91]. Various mesh numbers
with the corresponding mesh size and grade are summarized in Table 6.

Table 6. Abrasive mesh size and grade [1,68,88,92].

Mesh Number # Mesh in Microns µm Grade

40–60 250–400 Coarse
80–100 180–210 Medium coarse
120–150 90–105 Medium fine
180–220 70–88 Fine

240 upwards ≤60 Very fine

The selection of an appropriate abrasive size and type depends on the hardness of the
workpiece [92]. Thamizhvalavan et al. [93] have investigated the machining hybrid metal
matrix which consists of Al 6063 reinforced with boron carbide (B4C) and zirconium silicate
(ZrSiO4) in the form of particulates in the proportion of 5% B4C and 5% ZrSiO4 using
different type and mesh size of abrasives. They used aluminum oxide (Al2O3) and garnet
with varied mesh size numbers of 60, 80 and 100. They concluded that a higher rate of
material removal was achieved by using an abrasive type aluminum oxide (Al2O3) with a
mesh size number of 80. Abrasives with all varied sizes showed the formation of striations
in cut surfaces [93]. Moreover, Yuvaraj et al. [35] have analysed the effects of applying
varying mesh sizes of garnet, including size 80, 100, and 120 in cutting AA5083—H32,
where garnet with size number 80 produced a higher depth of cut, low kerf taper angle and
surface roughness. Notwithstanding these studies, the abrasive mesh number is directly
proportional to MRR, and a higher mesh size leads to higher roughness which results in a
lower quality of cut surface.

Impacts of abrasive mass flow rate: In AWJ cutting operation, increasing the abrasive
mass flow rate increases the erosion efficiency, containing a higher number of abrasives
which relatively increases the depth of cut and decreases surface roughness value [36].
An increased rate of waterjet pressure denotes a parallel performance with abrasive flow
rate [92]. Babu et al. [94] have presented a study of AWJ cutting process parameters
performance in minimizing the surface roughness and kerf angle of AISI 1018 mild steel.
They have observed that increasing the level of waterjet pressure, alongside with abrasive
mass flow rate reduced the kerf taper angle and surface roughness. This achieved the
minimum kerf geometries and less striation surface. Pawar et al. [44] have applied a
moderate rate of abrasive mass flow. Mainly, a higher AFR directly leads to a higher
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MRR and DOC of machined material; however, it provides a conditional opposite effect in
surface roughness and kerf taper angle, depending on the type of material.

3.1.3. Nozzle System

The nozzle system comprises the material type, nozzle diameter (ND), and orifice
diameter (OD). The orifice ranges from 0.13 to 0.76 mm [95]. It is accountable for trans-
forming water pressure into velocity; moreover, potential energy is converted into kinetic
that is being transmitted to abrasive particles. The nozzle focuses the abrasive waterjet and
leads it to the workpiece [6]. An illustration of a nozzle system working scheme is shown
in Figure 5.
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As illustrated in Figure 5, the waterjet pressure water travels at a high velocity and
generates a Venturi effect or vacuum in the mixing chamber located beneath the orifice. A
metered portion of abrasive particles enters through the abrasive inlet and is forced down
with the waterjet stream in the mixing chamber [96]. The abrasive particles are mixed with
the waterjet, creating an abrasive water jet. The nozzle is a vulnerable component of an
abrasive waterjet machine and is commonly composed of silicon carbide, tungsten carbide
cobalt, boron carbide, composite, and ceramic materials. Varied materials possess diverse
properties that enable a nozzle to lengthen its utilization and wear [96]. In comparison
to metals, ceramic nozzles (SiC, Al2O3, ZrO2, B4C and Si2N4) are universally used in
line with mechanical properties, maximum hardness, a high melting point, and lesser
resistance to heat shock. Furthermore, they can work 30 times longer than other carbon
steel nozzles [91].

Impacts of nozzle and orifice diameter: Variation in the nozzle diameter and orifice
leads to machining inconsistency due to the ascending airflow rate, jet deviating, and
path size, hence impacting the material removal rate, surface roughness, and geometric
accuracy in the broad-spectrum [6]. Furthermore, Kmec et al. [36] have investigated
cutting austenitic steel AISI 304, which has recently been the most prevalent type of anti-
corrosion material in various industrial applications. They used different abrasive nozzle
diameter sizes including 0.76 mm and 1.02 mm. They conclude that the minimum surface
roughness was achieved by using the smallest nozzle diameter of 0.76 mm. Additionally,
Mogul et al. [27] have studied surface roughness in cutting Titanium Ti6AL4V using an
abrasive waterjet machine, where variations in the diameter ratio of the focusing nozzle
and orifice were adopted. A different approach of ratio 3:1 nozzle and orifice diameter were
employed in their experiments. The results indicate that increasing the waterjet orifice and
focusing the nozzle diameter can minimize the surface roughness of the cut material. Later,
Nandakumar, et al. [97] has examined the nozzle head oscillating method in AWJ cutting
of aluminum hybrid composites. They concluded that a lower degree level of oscillation
angle decreased the Kerf taper angle and surface roughness. Substantially, these previous
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researches indicate that the nozzle diameter and orifice influences the material removal
rate, surface roughness, and geometric accuracy in a broad-spectrum.

3.1.4. Cutting System

These are the traverse speed, stand-off distance and jet impact angle. The traverse
speed corresponds to the turning of a tank during machining, measured in mm/min. The
standoff distance is the height from the endpoint of the nozzle up to the top surface of
the target material, where it is indicated in mm. The jet impact angle is the angling of the
jet towards a cutting level surface [6]. Recently, a relevant increase in productivity was
obtained by utilizing AWJM with multiple cutting heads. There are two traverse systems
that can be utilized simultaneously and independently to machine larger and multiple
parts [5].

Impacts of traverse speed: Traverse speed variation has a significant effect on AWJM
output parameters. Sasikumar et al. [98] reported that minimizing the kerf angle and
surface roughness in AWJ cutting of hybrid aluminum 7075 metal matrix composites can
be obtained by applying a low level of traverse speed and a high level of pressure. Their
results are consistent with Gnanavelbabu et al. [77], who explored minimizing the kerf
taper angle in cutting AA6061 using a low level of traverse speed. Ishfaq et al. [99] have
distinguished that traverse speed was the most significant and impacting parameter for
the material removal rate in AWJ cutting of stainless-clad steel workpieces. Additionally,
the feed rate was revealed to be the most influential parameter in controlling the responses
on surface roughness and kerf-angle in abrasive waterjet cutting of AISI 1018 with 5 mm
thickness [94]. Moreover, Karmiris-Obratański et al. [100] explored AWJM multiple passes
and achieved a higher depth of cut by utilizing a higher number of passes and higher-level
traverse speed; hence, under particular conditions, the application of multiple passes
can provide better results as compared with single pass machining. On the basis of these
studies, the traverse speed is directly proportional to the material removal rate but inversely
relative to the depth of cut, surface roughness, and kerf taper.

Impacts of stand-off distance: A higher distance from the nozzle exit and workpiece
top surface results in decreasing velocity of the particles, which denotes a lower material
removal rate, roughness, and kerf taper angle [92]. Kechagias et al. [81] have examined
that decreased kerf width and roughness of cut parts can be obtained by applying a near
standoff distance, a lower rate of traverse speed, and a smaller nozzle diameter at a higher
material thickness when cutting steel sheets using an abrasive waterjet machine (TRIP
800 HR-FH and TRIP 700 CR-FH). In summary, it has been found that a combination of
a high-level standoff distance and high-rate traverse speed lowers the contact time of
abrasive particles within the cutting process.

Impacts of jet impact angle: Varying the jet impingement angle leads to different im-
pacts in AWJM output parameters depending on the hardness scale of a a workpiece [101].
For instance, Yuvaraj et al. [35] have proposed the importance of managing the jet impact
angle to intensify AWJ cutting output responses. They reported that varying the impinge-
ment of the jet angle, along with using a different abrasive mesh size can affect the kerf
width, taper ratio, and cut surface roughness when cutting AA5083-H32. An oblique jet
angle of 70◦ was shown to lead to lesser kerf taper ratio, roughness and striations. Further-
more, Kumar et al. [80] have conducted an experiment using a different metal, D2 Steel,
and concluded that a jet impact angle of 70◦ sustained better cut surface integrity. A larger
degree of jet impingement angle results in a higher material removal rate, particularly in
hard-to-cut materials; thus, an acute jet impact angle provides a precise cutting perfor-
mance predominantly in soft materials [91]. In this paper, Figure 6 illustrates the statistics
of the identified influential AWJM input process parameters within a range of publications
from 2017–2020 [25–66]. Figure 6 illustrates the weighted distribution of the AWJ cutting
input process parameters identified to be significant in AWJ cutting performance.
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Figure 6. Survey of identified most influential AWJ cutting input process parameters reviewed
publications from 2017 to 2020 [25–66].

Among these research findings, 27% proved that traverse speed is the most influential
input parameter in the AWJ cutting process, followed by waterjet pressure, abrasive
mass flow rate and standoff distance with a percentage contribution of 22, 20, and 19%,
respectively. There is a limited number of studies that considered the abrasive size, nozzle
and orifice diameter, abrasive material and jet impact angle; hence, the impacts of these
input parameters cannot be justified because of gaining less attention from researchers
and having low usage in several experimental investigations. This can be considered as a
potential area for future development and studies.

3.2. Abrasive Waterjet Cutting Output Process Parameters

The output process parameters of the AWJM include the material removal rate, depth
of cut, kerf taper angle, kerf width, and surface roughness. These output parameters have
been identified as quality attributes and are correlated with quality performance [102]. The
depth of cut refers to the level of penetration of the workpiece. The material removal rate
is determined by the quantity of removed material from a workpiece per unit time and is
computed by the volume of removed material or from the difference in weight prior to and
after machining. Furthermore, the material removal rate is a denotation of the machining
rate performance. The kerf taper is the tapering angle resulting from AWJM and is the
measurement by the ratio of the sum of kerf top width and kerf bottom and thickness of
the workpiece. The taper width is the measurement of the top and bottom cut width of the
target workpiece. The surface roughness is the scale of smoothness of the machined surface,
denoting the precision of executed cutting processes. AWJ cutting processes involve several
types of parametric variables that can impact machining performance. For this reason,
it is necessary to use comprehensive equations or formulas when governing machining
performance. Table 7 enumerates equations for determining output parameters.

Suitable values for the proper selection of process parameters must be determined
and should be optimized for further development, which is discussed in the next section.
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Table 7. Output process parameters analytic equation.

Output Process
Parameter Analytic Equations Unit of Measurement Equation Number

and Reference

Depth of cut (ht) ht = L sin 25◦ L inclined length
of workpiece mm Equation (1) [103]

Material removal
rate (MRR) MRR = ht.W.vt

ht is depth of cut,
vt is traverse speed,

W is kerf width (Wt − Wb)
mm3/min Equation (2) [77]

Kerf taper angle (KTA) KTA θ = arctan Wt−Wb
2h

Wt is top kerf width and
Wb is bottom kerf width, h

is thickness of material
Degree (◦) Equation (3) [77]

Surface roughness (Ra) Ra =
1
l

l∫
0

y(x)dx

l is sampling length, y is
profile height in a defined

point of x -axis
µm Equation (4) [104]

4. Abrasive Waterjet Cutting Process Parameters Improvements and Optimization

Manufacturing industries are becoming more technically and economically attentive
with advancements in the worldwide economy [105]. This demand produces a need for
process parameter improvements and optimization.

4.1. AWJ Cutting Process Parameters Improvements

Abrasive waterjet cutting process parameters are factors that impact the effectiveness
of machining performance. Defects such as the surface quality, kerf geometric inaccuracies
and low material removal rate are directly correlated to transverse speed, standoff distance,
waterjet pressure, and abrasive mass flow rate as well as material properties and material
thickness. Therefore, nominating suitable values for these factors should be managed
appropriately. Functional relations between these responses and input parameters of AWJ
cutting were obtained and studied by many experimental results of numerous authors.
Table 8 details a number of experimental investigations from recently published research,
providing evaluations of correlations between input and output process parameters of
AWJM, particularly in cutting operations. Based on the studies summarized in Table 8,
water pressure at a high level provided a higher depth of cut and higher material removal
rate [33,58]. A lower value of traverse speed ranging from 60 to 90 mm/min was favorable
in achieving a lower surface roughness, and a higher material removal rate and depth of
cut [30,33,78,106].
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Table 8. Impacts of the most influencing process parameters in AWJ cutting output parameters.

Output Parameters
and Materials

Input Parameters

Key Findings and ReferencesWater Pressure, MPa Traverse Speed, mm/min Stand of Distance, mm Abrasive Mass Flow Rate, g/min

Range

100–200 201–300 301–400 60–90 91–120 121–150 1–3 4–6 7–9 100–250 251–400 401–550

DOC

AA2014 3 3 3 3
They obtained a high value of DOC at 29.70 mm by
increasing the value of p, which is recognised as the
most influencing factor in AWJ cutting [58].

AZ91 3 3

They found that increasing water pressure and
decreasing traverse speed values can achieve a
maximum value of 12.57 mm DOC in AWJ cutting
of magnesium alloy [33]

MRR

Ti-6Al-4V 3 3 3

They determined that high-level of AFR at
340 g/min, TS at 120 mm/min and moderate P at
275 MPa obtained a maximum MRR with a value
345.8 mm3/min in abrasive waterjet machining [77].

Inconel 600 3 3
They achieved a maximum value 350 mm3/min of
MRR by utilizing a moderate value of parameters
i.e., P at 280 MPa and TS at 40–60 mm/min [78].

MRR

Inconel 617 3 3 3 3
They discovered that a lower or near SOD with an
increasing value of AFR and TR was favourable in
achieving a maximum value of MRR [107].

Brass 3 3 3

They concluded that P provides the utmost impact
in minimizing Ra. A low rate of P at 200 MPa with a
medium rate of TS at 100 mm/min obtained a
minimum Ra value of 1.45 um [30].

KTA AISI 1018 3 3 3 3

They attained a minimum value of KTA by
decreasing feed rate and it has been identified to be
the most significant parameter controlling the AWJ
cutting responses [94].



Appl. Sci. 2021, 11, 3344 16 of 24

As presented in Table 8, a value of abrasive mass flow rate ranging to 100 to 250 g/min
achieved the minimum value of surface roughness and kerf taper angle [30,106]. Thus,
it has been found that a nearer standoff distance provides a better AWJ cutting perfor-
mance [58,106].

4.2. AWJ Cutting Process Parameters Optimisation

Generally, optimization is utilized to achieve the minimum probable costs of cutting
operations with a proper combination of process parameters considering indexes such as
quality, productivity, and cost. Recently, an effective optimization technique, the Taguchi
method, has become increasingly successful in optimizing some AWJM applications [108].
Several studies using the Taguchi method in their experimental work are shown in Table 9,
mitigating the effectiveness of this technique.

Table 9. Several studies (2018 to 2020) in AWJ cutting carried out through the Taguchi method.

Material Input Parameter Output Parameter Key Findings and References

Metal Matrix Composites SOD, TS, AFR Ra

Maneiah et al. [25] used Taguchi-L9
orthogonal array in their experimental
investigations. The results showed that
the essential parameters in reducing Ra
were TS and AFR.

Ti6AL4V P, TS, AFR, ND, OD Ra, DOC

Mogul et al. [27] worked in the
prediction of cutting depth by using the
Taguchi method. It was proven that TS
was the most influencing parameter for
a higher depth of cut.

Inconel 625 P, AFR, SOD KTA

Jeykrishnan et al. [29] employed
Taguchi’s technique in this study, and it
was observed that P played a
significant role in lower
kerf taper angle.

Brass P, TS, AFR Ra, MRR

By utilizing Taguchi’s L9 orthogonal
array, Marichamy et al. [30] proved the
feasibility of utilising an abrasive
waterjet machine in cutting brass
material. They concluded that
increasing P, TS, and AFR can minimise
Ra and maximise MRR.

AZ91 Magnesium alloy P, TS DOC

Niranjan et al. [33] examined influence
of process parameters in the depth of
cut through the Taguchi experimental
design of the L9 orthogonal array. The
result showed that a higher DOC could
be obtained with high P and low TS.

Ti-6Al-4V and Inconel 825 P, SOD, AFR Ra

Rajamanickam et al. [34] achieved a
higher MRR for Ti-6Al-4V at a value of
3.132 gm/min and 3.246 gm/min for
Inconel 825 by utilising an
experimental Taguchi approach.

Taguchi is a technique applied for improving quality performance depending merely
on process parameters. Taguchi’s orthogonal array is useful in establishing impacts created
by these cutting parameters with two or more mixed levels, which lessens the number of
required experimental trials [109]. Aside from the Taguchi methodology, there are several
other tools applied to quantify the correlation between AWJM input and output parameters.
Table 10 enlisted several noteworthy research studies that have been published, which
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focused on different experimental and simulation studies to achieve the optimum degree
of these process parameters.

Table 10. A list of several studies (2017 to 2020) with a diverse optimization technique in AWJ cutting process.

Material Input Parameter Output Parameter Optimisation Techniques Key Findings and References

AA5083-H32 P, JIA, AS Ra, KTA, KTW, KBW Fuzzy TOPSIS method

Yuvaraj et al. [35] employed an
optimisation technique to select optimal
values of input parameters, specifically, P
of 150 MPa, AS of #80, and JIA of 70◦. They
concluded that oblique JIA improved the
cutting performance of abrasive
waterjet machine.

Inconel 718 P, SOD, AFR Ra, MRR, KTA

VlseKriterijumska
Optimizacija I

Kompromisno Resenje in
Serbian (VIKOR) method

Samson et al. [37] distinguished the
optimised parameter combinations of 180
MPa P, 0.42 kg/min of AFR and 2 mm SOD.
They concluded that the lower standoff
distance was favourable, as it increased the
material removal rate.

Inconel 718 P, TS, AFR, AM Ra

Response surface
methodology—Box
Behnken Method

(RSM-BBM)

Kumar et al. [42] obtained a surface
roughness within the range of 2.75 to
4.94µm with the optimal level of P at
40,757 psi, AFR at 1.25 lb/min, SOD at
0.6 mm and TS at 20 mm/min. They
discovered that TS and AFR were the most
important parameters in the machining of
Inconel 718.

Al7075/TiB2 P, TS, AFR, AS,
SOD, OD Ra, MRR, KTA

Taguchi DEAR (Data
Envelopment Analysis

Based Ranking)
Methodology

Manoj et al. [43] discovered that waterjet
pressure has the highest influence in AWJ
cutting responses such as MRR, Ra and
KTA. The optimal process parameters
combination achieved are P of (280 MPa),
TS of 345 mm/min and SOD of 4 mm.

AA631-T6 TS, SOD, AFR Ra, MRR, KTA Jaya algorithm (JA)

Rao et al. [110] utilised single-objective
(SAO) and multi-objective (MOJA) to
achieve better cutting performance. The
maximum value of MRR obtained by the
MO-Jaya algorithm was 6769.6 µm3/µs,
and the minimum value of Ra obtained by
the MO-Jaya algorithm was 2.7002 µm.

Inconel 617 SOD, P, TS, AFR MRR, Geometric accuracy
Weighted principal

components analysis
(WPCA)

Nair et al. [107] studied MRR and
geometric accuracy considering SOD, P, TS,
AFR as input parameters. They determined
optimal factors and observed that waterjet
pressure was a less significant factor as the
minimum setting was adequate enough to
execute the machining process.

AA 6061 P, TS, AFR, SOD,
ND Ra, MRR, KTA Grey wolf

optimizer (GWO)

Chakraborty et al. [47] attained the
optimum parametric settings, which were
P of 310 MPa, TS of 0.05 mm/s, AFR of
11.5 g/s, and nozzle tilted in 115◦, by using
the GWO method. This combination
resulted in an MRR of 6769.597 µm3/µs.

Ti-6Al-4V P, TS, SOD, AFR DOC Artificial Neural
Network (ANN)

Selvan et al. [72] concluded that SOD and
TS are inversely proportional to DOC.

Yuvaraj and Kumar [35] applied the fuzzy TOPSIS (Technique for Order Preference by
Similarities to Ideal Solution) method as an optimization technique to attain better AWJ
cutting performance with AA5083-H32. They considered the pressure, jet impact angle, and
abrasive size as input parameters to achieve minimum values of surface roughness, kerf
taper angle, and kerf width. Furthermore, they also used an additional algorithm method,
the Grey-fuzzy method, to optimize AWJM process parameters for different materials like
glass fiber reinforced polymer [35].

Samson et al. [37] have obtained optimal values of AWJM process parameters for
machining Inconel 718, utilizing the VlseKriterijumska Optimizacija Kompromisno Resenje
in Serbian (VIKOR) method. The researchers advanced the VIKOR method by employing
an analytic hierarchy process (AHP) to convey the weight of the comparative significance
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of the aspects. This involved a multi-criterion decision-making (MCDM) system suitable
for selecting feasible or almost ideal solutions from a set of presented alternatives [111].
The results showed that low pressure, abrasive mass flow rate, and standoff distance can
minimize the kerf taper angle and roughness and maximize the material removal rate.

A hybrid response surface and Box–Behnken methodology (RSM-BBD), Kumar et al. [42]
have shown the influence of pressure, traverse speed, abrasive mass flow rate, and abra-
sive particle in determining a tolerable level of roughness for cutting Inconel 718 and in
formulating a mathematical model for predicting results. Confirmation experiments have
validated the precision of these developed models.

Manoj et al. [43] have employed a Taguchi-DEAR methodology to evaluate AWJ cut-
ting process parameters—i.e., waterjet pressure, transverse speed and standoff distance for
TiB2 particles in reinforced Al7075 composite materials. They anticipated higher levels of
material removal rate and lower levels of surface roughness and taper angle. A customary
of results of investigation were plotted to determine combinations of suitable process
parameters based on a multi-response performance index (MRPI).

Rao et al. [110] considered the traverse speed, standoff distance, and abrasive mass
flow rate as input parameters of an AWJ cutting process of AA631-T6. The results of
material removal, roughness, and taper angle were considered against the application
of the Jaya algorithm (JO). This optimization algorithm can be used to solve constrained
and unconstrained conditions, to achieve an optimum alternative and avoid the worst
ones [112].

Nair and Kumanan [107] used weighted principal components analysis (WPCA) to
optimize AWJM process parameters in machining Inconel 617. The measured performance
indicators included the material removal rate (MRR) and geometric accuracy. The WPCA
method uses internal test and training samples to calculate the ‘weighted’ covariance
matrix. The theoretical basis of WPCA is determined through a ‘weighted’ covariance
matrix. Moreover, WPCA highlights training samples similar to the test sample and lessens
the impact of other training samples [113].

Chakraborty and Mitra [47] have carried out the grey wolf optimizer (GWO) technique
for AWJ cutting of AA6061, considering multiple objectives including material removal
rate, surface roughness, overcut and taper. The GWO algorithm is a non-dominated set
of Pareto solutions whose optimization imitates the hunting activities of grey wolves. A
distinct advantage of GWO is that it identifies the best possible solution and stores this
through the aid of social hierarchy.

Selvan et al. [72] developed mathematical equations using the regression investiga-
tion method (RIM) artificial neural network (ANN) procedures to select the optimum
parameters. ANN is a computer-aided program mimicking the way the human brain
manages information, collecting information by identifying outlines and interactions in
data, acquired through experience other than from programming [39]. They observed
that the developed model using ANN can predict AWJ cutting responses with at least
90% accuracy. This can be further used in predicting the output for different parameter
conditions such as waterjet pressure, traverse speed, standoff distance, and abrasive mass
flow rate for AWJ cutting of various materials.

This review section outlined several optimization techniques of AWJ cutting opera-
tions in diverse experimental conditions with the objective of attaining higher productivity
and better quality.

5. Conclusions and Potential Future Scope of Study

There has been an exponential increase in the demand for AWJM in various manufac-
turing industries, which is why further study of performance enhancement is necessary.
This review presents an overview of recent developments and progress made in applica-
tions of AWJ cutting, which are valuable for future studies. Based on the above-mentioned
reviews and discussions, the following conclusion and potential future scopes of study
have been identified:
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5.1. Conclusions

• The intensive review of the trend of recently published research studies has revealed
that aluminium and other metal workpieces gained 53% of the attention in exploring
AWJM application improvements. A total of 27% of recent studies have proved that
traverse speed greatly impacts abrasive waterjet (AWJ) cutting performance, followed
by abrasive mass flow rate and waterjet pressure with statistics of 22% and 20%,
respectively. Garnet with a hardness scale of MOHS 7–8 and a mesh size of #80 at
180 µm gained 90% utilisation in AWJM applications due to its better performance
and competitive price.

• AWJ cutting of hard-to-cut workpieces such as metallic materials including tung-
sten carbide, tool steel, and Inconel alloys have demonstrated distinct characteristics
such as the fast speed at a rate of 2 to 3 mm3/s, versatility in cutting with thickness
ranging from ≤304.8 mm, the ability to machine complicated shapes, and environmen-
tally sustainable qualities. These characteristics explain their wide range of current
applications across various industries.

• Cutting metallic materials with low machinability, i.e., stainless steel, Inconel and
titanium, can attain lower surface roughness, higher depth of cut and material removal
rate at a waterjet pressure ranging from 201 to 300 MPa. A traverse speed ranging from
60 to 90 mm/min, abrasive mass flow rate of 401 to 500 g/min, and stand-off distance
ranging from 1.0 to 3.0 mm were established to achieve a lower surface roughness,
lower kerf taper angle, and higher material removal rate applicable to various metals.
Different optimisation techniques such as weighted principal components analysis
(WPCA), surface and Box–Behnken methodology (RSM-BBD) and grey wolf optimiser
(GWO) were employed and proved to be notably efficient in defining the optimum
values of process parameters.

5.2. Potential Further Study

• AWJ cutting has acquired high interest in improving process performance at specific
input parameter conditions. Hence, limited studies considered other parameters such
as the jet impact angle, abrasive, and nozzle sizes. A further study on the impacts of
these mentioned input parameters in AWJ cutting of various materials with different
thicknesses can be considered for future improvements.

• Based on a review of past literature, numerous research studies and experiments
have been conducted to evaluate the difference between the straight-slit and linear
cutting process of AWJMs. Nonetheless, limited reports present AWJM performance
in contour cutting. Thus, the cuttings of complex and complicated geometries are
more regularly applied in manufacturing industries rather than straight-slit or linear
cutting. Undertaking an empirical and analytical study of the effects of the process
parameters in AWJ contour cutting would be important to various manufacturing
processes in the fabrication industry.

• A prolific number of works have been fulfilled in predicting and monitoring AWJ cut-
ting performance and responses in terms of quality and productivity. Its effectiveness
in machining cost and intelligent process controlling are two areas that can be studied
further to determine future developments.
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Abbreviations
The following abbreviations and nomenclatures are used in this paper:
DOC Depth of cut
ECDM Electro chemical discharge machine
EDM Electro discharge machine
HAZ Heat affected zone
JIA Jet impact angle
KBW Kerf bottom width
KTA Kerf taper angle
KTW Kerf top width
KW Kerf width
MRR Material removal rate
LBM Laser beam machine
MMC Metal matrix composite
ND Nozzle diameter
OD Orifice diameter
P Waterjet pressure
SOD Standoff distance
Ti6AL-4V Titanium alloy
TS Traverse speed
h Thickness of the material
l inclined length of workpiece
ht Depth of cut
vt Traverse speed
y profile height in a defined point
W Kerf width
Wt Kerf top width
Wb Kerf bottom width.
Ra Thickness of the material
y profile height in a defined point
AA Aluminum alloy
AFR Abrasive mass flow rate
AL Aluminum
AM Abrasive material type
AS Abrasive size
AWJ Abrasive waterjet
AWJM Abrasive waterjet machining
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