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Abstract: Biogas production is a relevant component in renewable energy systems. The paper
addresses modeling approaches from an energy system, as well as from a process optimization, point
of view. Model approaches of biogas production show different levels of detail. They can be classified
as white, gray, and black box, or bottom-up and top-down approaches. On the one hand, biogas
modeling can supply dynamic information on the anaerobic digestion process, e.g., to predict biogas
yields or to optimize the anaerobic digestion process. These models are characterized by a bottom-up
approach with different levels of detail: the comprehensive ADM1 (white box), simplifications and
abstractions of AD models (gray box), or highly simplified process descriptions (black box). On
the other hand, biogas production is included in energy system models. These models usually
supply aggregated information on regional biogas potentials and greenhouse gas emissions. They
are characterized by a top-down approach with a low level of detail. Most energy system models
reported in literature are based on black box approaches. Considering the strengths and weaknesses
of the integration of detailed and deeply investigated process models in energy system models
reveals the opportunity to develop dynamic and fluctuating business models of biogas usage.

Keywords: biogas; modeling; anaerobic digestion; energy system; geoinformation system; GIS; life
cycle assessment; LCA; greenhouse gas emissions

1. Introduction

Biogas is a relevant component of an increasingly renewable energy system in many
countries. Biogas plants feature some specific properties compared to other renewable
energy plants such as flexible provision of electricity and heat by gas storage, or possible
contribution of energy to the transport sector.

With anaerobic digestion (AD), the main transformation process from organic matter to
biogas is a biological one. The complex processes of hydrolysis, acidogenesis, acetogenesis,
and methanogenesis are well known and described [1]. AD works with various types of
organic feedstock, such as municipal sludge from wastewater treatment plants, municipal
solid waste, animal waste, algae, or energy crops. Some of those are constantly available,
while others are subject to regional and seasonal restrictions. Main product of the anaerobic
digestion is biogas, primarily methane and carbon dioxide (CO2). The side product is a
nutrient-rich digestate. Biogas can be converted to different energy products, such as heat
(by combustion), electricity and heat (combined heat and power plant: CHP), electricity (by
turbines), natural gas (by the separation of CO2), or fuels (e.g., by increasing the methane
fraction or CO2-assisted catalytic reforming) [2]. A common pathway for the energetic
use of biogas is electricity and heat production in a CHP. The focus in many countries
lies on the production of electricity. In Germany, for instance, the privileged feed-in of
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renewable electricity from biogas CHPs is regulated by the Renewable Energy Act [3]. In
comparison to other renewable energy sources, electricity production from biogas is not
weather-dependent. Biogas plants can produce electricity flexibly according to demand, by
utilizing the possibility of storing feedstock and biogas [4]. This provides a distinguished
role for biogas plants in the energy sector. Furthermore, biogas can also participate in the
supply of heat and fuel where the share of renewable energies, for example, in Germany, it
is much lower than for electricity. The shares of renewable energies for electricity, heat, and
transport in Germany in 2019 were 37.8, 13.9, and 5.6%, respectively [5].

Biogas plant operation needs continuous monitoring and process control because
the AD process is based on microbiological activities that require a complex biocenosis of
different microorganisms. This is where process modeling comes into focus.

Biogas process modeling was originally developed for the prediction of possible
biogas yields and optimization of the AD process (e.g., [6–8]), as well as for process control
and staff training (e.g., [9,10]). Those models—often assigned to the water sector—focus
on a very detailed description of microbiological transformation. Early papers on AD
modeling, for instance, go back to the 1970s [11–13]. Since 2002, the anaerobic digestion
model (ADM1) has been a commonly used tool to model physical and biological processes
within biogas fermenters.

Biogas plants in energy systems are mostly investigated from an agricultural or energy
economical point of view. Energy system modeling often regards biogas plants as black
box models. They basically tend to be included as gas storage combined with a CHP unit
(e.g., [14]). The modeling of biogas plants within future energy systems with high shares of
renewable energies needs to look further into the biological process, though, in order to
answer new questions due to the dynamic nature of energy supply and demand, such as:

- How can electricity production be adjusted to electricity demand profiles?
- How can biogas plants contribute to energy sector coupling?
- Which pathway of biogas exploitation is most beneficial for the energy system?
- Which pathway of biogas exploitation offers a business model for the operator?

Goal of the transition from fossil to renewable energies is the decarbonization of the
energy sector, which aims to address the question of the environmental impact of biogas
plants, i.e., their carbon footprint (e.g., [15]). Renewable energy production is often much
more decentralized than fossil energy production. Biogas production is widely applied in
rural areas. This also poses new questions, such as:

- What is the carbon footprint of biogas-based energy products?
- What feedstock mixture is most sustainable and are there regional limitations?
- How can biogas plants be included in regional energy systems?

Such regional aspects of substrate availability and energy-related infrastructure are
commonly modeled with geoinformation systems (GIS; e.g., [16]).

The integration of biogas plants in energy systems thus links water or agricultural
economies with the energy economy. This requires information transfer between the
different sectors. Figure 1 shows possible system boundaries for different views on biogas
plants from energy systems to microbiological processes in the AD process.

This paper aims to bridge the gap between different academic fields and their respec-
tive research approaches for a beneficial integration of biogas plants in future renewable
energy systems by comparing model approaches and their level of detail in anaerobic
digestion literature with energy system literature.

Earlier reviews on biogas modeling mainly provide an overview of research within
their discipline. For example, a review from 1991 summarizes temperature and inhibitor
depending microbial kinetic modeling approaches of the anaerobic treatment processes
of complex organic materials [17]. Reference [18] shows modeling approaches of the AD
process in the literature with respect to different kinetic approaches and generates an
overview of software tools which calculate a biogas production rate based on substrate
properties (2014). Reference [19] gives an overview of simplified AD process models
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(artificial neural networks, Fuzzy-logic, linear and non-linear regression models), as well as
computational fluid dynamics modeling approaches of a digester (2012). The review in [20]
summarizes existing AD process models and their modeling and kinetic parameters (2011).
From an energy system point of view, reviews either regard energy system modeling in
general (e.g., [21]) or greenhouse gas emissions based on biogas production [22–27].
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Figure 1. System boundaries for different views on biogas plants.

In comparison, this publication aims at a cross-disciplinary view of modeling methods
with respect to biogas production. It thus presents a systematic review and classification of
existing modeling approaches of biogas production within the different academic fields
of energy systems, regional potentials, greenhouse gas emissions, and biogas processes.
It focuses on an analysis of methodical concepts and modeling depths of physical and
biological processes within literature with different views on the biogas production process.
A systematic overview of different modeling approaches can be the basis for future cross-
disciplinary views on biogas plants in energy systems by including the dynamic time-
dependent behavior of the biogas process.

The focus lies on biogas plant modeling within energy system studies and models
of biogas production. Although computational fluid dynamics modeling is described
in literature, e.g., to verify hydraulic retention times of anaerobic digesters [28] or to
study hydraulic dynamics of the peripheral piping system [29], fluid flow modeling is
not regarded within this paper. Furthermore, this paper does not claim to be a complete
overview of every published modeling paper.

2. Materials and Methods
2.1. Literature Search

Process modeling of the anaerobic process started in the late 1960s. Early AD models
were, e.g., published by Andrews and Graef in 1971 [12] and by Hill and Barth in 1977 [11].
In the following years, different types of AD models were developed in parallel [30]. In
2002, the International Water Association (IWA) Task Group for Mathematical Modeling
of Anaerobic Digestion Processes published the generic AD process model “Anaerobic
Digestion Model No 1” (ADM1) [31].
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This review focuses on biogas production modeling since this period, i.e., the literature
published between 2002 and 2020. It considers publications of different scientific disciplines,
such as microbiology, biological process engineering, and energy systems.

A systematic literature review was performed to obtain the most relevant literature on
modeling approaches for biogas production and its environmental impact, as shown in
Figure 1. The method was adapted from [22,32,33] and is shown in Figure 2.
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Figure 2. Method of systematic literature search applied, modified according to [22,32,33].

A keyword search was rejected due to its unspecified results with almost over
239,000 search hits achieved by only applying the keyword combination of “model,”
“biogas” and “system.” Consequently, a title search was performed.

The performed Google Scholar search reached a significantly higher number of
matches (499 hits without duplicates) than the same combination of a title search at Web of
Science (176 hits).

As initial search topics, a combination of “simulation” or “model*” (*: placeholder to
get results for different configurations, such as “modeling” or “modelling”) with “biogas”
and the different research fields, such as “system” or “life cycle,” was applied. Common
journals publishing these papers were used for an additional search in sciencedirect,
researchgate, semantic scholar, MDPI, scitldr and IEEE with the results added to the first
result of papers mentioned above.

This initial search led to 539 search hits (Figure 3) with only 40 papers (7%) excluded
as duplicates (Figure 2). The different search topics generated only a small intersection but
a broad impact on this specific search.
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Reading the title, abstract, keywords and conclusion (in this sequence according
to [33]) resulted in 129 candidate papers (26% of initial results) with potentially high
relevance due to the existence of a mathematical model of biogas production mentioned
in the paper. These papers were further classified in terms of relevance, i.e., a published
biogas energy production model or biogas model used to calculate the impact on the
environment (e.g., life cycle assessment: LCA).

The remaining final list was comprised of 30 relevant papers (6% of initial result).
This list was used to examine the impact of these papers on further research topics

(forward search) and to inspect their references (backward search). An additional 33 papers
were found and added to the final list, resulting in 63 papers (12%) with an impact on this
review paper.

As a partial number of the final list of papers, this review presents a portfolio of
53 papers as a subset of the 63 final papers with the highest impact on the research topic of
modeling dynamic biogas systems considering different levels of detail. Moreover, these
papers show slightly different modeling approaches and thus differ from each other.

2.2. Model Categorization

Mathematical process models can generally be classified by regarding their level
of theoretical depth. While experimental models describe a process by experimental
input-output analyses, all physical dependencies are described by differential equations in
theoretical models. This requires very detailed process understanding and knowledge of
all influencing parameters. The different model approaches can be categorized in black
box, gray box and white box modeling, with increasing model complexity from white to
black box approaches (Figure 4).
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White box models consist of linear or nonlinear differential equations and know their
physics, structures, and parameters well without any restrictions made by the physical
system they describe [34]. They are the most detailed models and close to a full description
of a real system, providing results near to the actual behavior of the real system. However,
as they do not contain approximations, a complex design and implementation of all
influencing parameters is necessary [35].

Black box models on the other hand create a system response without knowing any
physical dependencies of the input variable and without considering the complexity of
the system. Experimental data or results of a physical system train these models, such as
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artificial neural networks (ANN) or statistical models. They describe the functional rela-
tionship between model inputs and outputs and are efficient at representing the behavior
of a process as a trend [36]. By using only a set of rules and equations, these models are fast
in terms of computing and processing, but show a lack of flexibility as they cannot adept to
slightly different physics [35].

As a mixture of white and black box models, gray box models, such as fuzzy models
or differential equations, know physical dependencies of input and output data, but not
any generally valid parameters that describe the physical system. They use physical
representations and approximations with model parameters, which have to be gained for
each physical system they describe, i.e., by experiments. Accordingly, their application is
restricted to one well-defined physical system and its estimated parameters [34].

Within this paper, literature on biogas modeling is classified according to its view
on the biogas plant and the modeling approach. Regarded views on the biogas plant are
according to Figure 1: energy system, regional potential, greenhouse gas (GHG) emissions,
and biogas production.

Depending on the complexity of the AD model within each publication, it is further
assigned to the categories of white box, gray box, or black box models. Biogas modeling
approaches which include a detailed mathematical description of all physical and biological
process steps of the anaerobic digestion are thus classified as white box models (e.g., the
ADM1 model), simple systems of equations or linear relationships are classified as black
box models (e.g., the calculation of methane potential based on the organic solids of a
feedstock), and simplified dynamic relationships of biogas production with respect to the
feedstock are classified as gray box models (e.g., simplifications of the ADM1 model).

Moreover, the classification into top-down and bottom-up models presented in [37]
is transferable to modeling approaches of biogas production. Providing an aggregate
view of the energy sector and economy when simulating economic trends and energy
demand supply, these models are classified as top-down model accordingly. In comparison,
modeling detailed information about processes, technical systems and time-dependent
conditions is the result of bottom-up modeling approaches of biogas production.

3. Results

This review deals with different modeling approaches of biogas production within
renewable energy systems. As the review considers varying research disciplines and their
respective views on biogas production with different system boundaries, the literature
regarded is categorized using holistic energy system modeling, modeling of regional
substrate potential, modeling of greenhouse gas (GHG) emission, and detailed dynamic
process models.

3.1. Energy System Modeling

Energy system models describe current and future energy systems considering sce-
narios to predict the possibilities of expanding renewable energy production. Therefore,
the calculation of scenarios is based on time-dependent information, such as the energy
potential of photovoltaic or wind, fluctuating energy demand as a result of day-ahead
usage or changes of technologies, or varying energy prices on world markets [37]. A
number of different mathematical environments and tools are described in literature for
the modeling of energy systems, summarized in the review of [21].

The Open Energy Modelling Framework (Oemof) is one of the tools used for energy
modeling [38]. It is based on Python and was developed as an open source tool to construct
comprehensive energy system models. As an application, it was used in [39] to investigate
the energy storage requirement for different degrees of self-sufficiency while regarding
the electrical energy potential of photovoltaic, wind and biogas in a northwestern region
of Germany (districts of Muenster, Osnabrueck and the city of Osnabrueck). Biogas,
therefore, was considered as a fixed electrical energy potential of this region and included
in the simulation either without energy storage or with the possibility of buffering its
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energy production for eight hours. Further studies [40] also used this approach of biogas
integration in energy system modeling and showed that the region could reach a degree of
self-sufficiency of 80% without installing any energy storage systems as a result of already
installed renewable energies.

A comprehensive fictional energy system, including wind turbines, photovoltaic,
thermal solar and biogas for electricity and heat, was studied in [41]. Mathematical
equations were solved by utilizing the Engineering Equation Solver [42]. Different scenarios
were simulated with the use of thermal energy storage to obtain the possibility of heat
buffering in times without solar radiation. In the case of biogas production, the energy
input into the system simulation is based on a fixed mass-specific energy content of a
fixed feedstock mixture consisting of chicken manure and maize silage; the CO2 emission
reductions were calculated in comparison to fossil fuel sources. The simulation showed the
possibility of producing electricity, hydrogen, cooling effects, hot air and hot water with
renewable energies with an overall energetic efficiency of 64.9 to 71.1%.

Modeling the potential of degradable wastes using Balmorel as a linear optimization
and energy system model [43], Reference [44] developed an energy system model to simu-
late the waste to energy potential. Accordingly, annual energy potentials of agricultural
wastes, forest residues, energy crops and municipal waste were taken from literature for
Denmark, Germany, Finland, Norway, and Sweden, as well as their electricity and heat
demands. In addition to biomass, the annual electrical energy potential of wind turbines
was also included. Considering different technologies of waste conversion (waste inciner-
ation, co-combustion with coal, AD, gasification) and their costs (investment, operation,
maintenance) led to the incineration of waste as the most economic feasible solution.

Reference [14] included biomass as an annual energy potential of Denmark to evaluate
the potential of biogas-derived fuels as raw biogas (used without purification), methane
from biogas purification and methane from methanation with electrolytic hydrogen. Dif-
ferent sectors were modeled (power, heat, transport) using [45] under varying biomass
costs. An hourly simulation achieved the use of raw biogas for electricity and district heat
production as a result with the highest efficiency and lowest energy system cost.

The energy system model in [46] included solar heating, geothermal and biomass heat
generation, waste and gas CHPs, wind turbines and AD to obtain heat, electrical energy,
gas and methanol for the Danish municipality of Sønderborg using Sifre (an energy system
modeling tool of the Danish electricity and gas transmission system operator Energinet.dk).
Regarding AD, a fixed mixture of manure and straw produced biogas with 65% methane
and 35% CO2. The results show a reduction of total system costs and CO2 emissions for a
manure and straw potential for 2014 and 2029 using advanced conversion technologies
(i.e., electrolysis, fuel cells and methanol production) in electrified energy systems.

Reference [47] used an Irish annual bioenergy potential of different degradable feed-
stock as an oil equivalent considering annual changes of this potential. The scenarios were
built within TIMES (The Integrated MARKAL-EFOM System; MARKAL-EFOM: Market
Allocation-Energy Flow Optimization Model) software environment. The target of 80%
CO2 reduction by 2050 was confirmed by the simulation, mostly by CO2 reductions in the
transport sector and a biomass potential for two-thirds of the renewable energies in 2050.

An integration of the energy potential of biomass as a black box model was common
for the studies presented in energy system models. The models consider fixed yield factors
for the conversion of organic substrate to biogas, biomethane or to electricity and heat.
The amount of biogas-based energy is then integrated into simulation environments and
combined with the energy of other renewable sources in order to build load profiles. These
load profiles in energy system modeling are consequently optimized to match current
and future energy demand profiles. Additionally, there are different studies of energy
system modeling available handling the general availability of bioenergy as a renewable
energy source in scenario development for energy systems in the future. Different reviews
regarding the latter have been published, for example, modeling decentralized energy
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autonomy [48], urban regions [49,50], or on a smaller scale for municipalities [51,52]. These
studies state the general availability of bioenergy for renewable energy systems.

3.2. Regional Potential Modeling

GIS modeling maps data items in terms of geographic coordinates (latitude, longi-
tude) to calculate the regional potential of biogas (degradable substrates in their original
condition) [53]. These data are known or can be calculated. The results are used mainly to
calculate regional biomass or biogas potential, but they can also be the basis for sustainabil-
ity studies or regional energy systems according to regional infrastructure. This technique
is, for example, used for the planning of wind parks [54,55].

Investigating the biogas potential as a result of the AD of manure, Reference [16] used
GIS-dependent information about the capacity and locations of dairy farms located in a
northwestern region of Portugal (Entre-Douro-e-Minho Province). This region consists
of 10 counties with 294 parishes and 1705 dairy farms with more than 100,000 animals.
The electrical energy potential was calculated as the linear relationship between one cubic
meter of biogas and the number of animals needed to produce the relevant amount of
manure. Including biogas plant costs for investment, maintenance and costs for transporta-
tion of manure, a multi-objective mixed integer linear programming was performed to
identify locations of biogas plants with minimal investment, operation and maintenance or
transportation costs.

In a similar way, the sectoral biogas potential from livestock manure (cattle, pigs,
sheep/goats, poultry) was evaluated in [56] with a GIS approach for a region in Greece.
Accordingly, the year-dependent manure production per animal (since 1970) and biogas
potential of the manure led to a sectoral energy potential.

A time dependent biogas potential made of agricultural residues and municipal
biowaste with a seasonal variation approach was examined in [57]. Taking account of
residue-to-product ratios, sustainable removal rates, and specific methane yields of agricul-
tural wastes while including a seasonal residue generation, this approach led to a linear
relationship between feedstock and its methane yield and was calculated for a land cover
of Croatia. Up to 40% less storage capacity is required for the seasonal approach compared
to a conventional annual approach.

A more detailed regional model of biogas potential to obtain an optimization of GHG
emissions for the Finnish province of North-Savo was presented in [58]. GHG emissions
were calculated as a sum of emissions of the CHP plant and feedstock transportation. The
calculation of CHP emissions is based on specific methane yields of the feedstock and
the associated CO2 emissions of methane combustion. Consequently, data for regionally
available feedstock (manure, grass silage and municipal waste) was collected to calculate a
regional methane potential based on feedstock production (per animal or mass of waste).
Taking the total solid ratio and the methane yield into account, the regional feedstock
production led to a regional methane potential. An optimization algorithm calculated
and minimized the GHG emission due to different sizes and efficiencies of CHP units and
hydraulic retention times. A regional gas grid was contemplated in order to examine the
biogas availability in the area near the gas pipeline.

Based on feedstock-specific (municipal waste, sludge, manure, silage, and crop
residues) biomass, a rural methane yield was calculated due to its volatile solid ratios and
methane yields to optimize biogas plant placing in a rural area of southern Finland (Turku,
Salo and Kymenlaakso) [59]. Forty-nine biogas plants were identified with a total energy
potential of 2.8 TWh. The production capacity of the biogas plants could be raised from an
average of 3.7 to 13.4 MW by increasing the transportation distance of feedstock from 10 to
40 km, while over 50% of feedstock potential lies inside a 10 km radius around the biogas
plant locations.

In summary, regional modeling in the field of biogas production focuses on GIS-based
studies of substrate availabilities. These are observed mostly as mean annual values, but
time-dependent studies are also reported. The modeling of the biogas process as a black
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box with known yield values for biogas production from different substrates is common
for studies with a regional focus.

3.3. GHG Emission Modeling

The environmental impact of biogas production is often described by the amount
of GHG emissions produced, with methane leakage during AD and storage being the
major emission source. The LCA according to DIN EN ISO 14040 [60] and 14044 [61]
considers the complete product chain, from raw material to waste removal [62]. This
includes, for example, N2O emissions from the agricultural production of energy crops.
Emissions of different GHGs are commonly summarized as CO2 equivalent or global
warming potential. Calculating the impact of energy production and its resulting impact
on the environment, LCA based on biogas energy systems as research topics were deeply
discussed in several studies including different aspects, and were reviewed by several
authors, for example [22–27].

Using the LCA database GaBi [63], Reference [15] evaluated a LCA for maize to
generate electrical energy considering its regional impact, such as soil, weather and crop
management conditions, for the districts of Hildesheim, Göttingen and Celle, Germany.
Biomass in this study was calculated according to the regional biomass yield. The electrical
and thermal energy production was calculated considering constant efficiencies based
on dry and organic matter and methane yield. Net GHG emissions varied from 0.05 kg
CO2 eq/MJel in Celle to 0.016 kg CO2 eq/MJel in Göttingen due to different maize cultivation
systems and heat utilization from CHPs. The results of acidification and eutrophication
show similar results for these regions.

The LCA software GaBi was also used in [64] to investigate the influences of liquid
manure and energy crops (maize silage and grass silage) as feedstock in four different types
of biogas plants. The methane yield was calculated for different mixing ratios of input
materials. The energy conversion included different sizes (50, 150, 500 and 2000 kWel) and
efficiencies (electrical: 36, 38, 40 and 41%, thermal: 46, 46, 43 and 44%) of CHPs. Liquid
manure showed a reduction of GHG emissions for small biogas plants (0.2 kg CO2 eq/MJel)
but a low effect for bigger plants (0.08 kg CO2 eq/MJel) when comparing a co-digestion of
35% of manure and 65% energy crops with a mono-digestion of energy crops.

An LCA for a demand-driven biogas system using maize, grass, rye silage, sunflowers,
biogenic wastes and manure as feedstock was performed in [65]. Two superior scenarios
were compared: A flexible demand-oriented and a traditional baseload operation. A
substitution of maize with sunflowers, manure and biogenic wastes was obtained in the
flexible feedstock operation. The methane yield of the feedstock input was calculated by
using dry and organic content ratios with its mass-specific methane yield. The LCA data
of the tractor, CHP unit, energy, fuel and fertilizer were taken from the Ecoinvent [66]
database and SimaPro [67] as the LCA software environment. Calculating the fermenter
volume with an HRT taken from literature led to a mass flow of feedstock into the digester.

A flexible feedstock input led to a 16% higher energy consumption of plant operation
compared to the baseload energy production. A higher energy consumption of feedstock
transport and storage caused this additional demand. However, a global warming potential
reduction of up to 45% was achieved with a flexible feedstock load against baseload
production due to a substitution of maize with biogenic wastes.

Based on an overall mass-specific energy content, Reference [68] used different types
of pretreated grass as feedstock and their energy potential to model a process chain of
biogas production, including cultivation, harvesting, storage of feedstock, digestion and
digestate use. Three different case studies were performed: fresh grass, dried grass (hay)
with storage, and ensilaged grass with storage. The studies were done without a specific
software solution to obtain LCA results and included all process parameters, such as
methane yield, gas leakage and CO2 emissions. The results showed the highest GHG
emissions in the case of the dried grass digestion (4.55 kg CO2 eq/kg biomass) due to the
high concentration of total solids and, therefore, the high gas leakage emissions during the
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drying process in the field. About 1.8 kg CO2 eg/kg biomass was emitted by fresh grass
and ensilaged grass.

Reference [69] investigated an LCA of biogas production with subsequent biomethane
injection into a natural gas grid based on mono-fermentation of cultivated crops such as
maize, triticale, rye and hemp. The authors used Umberto® [70] as material flow manage-
ment and LCA software. The study includes emissions of farming, digestion, purification
and upgrading of biogas to biomethane as well as emissions of transportation processes.
For calculating an annual biogas potential, a cultivated area of 1 ha was considered, pro-
ducing 80 tons of fresh matter per year with 24% dry matter content. This cultivation lead
to an annual biogas production based on a specific biogas yield of 467 m3/t with 60%
methane and 40% carbon dioxide.

It could be shown that the global warming potential (100 years) of biomethane were
10–20% lower than the GWP of natural gas.

In summary, GHG calculations in biogas plants model mainly the biomass process
chain in order to identify potentials for emission decrease or to compare different feedstock
or biogas plant setups. Literature studies on emissions of biogas production are mainly
based on black box models. An exception is the preprint of a study in [24] that deals with
LCA modeling with the software SimaPro [67] and the Ecoinvent [66] database combined
with an extended model of the Advanced Monitoring and Control system for anaerobic
processes (AMOCO) [71], including pH inhibition and an additional hydrolysis step, mod-
eled within MATLAB®. The AMOCO (or AM2) was developed by a European Economic
Community project, published in 2001 [72], and is based on a two-step reaction system
with acidogenesis and methanogenesis reaction steps, including 13 different equations of
biomass, substrate and products, with an overall energy and mass balance of the digester.
Additionally, the model contains equations of the inhibition of biological processes and
physiochemistry states, such as pH value, fraction of inorganic carbon and partial pres-
sures. The AD model AMOCO was applied to a biogas plant to perform in the flexible
energy market of Germany within baseload and flexible feeding control. The LCA data
were examined using SimaPro and were integrated into the programming environment of
MATLAB® to deal with LCA data, on the one hand, and dynamic digester behavior, on the
other hand. A flexible feeding management of maize, grass silage and cow manure led to a
35% lower global warming potential in comparison to a baseload biogas production and
an average GHG emission of 0.0026 kg CO2 eq/MJel.

3.4. Dynamic Biogas Process Modeling

The performance of biogas plants as a result of AD, the possibility of controlling
a full-scale biogas plant, the impact of fluctuating energy markets, and the behavior of
energy production are modeled within different research fields, mostly on a scientific or
technological level. Published models show a great variety both in methodical approach
and in addressed research questions. Within this section, the reviewed papers are classified
by their level of detail and complexity of the described AD model and categorized as white,
gray, or black box model.

3.4.1. White Box Biogas Process Models

The very popular IWA Anaerobic Digestion No 1 (ADM1) was published in 2002 [31]
to model and simulate sewage sludge processes. As an AD process model, it includes both
biochemical and physicochemical reactions in a detailed manner. Regarding biochemical re-
actions, the model consists of an enzymatic disintegration step as an elemental dissociation
step of complex organic substrates into their basic components: Carbohydrates, proteins,
fats and inert components. The further bacterial degradation of these basic components
is modeled as a four-stage system of anaerobic degradation: hydrolysis, acidogenesis,
acetogenesis and methanogenesis. Regarding physicochemical reactions, liquid–liquid
reactions and gas–liquid exchanges are included.
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The ADM1 includes 19 reactions with 24 species and more than 100 parameters. By
knowing the characteristics of the input waste or feedstock input, the ADM1 can be applied
to calculate representative results for biogas production for different types of feedstock and
under different conditions by varying its parameters [72,73].

The ADM1 was widely discussed in several studies with different types of aspects
and was reviewed briefly, for example, in [20,74]. Based on its high impact as a white
box model to calculate the precise system state of AD and under the influence of rising
model predictions for different kinds of research fields, the ADM1 was configured as a
software code on different software environments to model and examine the behavior
of different input feedstock on the AD process. An ADM1 code included in a graphical
programming software environment is presented with SIMBA#®. SIMBA#® is based on
MATLAB® Simulink in its initial design. Further development led to an independent
commercial software environment based on C# code [75]. SIMBA#® was used in [76] to
model a four-chamber biogas digester fed with pig manure and achieved high pH stability
of the fermentation substrate inside the digester as a simulation result. AQUASIM, an open
source software published in 2013 and using C++ compiler, was created for mathematical
modeling and parameter identification of aquatic systems [77]. The implementation of an
ADM1 code was successfully used for different research topics, including the performance
simulation of a full-scale sludge digester and the validation of its experimental data of
about 200 days operated at mesophilic conditions [78]. Using AQUASIM for an ADM1
parameter estimation to predict experimental data (20 days) of a lab-scale digester for
the aquatic plants species Hydrilla verticillata (water thyme) [79] led to a well predictable
biogas production rate, provided that a parameter optimization of reaction rates was
performed. The possibility of integrating an ADM1 program code inside the modeling
environment of MATLAB® Simulink led [80] to publish a C code-based ADM1 program
code as a possibility of using this code as an S-function (as a graphical coding function block)
in Simulink.

Reference [81] built a graphical user interface (GUI) inside the programming envi-
ronment Python as an easy-to-use possibility for changing model input parameters of the
ADM1. The ADM1 itself was implemented as MATLAB® code. Both the GUI modeled
in Python and the ADM1 implemented as MATLAB® code resulted in a software tool
called the “Anaerobic Digestion Model Simulator v1.0” (ADMS 1.0) that was validated
with AQUASIM by a variation of the ADM1 input parameters. A MATLAB® code of the
ADM1 was published by the authors of [82] to evaluate the stability of AD and an optimum
mixture of different input feedstock. The MATLAB® code incorporates the ADM1 model
implementation description in [83]. A GUI was built to run the model without extensive
programming skills for the purpose of usability.

The different studies show that the ADM1 is applicable to model and simulate the AD
process with different types of feedstock under the use of different types of programming
environments. Accordingly, studies use ADM1 to model and simulate complete biogas
plants, including energy production.

A model of a micro gas turbine with the dynamic behavior of an electricity conversion
system inside MATLAB® Simulink, including the ADM1 modeling description presented
in [83], was developed by the authors of [84]. An implementation of a transformation
matrix, presented in [85], led to a less difficult description of the ADM1 input parameters
to be able to revert to only eleven parameters as more common characteristics of the input
substrate (such as ratios of volatile fatty acids, total organic carbon or organic phosphorus).
Regarding AD production modeling, species-based mass balance equations describe an
anaerobic reactor, including input and output mass flow rates as well as the ADM1 model
as mass generation rate. A turbine, generator, inverter and electrical filter were modeled
with the Toolbox “Simscape” implemented in the development environment of MATLAB®

Simulink. Utilizing a biogas flow rate of 0.03 kg/s and a methane concentration of 48%,
the model presents an electrical power production of 24 kW with manure as the feedstock
input and demonstrates the functionality of micro gas turbines under biogas production
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conditions. The biogas system with an integration of the ADM1 simulated both the effect
of different types of feedstock on the AD process and the AD process on the resulting gas
conditions.

Reference [86] presented the modeling approach DARIES (Dynamic Anaerobic Reactor
and Integrated Energy System) in MATLAB® Simulink based on the ADM1 with an
additional integration of temperature-dependent kinetics (Arrhenius equation). The biogas
model includes a dynamic CHP to produce electrical energy and heat. Heat equations
for heat transfer modeling inside the digester were implemented from literature. The
simulation results were verified by the use of different real data sets of the database
NYSERDA (New York State Energy Research and Development Authority) with hourly
monitored performance data including fuel and power information. DARIES was able
to verify experimental data with underprediction of the methane production rate by
about 12%.

In order to expand the effect of AD on a whole biogas plant and its peripheral technical
aggregates, Reference [10] evaluated multiple dynamic component models of the common
plant aggregates: Anaerobic digester with ADM1, CHP unit, digestate storage, feedstock
input, pumps, heating systems, thermal and electrical energy sinks, and sources. The model
was developed inside MATLAB® Simulink as a toolbox under the name “BioOptim”. This
method of modeling dynamic component models leads to an adaptable and scalable biogas
plant system model, for example, by the multiple use of the anaerobic digester with the
integrated ADM1 or CHPs with different sizes and efficiencies. The model approach
created further investigations to optimize the control of biogas plants by using a nonlinear
model predictive controller [87–89] in a validated simulation of a full-scale biogas plant
model. The aim of this work was to produce an online control mechanism of the substrate
input of a real biogas plant based only on the measurement of the pH value and total
biogas production rate with its methane and CO2 concentrations. The nonlinear model
predictive controller allowed the definition of optimality criteria leading to an optimized
operating mode of the plant in terms of cost/benefits, pH value or VOS/TAC value. The
“BioOptim” toolbox is not integrated as an official MATLAB® Simulink toolbox. The model
approach leads to the possibility of understanding the effect of AD processes under varying
feedstock inputs on a whole biogas plant and, therefore, results in a state space model of
the plant. The biogas model mentioned above [10] was successfully used in India to model
the biogas potential of biowaste at an educational institute in order to verify experimental
data [90]. The simulation resulted in a reduction of 30 to 35% of liquefied petroleum gas
substituted by biogas production made of biowaste at the campus site.

The “Dynamic Biogas plant Model” (DyBiM) was introduced as a MATLAB® Simulink
simulation in [91] to connect the model of a biogas plant with an electrical energy grid.
The AD process was included as an ADM1 with its parameters from literature to describe
different types of substrates. Cattle manure and sugar beet were used as reference substrates
in this work. Regarding the plant aggregate, a dynamic mass balance of a perfect mixed gas
storage was modeled to obtain a homogenous gas mixture depending on different types of
feedstock. Compared to the dynamic behavior of the AD, the CHP unit was modeled as a
balance equation without any dynamics but is affected by the gas storage levels, which
leads to an increasing CHP energy production at higher gas storage levels and vice versa.
Operation under Swedish conditions showed that adaptive feeding management due to
flexible energy demands and, thereby, flexible CHP production rates led to a reduced gas
storage capacity under varying gas ratios, calculated by the broad AMD1.

In order to control this kind of flexible biogas energy production, Reference [92]
introduced a MATLAB® biogas model with a proportional and integral gain error (PI)
controller which regulates the substrate feed input comparing the methane production
rate. The ADM1 was modified to a version called ADM1xp, which allows the use of a
Weende analysis of the feedstock to enable the utilization of well-known analytical substrate
characteristics. The PI controller could regulate the substrate flow into the digester to cover
the energy demand by connecting to a virtual energy demand as a load profile of the
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region of Emden (Germany). Some differences remained as controller error, however,
the methane production covered the demand 79.4% of the time. The PI controller was
originally designed for fast systems and could not react to the slow digester behavior to
cover a higher methane demand due to instabilities in the simulation.

3.4.2. Gray Box Biogas Process Models

The ADM1 is seldom used to optimize and control full-scale plants due to its high
complexity. It needs an extensive dataset regarding the feedstock, which leads to a complex
feedstock analysis as a result of missing data available in the literature [93]. Several studies
modify the ADM1 or generate simplified AD models. These so-called gray box models
reduce the complexity by omitting non-limiting reaction steps and bridge a gap between
simplicity and accuracy. This type of model creates the possibility of using practical data of
the digester input substrate without knowing all parameters necessary for complex AD
models [94], but it requires a parameterization of the mathematical functions obtained and
modeled for a specific physical problem.

Based on the idea of flexibly generating energy and, thus, flexible biogas production,
Reference [95] modeled an AD process as two differential equations, four parameters
of two reaction steps (a fast one for the digestion of carbohydrates and a slow one for
the digestion of lipids and proteins). The biogas volume flow rate was calculated as the
sum of the flow rates resulting from the two reaction mechanisms. This overall volume
flow rate was modeled as transfer function in the Laplace domain with the feedstock as
input variable. This model was used to observe the AD behavior under fluctuating input
feedstock, leading to a variation of biogas production rates. Using experimental data of
a 1.5 m3 digester (1 m3 digestion volume, 0.5 m3 gas storage volume), the simulation
results were also compared with the ADM1 and showed a sufficient compliance of both
AD process models.

Using a systematical simplification of the ADM1 presented in [96], Reference [97]
opened the possibility of relying on four reduced (“R”) AD models, ADM1-R1 to ADM1-
R4. The authors implemented these simplifications in a dynamic biogas plant model
programmed with dynamic gas storage and CHP models. The simulation was subjected
to the German electricity and its European power exchange (EPEX) spot market. Flexible
feeding of a biogas plant was investigated to obtain a maximum total revenue on the EPEX
spot market under an additional variation of gas storage capacity. The feeding control
inside the model was realized by a model predictive controller [98]. This work is still under
investigation; a verification of this model with a research biogas plant of the Deutsches
Biomasse Forschungszentrum was started at the time of writing this review.

Reference [99] used a time-dependent biogas production flow rate, modeled as ex-
ponential function. The biogas volume flow rate depended on feedstock properties, e.g.,
the organic fraction, its biogas production potential and maximum biogas production rate.
The biogas production was modeled and simulated under flexible feedstock input using
MATLAB® Simulink. A CHP unit as a balance equation with electrical load dependent
efficiencies was included, as was a dynamic gas storage system. The model was verified
by real data (daily biogas and electrical energy production and overall thermal energy
production of December 2018) of a biogas plant located in Bornholm, Denmark, and could
predict its electrical and thermal output well considering the real production data of the
biogas plant. The deviation between the real data and the simulation showed averages of
7.7, 0.78 and 1.99% for biogas, electrical and thermal energy production, respectively.

The possibility of utilizing biomass to produce electrical energy, on the one hand,
and fuel, on the other hand, is shown in [100], with a model of a combined electrical
energy and fuel supply system with compressed natural gas (CNG) as vehicle fuel. A
combined MATLAB® and Microsoft Excel® simulation was modeled to emulate the impact
of the EPEX spot market regarding the electrical energy production in addition to the
impact of filling cycles of CNG for different types of vehicle fleets regarding the CNG
production. A dynamic biogas production as AD was modeled as a simple first-order
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reaction mechanism inside the MATLAB® environment. The input feedstock was presented
as a mass flow of degradable substrates (total solids, volatile solids and degradable volatile
solids). The AD kinetics calculated a biogas mass flow based on a mass balance equation of
the fermenter. In addition to the feedstock input mass flow, an output mass flow, and an
accumulation term, a first-order reaction mechanism was implemented into the balance
equation generating a biogas mass flow, which was split into methane and CO2 with fixed
coefficients. Microsoft Excel® integrated the time-related EPEX spot market benefits and,
thus, calculated a methane demand as an overall balance equation of a CHP. Additionally,
the vehicle fleet CNG demand was also integrated with Microsoft Excel®. The gas storage
model necessary was calculated by adding the methane volume stream produced and
subtracting the methane volume stream consumed and optimized in MATLAB® with
“fmincon” for fuel consumption profiles of different vehicle fleets (logistics, taxi, waste
disposal and agriculture).

The simulation led to the lowest additional costs as a result of additional gas storage
capacity not being required for prior fuel production with an electricity production within
the remaining hours of biogas production. The slow dynamics of the AD process cannot
compensate for a strong biogas demand for the electricity-regulated operation mode of the
biogas plant generated from the EPEX spot market.

Simulating the electrical application of a biogas plant, a micro gas turbine with an
electrical synchronous generator under the influence of different types of feedstock (here:
animal manure) and its resulting methane production rate was designed in MATLAB®

Simulink by the authors of [101]. They used a modified Hill [11] model of AD, which
responds to the digestate temperature and the input feedstock. The AD steps include
hydrolysis, acidogenesis, acetogenesis and methanogenesis and were modeled as differ-
ential species balance equations producing methane in the reaction mechanism of the
methanogenesis step. The reaction steps were published as Simulink screenshots. In
addition to the AD steps, dynamic models of the micro gas turbine with its synchronous
electrical generator and a gas storage system are also published in the same way. In order to
control the electrical load of the generator, a PID controller (error gain with a proportional,
integral differential equation) in Laplace space regulates the biogas flow into the micro
gas turbine, while the gas storage is modeled as a buffer to predict the over- or underload
of the micro gas turbine. Regarding the AD process simulation, the model was validated
using simulation results applied from literature. The model was used for scenario analysis
by varying the feedstock input (swine, beef, poultry and dairy manure) and its effect on
the methane production rate, as well as the torque and speed of the micro gas turbine.

An integration of biogas energy in off-grid rural areas in India was investigated
by [102]. The energy system model contains a biogas digester, a CHP, a water tank (heat
buffer), a photovoltaic system with energy storage and load profile of a village in West
Bengal; it was built within the software environment HOMER® (by HOMER Energy) as
microgrid simulation software. HOMER® was developed as graphical modeling software,
which allows the use of complete and adjustable modules of physical systems to integrate
their physical behavior into a simulation approach. In the case of the AD process and due
to the annual energy demand of the rural village calculated inside HOMER®, the feedstock
input necessary was calculated outside HOMER® with a linear equation considering
feedstock specific biogas production and volatile solids content. The biogas CHP could
fit the electrical load demands and produced 61% of the overall energy demand. The
photovoltaic system was basically used to load a battery system to allow base load at night.

Thermal behavior and thermal energy consumption of the AD constitute another
research focus and lead to different types of awareness. Using a kinetic model of AD, a
methane production rate with one kinetic parameter based on Hill [73], Reference [103]
investigated the behavior of a 45 m3 swine manure digester, placed below ground, to
simulate the effect of heating the digestate in order to observe higher methane production
rates. Thus, the methane production rate depends on an ultimate methane yield as a
function of the digestate temperature in addition to hydraulic retention time and an
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experimentally evaluated kinetic parameter. The heater is modeled as a solar collector on
the roof of the digester. A comprehensive dynamic energy equation as thermal model of
the digester and biogas is presented, supplemental to the AD kinetic model, including heat
flow from the solar collector, heat transfer between the boundary layer of gas and digestate
surface, heat losses to the ground and convective heat flows of the input manure mass flow.
The authors could show by using the coupled biochemical and thermal model that heating
leads to higher methane production and verified the simulation with 240 h of experimental
data of days in September.

A hybrid energy system model was developed by [104] to optimize the biogas produc-
tion of a biogas digester. The MATLAB® Simulink model contained a solar-assisted biogas
reactor with a dynamic model of a water tank, electrical gas compressor, gas storage system
and a simplified AD model. The methane production rate as an AD model was based on a
production rate as a function of hydraulic retention time, a volatile solid concentration of
the feedstock with its maximum methane yield and the temperature inside the digester.
Energy balance equations considered heat losses to the environment, energy transfer by
solar collectors as a function of daytime solar radiation and energy consumption of a gas
compressor. The gas storage system contained an overall dynamic mass balance equation.
An optimized methane production rate as balance equation containing hydraulic reten-
tion time, methane yield of feedstock, and a temperature pending kinetic parameter was
predicted for cloudy days using a solar-based heating system with a water tank as a heat
buffer. Additional investment costs due to solar collectors, pumps, heat exchanger, valves,
pipes and several other components would need 5.5 years to return the investment as result
of higher biogas production rates.

The study in [105] covered a similar research field. The authors presented a thermal
model of the digester, calculating Nusselt numbers for heat transfer coefficients to simulate
heat losses and transfer of a heating system integrated into a digester. A simplified ADM1
was integrated into the model due to the coupling of the model developed with more
complex components, such as thermal storage tanks, thermal solar collectors or biogas up-
grading units. The model was examined from the plausibility of the AD process: Increasing
the input flow rate of the feedstock increased the biogas production rate proportionally and
reduced the digester temperature without using a heating system. Increasing the feedstock
input flow by 21% (626 to 756 kg/h) led to a proportionally increased biogas flow (96 to
115 kg/h) and a temperature reduction of 1 Kelvin, while increasing the temperature by
about 1 Kelvin increased the biogas production by about 0.2% (95.54 to 95.75 kg/h).

Gray box models are also designed for modeling the influence of process parameters
on biogas plant operation. As a detailed process simulation model, References [9,106,107]
designed an operator training simulator of full-scale biogas plants as a tool for biopro-
cess engineering education. The AD process inside the simulation was modeled using
AMOCO [72]. The simulation approach contained equations for valves, pumps and tanks to
generate the possibility of controlling processes inside the model. Designed as an operator
training simulator, the model includes a GUI with the possibility of process manipulation
using closed control loops or an automatized mode for an interactive simulation. The
model was verified with experimental data of a lab-scale biogas reactor (10 L) fed with
42.8 g sucrose, 1.1 g gelatin and 24.1 g rapeseed oil comparing methane and CO2 concen-
trations and biogas production rates.

Reflecting upon AD process modeling, a simplified ADM1 model of [108] in MATLAB®

Simulink was integrated in [8] to simulate the co-digestion of pig manure and glycerin to
simulate a methane production rate. Simulation results within this study were verified
with experimental data (30 days) using a lab-scale reactor (250 mL volume) due to the
standard procedure VDI 4630, while the simulation could predict the methane production
rate well. A mixture of 80% pig manure with 20% glycerin led to a methane yield of 215 mL
CH4/g COD, while a mono-digestion of pig manure resulted in a methane yield reduction
(20%).
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3.4.3. Black Box Biogas Process Models

Some fields of research deal with the implementation of artificial neural networks
(ANNs) as black box models to predict the behavior of AD without the need for AD
mechanisms or the physical laws influencing the model due to the high complexity of AD
(white box ADM1 and simplified gray box AD models). Reference [109] used ANNs to
predict and optimize the biogas production from one specific digester located in Jordan
fed with wastes from slaughterhouses, restaurants and the dairy industry as well as fruit
and vegetables. Data measured (total solid, volatile solid, pH value, temperature) were
collected over a period of 177 days to train the ANN using the back-propagation method
implemented in the ANN toolbox embedded in MATLAB®. The ANN was able to predict
the CH4 ratio of biogas of this plant with an accuracy of R2 = 0.87.

Another ANN, published in [110], was developed with experimental data of
25 digesters in lab-scale with a volume of 15 L. A total of 10 L of their volume was
fed with hydrothermal pretreated waste, consisting of cow dung, rice bran, banana stem
and sawdust in random ratios between 5 and 30%. Measurements of the biogas production
rates, pH values and input ratios trained the ANN to predict the biogas production rate of
a digester regarding different input substances. In order to realize an ANN that can predict
the behavior of the AD of different substrates, it was trained in [111] with randomized
datasets as results of the original ADM1, which was modeled in MATLAB® based on [112].
The model produced 12,000 datasets with variations of its protein, carbohydrate and lipid
ratios and dilution rates as input parameters. This ANN was built and trained within
the Python packages “scikit-lern,” “NumPy,” “PyTorch” and “BFGS.” It could predict
equilibrium states of a methane production rate with an accuracy of 99% and dynamic
states with an accuracy of 96.7% regarding different input substrates.

Reference [113] used different sizes of the electrical power units on biogas plant sites
combined with different biogas storage sizes for a black box model of a biogas plant with
renewable energy dispatch simulation. The variation or flexibilization of the feedstock was
not investigated; a constant biogas production with constant characteristics was accepted
inside the model. The gas storage system model was composed of an overall mass balance
equation. A cost minimization by selling electrical power on the German energy spot
market with a flexible premium (Renewable Energy Act 2012) was calculated with time-
dependent earnings. Increasing the CHP capacity installed from 600 kWel by a factor 3.3
to 2 MWel with simultaneously increased biogas storage capacity (factor 1.4) led to the
highest profit on the spot market, but additional benefits cannot be expected without a
flexible premium.

Investigating not only additional gas storage systems but also additional heat storage
capacity of an existing flexible biogas power plant (1360 kWel flexible) without feedstock
effects is done in [114,115] inside the simulation program IPSEpro® as flowchart-based
modeling software. The model includes tanks (hygienization, mixing, fermentation and
digestate storage), a gas storage and upgrade system, and a CHP. The biogas production
was integrated as a timeline with real one-year data as output information of the fermenta-
tion tank. The CHP model consisted of energy balance equations. Gas and heat storage
systems were modeled by mass and energy balance equations. The implementation of a
gas upgrade system was done as a black box model. Additional heat storage (water) led
to additional income. The existing gas storage capacity (4800 m3) could provide control
energy reserves and biomethane production simultaneously.

3.5. Overview of Classified Models

The considered and classified models are summarized in Tables 1 and 2, separated by
top-down and bottom-up modelling approaches [37].
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Table 1. Biogas top-down modeling (energy systems, regional impact, greenhouse gas (GHG) emission).

Ref. View on
Biogas Plants Coding/Software Biomass Modeling Region Additional Modeling

[39] energy system oemof [38] annual chemical
biogas potential

northwestern
Germany

time-dependent electricity
production (wind and

photovoltaic) and demand

[40] energy system oemof [38] annual chemical
biogas potential

northwestern
Germany

time-dependent electricity
production (wind and

photovoltaic) and demand

[41] energy system
Engineering

Equation
Solver [42]

daily chemical biogas
potential based on

chicken manure and
maize silage

-

electrical energy production
(wind, photovoltaic), thermal

energy production
(photovoltaic), chemical energy

production (hydrogen),
electrical and thermal

energy storage

[44] energy system
Balmorel [43]

linear optimization
(CPLEX-solver)

annual energy
potential (stable and

increasing 1.3%
per year)

Denmark,
Germany,
Finland,
Norway,
Sweden

different waste to energy
technologies (e.g., gasification,

co-combustion) and other
technologies (e.g., heater, steam

turbine), all with
fixed efficiencies

[14] energy system EnergyPLAN [45] annual chemical
biomass potential Denmark

electrical energy production
(wind, photovoltaic, wave, CHP,

power plants),
biogas purification

[46] energy system Sifre
annual energy

potential of manure
and straw

Danish
municipality -

[47] energy system TIMES
annual energy

potential of
degradable feedstock

Ireland -

[16] regional
potential - electrical energy

potential of manure
Northwestern

Portugal -

[56] regional
potential -

sectoral biogas
potential of manure
(cattle, pigs, sheep,

poultry)

Greece
chronological sequence since

1970; contemplation of regional
gas grid

[57] regional
potential -

time-dependent
(seasons) biogas

potential of
agricultural residues
and municipal waste

Croatia residue-to-product ratios,
sustainable removal rates

[58] regional
potential -

methane potential of
manure, grass silage,

municipal waste
Finland

Maximum feasible use of
regional feedstock due to
30-day HRT; optimizing

GHG emissions

[59] regional
potential -

municipal waste,
sludge, manure, silage

and crop residues
Finland optimizing biogas plant placing
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Table 1. Cont.

Ref. View on
Biogas Plants Coding/Software Biomass Modeling Region Additional Modeling

[15] GHG emission GaBi [63] methane yield
of maize Germany regional methane yield

[64] GHG emission GaBi [63]

methane yield of
manure, maize silage
and grass silage with

different
mixture ratios

- CHP size and efficiency

[65] GHG emission SimaPro [67]
methane yield of
maize, grass, rye

silage, chicken manure
-

demand-oriented energy
production by

HRT for mass flow calculation
in digester

[68] GHG emission - mass-specific energy
of grass - influence of grass treatment

[69] GHG emission Umberto

biogas yield of
cultivated crops
(maize, triticale,

rye, hemp)

-
emissions of farming, digestion,
purification and upgrading to

biomethane, transportation

[24] GHG emission SimaPro [67]
MATLAB®

dynamic AD model
(AMOCO) Germany

demand-oriented energy
production with dynamic

AD modeling

Table 2. Biogas bottom-up modeling (process dynamics).

Ref. View on
Biogas Plants AD Model Coding/Software Feedstock Energy

Production Region Additional
Models

[31] AD process
ADM1:

24 species,
19 reactions

- - - - physiochemical
digester model

[75] AD process ADM1 SIMBA#:
C#-based - - - -

[76] AD process ADM1 SIMBA# pig manure - - -

[77] AD process ADM1 AQUASIM:
C++-based - - - -

[78] AD process ADM1 AQUASIM sludge - - -

[79] AD process ADM1 AQUASIM water thyme - - -

[80] AD process ADM1

MATLAB®

Simulink-code:
C-based

S-Function

- - - -

[81] AD process ADM1

ADMS 1.0:
Python GUI and

MATLAB®

ADM1

- - - -
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Table 2. Cont.

Ref. View on
Biogas Plants AD Model Coding/Software Feedstock Energy

Production Region Additional
Models

[82] AD process ADM1 MATLAB®-code - - - -

[90] AD process ADM1 BioOptim [9] bio waste - - -

[8] AD process modified
ADM1

MATLAB®

Simulink
pig manure &

glycerin - - -

[95] AD process 2 species,
2 reactions

MATLAB®

Simulink
maize silage - - -

[103] AD process 1 reaction not known manure - -

heat flow,
thermodynam-

ics
of digester

[105] AD process 13 species,
10 reactions MATLAB® fictive waste

composition - -

heat flow,
thermodynam-

ics
of digester

[109] AD process
ANN:

one specific
digester

MATLAB®
agricultural

waste
(landfill)

- - -

[110] AD process ANN:
25 digesters NeuroSolutions®

manure,
banana stem,

sawdust
- - -

[111] AD process ANN of
ADM1

MATLAB®:
ADM1 and

Python: ANN

fictive
(result of
ADM1)

- - -

[84] energy
production ADM1 MATLAB®

Simulink
manure

electricity
(micro gas

turbine)
-

power
electronics of

micro
gas turbine

[86] energy
production ADM1 MATLAB®

Simulink
Multiple electricity

(CHP)
thermodynamics

of digester

[101] energy
production

4 species,
4 reactions

MATLAB®

Simulink
manure

electricity
(micro gas

turbine)
-

synchronous
electrical

generator of
micro gas

turbine, gas
storage, ther-
modynamics

of digester

[104] energy
production 1 reaction MATLAB®

Simulink
household

garbage

electricity
(CHP),

heat

domestic
use

profile
(China)

heat storage
(water tank),
electrical gas
compressor,
gas storage,

battery (buffer)

[99] energy
production

1 time-
dependent

function

MATLAB®

Simulink
manure electricity

(CHP) - gas storage

[10] biogas control ADM1
BioOptim:
MATLAB®

Simulink
- electricity

(CHP) -

digestate
storage,

pumps, heating
system,

energy sinks
and sources
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Table 2. Cont.

Ref. View on
Biogas Plants AD Model Coding/Software Feedstock Energy

Production Region Additional
Models

[91] biogas control ADM1
DyBiM:

MATLAB®

Simulink

grass silage,
cattle

manure,
agricultural
substrates

electricity
(CHP) Sweden gas storage

[92] biogas control ADM1 MATLAB®

maize silage,
rye,

triticale,
sugar beets,

potato pieces,
potato peel

- Germany PI controller

[9,106,107] biogas control 13 equations,
2 reactions

FORTRAN and
WinErs for GUI

and
automation

- - - tanks,
valves, pumps

[97,98] biogas control
ADM1 sim-
plification

[96]
not known not known electricity

(CHP)
Germany
(EPEX) gas storage

[102] biogas control linear
equation HOMER® undifferentiated

electricity
(CHP,

photovoltaic,
fuel cell)

India
(off-
grid)

heat storage,
energy storage

(battery)

[100] biogas control 1 species,
1 reaction

MATLAB® and
Microsoft Excel®

maize silage,
grass silage,

manure

electricity
(CHP),

fuel (CNG)

Germany
(EPEX)

biogas to CNG
upgrade plant

(black box),
vehicle fleet

[113] biogas control none RedSim fixed gas
characteristics

electricity
(CHP)

Germany
(spot

market)

gas storage
(mass balance)

[114,115] biogas control none IPSEpro® real data gas
characteristics

electricity
(CHP),

fuel
(methane)

-

gas storage,
heat storage,

tanks, gas
upgrade

(black box)

Table 1 shows all publications that reflect an aggregated view on biogas production
as top-down-approach. Table 2, on the other hand, shows those publications that look at
biogas production in more detail as top-down approach.

4. Discussion

The literature review shows that substantial research and development of models
for biogas production was carried out in the last 18 years. Regarding biogas modeling
on a process level (anaerobic digestion), these models differ substantially from modeling
biogas for potential analysis, GHG emissions and in an energy system. This is reflected in
Tables 1 and 2: Table 2 (top-down) contains biogas model on process level that are not
reflected in Table 1 (bottom-up) with models of potential analysis, GHG emissions and
energy systems. This different modeling approach of the energy system and the AD
perspective can broadly be regarded as top-down and bottom-up approaches, respectively.

Dynamic biogas models contain detailed information about AD processes, technical
systems and time-dependent conditions and, thus, generate a complexity that is not to
be disregarded. This bottom-up modeling approach differs from the top-down modeling
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approach used in energy systems, LCA and GIS models. In these models, holistic effects
are modeled on a national or regional level [37].

Figure 5 shows the complexity of the mathematical mapping of biogas production
within the discipline or view on the biogas system that the different studies represent.
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Many studies are available in the field of dynamic AD process modeling which deal
with ADM1 at a high level of detail. These studies also published programs and source
code, allowing great transparency of their results. In addition to complex AD process
modeling, simplified AD models have been developed and applied many times. These
are based partly on the well-known ADM1, but studies also developed simplified models
without relying on ADM1 findings. They led to an easier use of AD models with less
parameter input compared to ADM1. On a low-detail level (black box), ANNs were
used for different types of problem description: Modeling the behavior of a specific plant,
different feedstock conditions, or generating a black box model of the deeply detailed
ADM1. Both detailed ADM1 and simplified AD models and black box models are applied
for energy conversion and biogas control of full-scale biogas plants. Research in the area of
dynamic process modeling is well penetrated in terms of both highly detailed and highly
abstracted models, including the thermal behavior of digesters. Energy production models
with a detailed and simplified AD process description were focused on studies including
additional components, such as micro gas turbines with power electronics or CHP units.

The field of top-down models that regard the biogas plant as part of a greater energy
system, on the other hand, contains a very high proportion of black box assumptions
regarding anaerobic biogas production. No publications that model the behavior of biogas
production dynamically have been found within this literature study at the regional level
or in energy system modeling. The top-down approaches are used to determine, capture
and further process biogas potentials via simple linear equations. The picture is similar
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in the area of GHG emissions. The prediction of GHG emissions was modeled mostly by
including simple dependencies of biogas production. Only one publication was found
that used a dynamic AD model (AMOCO) and is backed by LCA data to be able to reduce
GHG emissions within a dynamic model.

5. Conclusions

Biogas plants in energy systems can either be modeled as bottom-up approach which
focusses on the detailed mathematical description of the anaerobic process, or as top-down
approach which focusses on questions of the overall energy system, such as demand
coverage, GHG, or spatial potential studies. The model approaches depend on the research
discipline, as well as on the required level of detail.

Dynamic model approaches of the anaerobic digestion have been intensely investi-
gated and are widely published in literature. Integration of dynamic biogas plant models
(bottom-up approach) into the modeling disciplines of top-down models (energy systems,
regional or emission studies) was not field of research in the reviewed literature between
2002 and 2020. This is possibly explainable by the different academic fields that pub-
lished the respective studies. Energy system modeling falls mainly into energy science,
AD modeling into waste and water science or microbiology, and regional modeling into
geographical science.

To date, biogas production has been implemented as black box models in energy
system modeling. By calculating the annual biogas potential, the dynamic influence of
biogas production in energy system models was considered through storage systems (e.g.,
biogas storage tanks). This was sufficient for the mapping of a fluctuating electrical and
thermal energy production from renewable energies. Herein, the biogas storage as buffer
mapped the dynamics of the biogas production.

However, new questions around biogas plants in renewable energy systems might
require more detailed process models. For example, fluctuating input feedstock (both
in terms of quantity and substrate composition), e.g., caused by seasonal input shifts or
specific substrate control in biogas plants, generates a system response within the anaerobic
fermentation, which cannot be represented in black box models. It leads to a dynamic in
the gas production and thus requires dynamic white or gray box models.

The strength of the implementation of a dynamic AD model in the modeling of
energy systems lies in the application of well-established process models, which were
comprehensively optimized over a long period of time. Moreover, these dynamic process
models have emerged from different research disciplines with different perspectives that
can be applied in energy system models at differentiable levels of detail.

However, a weakness of the integration of very extensive models (such as the ADM1)
is their high level of complexity, which can entail very computational capacity-binding
processes in energy system models. In addition, the availability of all model parameters
for the description of the input feedstock (e.g., organic residues and waste materials or
straw-like materials) is questionable. This entails the risk that model parameters must be
assumed or estimated for unknown substrates. Uncertainties and thus model errors would
be the consequence and would lead to inaccurate and unrealistic results. In addition, there
is an increased risk that highly detailed AD process modeling will make the complexity of
an energy system model unmanageable.

Nevertheless, the integration of a dynamic AD model into energy systems results in
the development of previously unknown dynamic and fluctuating business models as an
opportunity. In this context, detailed illustrations of the AD process can reveal limiting
factors that could not previously be represented by black-box models.

Publications in literature offer a wide variation of different model approaches of the
biogas process—white, gray, and black box models—which are not yet considered in energy
system modeling.

A cross-disciplinary linkage of different approaches, i.e., the implementation of dy-
namic modeling into energy system studies, offers the possibility of controlling regional
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and temporally varying aspects in the energy system with the influence of dynamic bound-
ary conditions, which can be generated from the process modeling. Slow reactions within
the AD process, maximum hydraulic retention times, critical states of the digestion pro-
cess or dynamic gas compositions can influence, e.g., the usability of regionally available
substrates, the demand-orientated biogas production or the temporally and locally CO2
emission minimization.

This review paper provides a comprehensive overview on available modeling options.
For future implementation of dynamic biogas models in energy systems, the necessary
level of detail should be thoroughly evaluated, considering the strengths and weaknesses
of high complex models on the one hand and the knowledge gain on the other hand.
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