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Abstract: Current trends in electrification of the final energy consumption and towards a massive
electricity production from renewables are leading a revolution in the electric distribution system.
Indeed, the traditional “fit & forget” planning approach used by Distributors would entail a huge
amount of network investment. Therefore, for making these trends economically sustainable, the
concept of Smart Distribution Network has been proposed, based on active management of the system
and the exploitation of flexibility services provided by Distributed Energy Resources. However, the
uncertainties associated to this innovation are holding its acceptance by utilities. For increasing their
confidence, new risk-based planning tools are necessary, able to estimate the residual risk connected
with each choice and identify solutions that can gradually lead to a full Smart Distribution Network
implementation. Battery energy storage systems, owned and operated by Distributors, represent
one of these solutions, since they can support the use of local flexibility services by covering part
of the associated uncertainties. The paper presents a robust approach for the optimal exploitation
of these flexibility services with a simultaneous optimal allocation of storage devices. For each
solution, the residual risk is estimated, making this tool ready for its integration within a risk-based
planning procedure.

Keywords: battery energy storage; distribution network planning; distributed energy resources;
flexibility services; robust optimisation; risk management

1. Introduction

With the ambition of achieving a net-zero greenhouse gas emissions by 2050, Euro-
pean Union planned several actions aimed at realizing high shares of renewable energy
use (28% by 2030 and 66% by 2050) and of heat and transport electrification (exceeding
50% by 2050) [1,2]. Despite the COVID-19 pandemic has caused a fall in electricity con-
sumption [3], the power generation from renewable energy sources (RES) continues its
accelerating expansion [4], keeping valid the general goal of increasing loading and hosting
capacity of the electric distribution systems. Indeed, a massive production from RES, often
non-homothetic with electric demand, and the expected peak load increment due to the
electrification of end uses will impact the distribution system operation by worsening
voltage profiles and stressing cables and transformers. It is worth noting that this scenario
will strongly affect also the bulk power system that needs stable generation support, in-
creasing reserves and ramping services for compensating the decommissioning of polluting
conventional generation, consequence of the RES development [5].

Flexibility is the backbone of the electricity system and the current transition of its
availability from conventional large power plants to Distributed Energy Resources (DERs)
will introduce new challenges to be faced [6]. Undeniably, DERs could support grid
operation, selling their flexibility through the participation in wholesale markets [7], but by
so doing they may cause technical issues into the distribution system. Therefore, suitable
coordination procedures should be implemented between Transmission and Distribution
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System Operators (TSO and DSO), always considering the option for the DSO to exploit
part of the flexibility from DERs for the secure operation of their local networks. Indeed,
the alternative of an oversized distribution system that enables TSO the unilateral and
unrestricted use of this flexibility could be economically unsustainable.

In addition, recent EU directives 2019/944 (art. 32) [8] has stated that “network de-
velopment plan shall also include the use of demand response, energy efficiency, energy
storage facilities or other resources that distribution system operator is to use as an alterna-
tive to system expansion”, legitimating the exploitation of flexibility services from DERs as
a planning solution for the future Smart Distribution Network (SDN), as anticipated by the
scientific community [9–11].

Flexibility can be defined as the capability of a coordinated multitude of actors to
change their behaviour for providing support to the bulk power system operation or to
the distribution system management. It comes from the users of the distribution network
(loads, generators, stationary storage devices), from sector coupling (electric vehicles,
electric boilers, heat pumps and electrolysers for hydrogen production) or from the network
itself (network reconfiguration, online tap changer of secondary substations, line voltage
regulators). More specifically for the flexibility from DERs, flexible loads may shift in time
or curtail (increase) their electricity consumption when participating to Demand Response
(DR) programs, flexible generators can curtail (photovoltaic or wind) or shift in time (CHP)
their electricity production, and flexible storage may behave like a flexible load or a flexible
generator depending on system needs.

As aforementioned, modern DSO needs to consider these flexibility services from
local DERs for solving possible contingencies and it needs also to quantify how much
they cost, compared to conventional planning actions based on network reinforcement.
However, this comparison must be based also on the risk of these new planning choices,
because one common question from all distribution system actors is how much reliable
the flexibility from DER will be. Indeed, many uncertainties characterize this future
scenario like the actual response of many private resources (consumers and producers)
to service requests from the DSO, the organization of the local ancillary services market
(if any), and the prices of the new services. Therefore, it is plausible that DSOs wish to
start this revolution gradually by introducing solutions that can help limiting the risk
associated to this flexibility. Even if not yet exploited, one option available in the current
European regulation can be the installation of storage devices directly operated by the DSO.
It represents a particular network investment which can be used for many applications
simultaneously (losses reduction, peak shaving, voltage regulation) and, in this case, it can
increase the flexibility of the secondary substation where it is installed, reducing at the
same time the uncertainty of this flexibility exploitation.

Following these considerations, ad hoc risk-based tools must be developed for the
optimal expansion planning of distribution systems, able to assess the overall technical
constraints violation risk of a given network and the residual risks associated to different
planning solutions. The first kind of assessment has been formalized in [10] and a possible
implementation, proposed by the authors in previous research [12–14], has been briefly
described in Section 3. The second calculation, coupled to the optimal exploitation of
flexibility services from DERs, is deeply illustrated in Section 4 and constitutes the main
novelty of the paper. This procedure is based on a Robust Linear Programming (RLP) for
modelling the uncertainties related to the active management of DER and estimating the
residual risk associated to each optimal solution identified. Two type of uncertainties have
been considered: the forecast errors of some data entry (the prices for remunerating the
flexibility services) and the actual DERs response to a flexibility request from the DSO.

Robust Optimization (RO) is a complementary methodology to traditional Sensitiv-
ity Analysis and Stochastic Optimization to deal with uncertainties that affect the data
of real-world optimization problems. The success of this approach comes from the not
required distribution assumptions on uncertain parameters and the computational tractabil-
ity of the robust formulation of Linear Programming problems [15]. For these reasons,
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in the last decade RO has been applied to several optimization fields, including power
systems. Regarding DERs, RO has been often used to model the uncertain behaviour
of load consumption and RES production within specific problems: the optimal energy
storage system location [16], the optimal demand bidding under uncertain market and
including distribution network operational limits [17], the generation and transmission
expansion planning problem [18]. When dealing with the flexibility provided by DERs, RO
has been applied from the aggregator point of view for maximizing the flexibility potential
of its customers to provide services to other actors [19] and to minimize day-ahead opera-
tion costs while complying with energy commitments in the day-ahead market and local
flexibility requests [20]. To the best of authors’ knowledge, RO has not been yet applied
from the DSO point of view to model the uncertain provision of flexibility services used for
distribution network planning.

In summary, the present work proposes a RLP for the minimization of the procure-
ment costs of flexibility services from DERs used to solve possible technical issues in the
distribution network. The tool is ready for the integration in a wider risk-based planning
tool for SDN. Particular attention has been paid to the assessment of the residual risk of
the optimal solution, due to the uncertain provision of flexibility services. The objective
function of the RLP implements an economic model of the flexibility services remuneration,
based on capacity and energy terms. To reduce the uncertainty of the flexibility services
provision, the DSO has also the possibility to install and operate some Battery Energy
Storage Systems (BESSs). For this reason, the objective function of the RLP has been built
to also find the optimal rate and location of these devices, identifying an economic balance
between flexibility services exploitation and BESS investment.

The paper is organised as follows. Section 2 describes the theoretical bases of the RO
and of its probabilistic guarantees. Section 3 briefly illustrates the risk-based planning tool,
while Section 4 details the implementation of the RLP for the flexibility services exploitation.
In Section 5 some case studies derived from real Italian distribution network and adopted
for testing the proposed approach have been specified. Section 6 analyses and discusses
the results obtained and, finally, Section 7 provides some concluding remarks and topics
for the future research.

2. Robust Optimization

For typical real-world problems where system operation and components’ responses
may deviate from the ideal ones, decision-maker wishes to identify optimal solutions that
protect himself against parameter variability and implementation uncertainty. This issue be-
comes of paramount importance when new technologies and innovative problem solutions
are introduced, due to the lack of information on the on-field performances of the new de-
vices or on the actual behaviour of the actors involved. Different mathematical approaches
have been proposed in literature and applied into practice, such as Sensitivity Analysis,
Stochastic Programming, Chance-Constrained methods, and Robust Optimization.

The burgeoning success of RO in a wide selection of application areas lies in its com-
putational tractability because the uncertainty model adopted is not stochastic, but rather
deterministic and set-based. Instead of striving for a probabilistic immunization of the
solution to stochastic uncertainty, it creates a solution that is feasible for any realization of
the uncertainty in a given set. From this point of view, RO is a worst-case oriented method-
ology, and this aspect also determines its main drawback: the possible over-conservatism
of the solution. Thus, the choice of the uncertain parameter set into which the worst-case is
evaluated should be done to achieve an acceptable trade-off between system performance
and protection against uncertainty, i.e., neither too small nor too large.

For a Linear Programming (LP) optimization, the robust counterpart is written as:

mincTx
s.t. : maxη∈U A(η)x ≤ b ∀η ∈ U ⊆ Ξ

x ∈ Rn
(1)
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where x is the vector of decision variables, A is a m × n constraint matrix, b ∈ Rm is
the right-hand-side vector, η is a random variable, Ξ is the entire uncertain set and U
is the uncertainty subset of Ξ used for the optimisation. The desired protection level
against uncertainty depends on the extent of Ξ covered by U. For instance, if the goal is
the maximum protection (no risk of constraints violation, i.e., worst-case scenario), then
the robust optimisation has to consider simultaneously all possible variations of the input
data and, accordingly, U ≡ Ξ. However, this option is generally over-conservative, because
it also considers combinations of parameters’ values that are extremely rare to happen.
Therefore, if a minimum risk is acceptable, a subset of Ξ can be used.

In formulation (1), data uncertainty is supposed to affect only the elements of matrix
A, because the possible uncertainty in the objective function (c vector) can be easily moved
among the inequality constraints by changing the objective function (minz) and adding a
new constraint (cTx− z ≤ 0).

The generic uncertain coefficient ãij of matrix A is modelled as a symmetric and
bounded random variable that varies in the interval [aij − âij, aij + âij], where aij is the
nominal value of ãij and âij is the extreme deviation from the nominal value. The hypothesis
of modelling uncertainty with symmetric and bounded random variables is necessary to
preserve the convexity of U [21]. Associated to the uncertain coefficient ãij, it is defined the
random variable ηij = (ãij − aij)/âij, which follows an unknown, but symmetric, distribution
and takes values in [–1, 1].

By indicating with Ji the set of uncertain coefficients (ãij) in the ith row of the matrix A,
the generic inequality constraint of the LP problem (1) can be written as:

∑
j

aijxj + maxη∈U

{
∑

j∈Ji

ηij âijyj

}
≤ bi

with − yj ≤ xj ≤ yj∀j
l ≤ x ≤ u
y ≥ 0

(2)

where l and u are the lower and upper bound vectors of the variables x. The introduction
of the variable yj is motivated when xj can assume negative values (lj < 0), as explained
below. The second addendum of the inequality constraint in Equation (2):

βi(x, U) = maxη∈U

{
∑
j∈Ji

ηij âijyj

}
(3)

represents the worst-case term. In other words, it can be said that the ith constraint is
protected by βi(x,U) against the uncertainty of the parameters ãij. Hence, the robust
counterpart is a bi-level problem, and its tractability is affected by the geometry of the
uncertainty set U because the way in which the inner maximization in Equation (2) is
eliminated depends on it. Several choices are available in literature: box, ellipsoidal and
polyhedral sets (Figure 1).

The box set corresponds to the maximum possible protection level and assumes that
all parameters will take the worst possible value (worst case scenario). It is the most
straightforward approach but also the most conservative, with the highest deterioration of
the objective function (Figure 1a). To address the excessive conservatism of the box set, an
ellipsoidal uncertainty set has been proposed on the observation that corners tend to be
unlikely to happen (Figure 1b). However, due to the non-linearity of the model, it leads to
computationally complex robust counterparts (Second Order Conic Problem). The polyhe-
dral representation constitutes a compromise between the two previous models because it
still allows controlling conservatism while preserving computational tractability [22]. The
idea behind this model is that, even if every uncertain parameter can always assume the
worst-case value, only a few of them does it simultaneously, and their number is controlled
by the so-called Uncertainty Budget, Γ (Figure 1c).
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Because in practice uncertainties are generally bounded, and it is useless to consider
parameters’ values that exceed the uncertain space Ξ, it is generally convenient defining
uncertainty sets generated by combining the ellipsoidal or polyhedral set with the box set.
In the paper, for limiting the computational burden, the “box + polyhedral” model has
been adopted (Figure 1d). For Γ = 1, the polyhedron is exactly inscribed by the box, and the
intersection between the two sets is exactly the polyhedron; on the contrary, when Γ = |Ji|,
the box is exactly inscribed in the polyhedron, and the intersection between them is exactly
the box. With this kind of model, it is possible to show that the ith constraint of the robust
counterpart, Equation (2), is equivalent to the following formulation:

∑
j

aijxj + ∑
j∈Ji

wij + Γizi ≤ bi

zi + wij ≥ âijxj , ∀j ∈ Ji
l ≤ x ≤ b
zi ≥ 0 , wij ≥ 0 , y ≥ 0

(4)

where the auxiliary variables zi and wij are used to eliminate the inner maximization by
using its dual formulation. This process requires resorting to the absolute value |xj|.
If the variable is positive, the absolute value operator can be directly removed. Oth-
erwise, it can be eliminated by introducing an additional auxiliary variable yj and the
constraint −yj ≤ xj ≤ yj: 

∑
j

aijxj + ∑
j∈Ji

wij + Γizi ≤ bi

zi + wij ≥ âijxj , ∀j ∈ Ji
−yj ≤ xj ≤ yj , ∀j ∈ Ji
l ≤ x ≤ b
zi ≥ 0 , wij ≥ 0 , y ≥ 0

(5)

Probabilistic Guarantees in Robust Optimization

Differently to the stochastic optimization, RO does not provide explicit control on the
risk of constraint violation. Therefore, it is crucial to define a probabilistic guarantee for
the robust solution that can be computed a priori as a function of the structure and size of
the uncertainty set. Indeed, the quality of an optimal solution relies on the definition of
uncertainty sets that are guaranteed to satisfy a particular upper bound on the probability
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of constrain violation: a tighter probabilistic bound allows the adoption of a smaller
uncertainty set with the same guarantee of feasibility and, consequently, leads to a less
conservative solution.

Some theoretical a priori upper bounds (εprio
i ) for the probability of constraint violation

have been proposed in literature. One of the most common is given by:

ε
prio
i = e

−
∆2

i
2|Ji | (6)

where ∆i is the adjustable parameter of the specific uncertainty set adopted (e.g., Γi for
the box + polyhedral set), and |Ji| is the total number of uncertain parameters in the ith
constraint [23]. While this bound is appealing for its simplicity, it is not so attractive for
its over-conservatism, especially when the number of uncertain parameters in a given
constraint and the acceptable risk are small. For instance, with the box + polyhedral
uncertainty set, 6 uncertain parameters and an accepted violation constraint probability
of 10%, the uncertainty budget Γi calculated from (6) is around 5.3 (Figure 2), almost
equivalent to the box set representation, where all uncertain parameters are assumed at
their worst extreme value (worst-case scenario).
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The sole assumption used to derive the bound (6) is that the uncertain parameters are
bounded and have known means. If the postulation of symmetric distribution is added, a
better upper bound for a box + polyhedral uncertainty set has been derived in [24] and it is
expressed as:

ε
prio
i =

1
2n

n

∑
k=dνe

(
n
k

)
(7)

where
ν = Γi+n

2

n =

{
|Ji|+ 1− sgn Γi if dΓie+ |Ji| is even
|Ji| − sgn Γi if dΓie+ |Ji| is even

As it can be seen from Figure 2, bound (7) is clearly tighter, so providing “less conser-
vative” solutions. For the previous example, the uncertainty budget Γi is taken equal to
4.001, i.e., 4 of 6 uncertain parameters are allowed to assume their worst value and one
can change by 0.001 of its extreme deviation to guarantee a risk of constraint violation that
does not exceed 10% probability.

A second approach for assessing the probabilistic guarantees is based on the solution
of the RO problem (x*), and for this reason the resulting bound is called a posteriori bound
(εpost

i ). It is typically used for checking the probability of constraint violation of the results
obtained with specific uncertainty sets defined by a priori probabilistic bounds. Indeed, a
posteriori bound will provide probabilities that are as tight as or tighter than those provided
by the a priori bound, but only when they are “analogous”, i.e., the two bounds have to
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be derived with the same procedure and based on the same assumptions. For the a priori
bound expressed in Equation (7), two ways exist to extend its principles to a posteriori
bound. The analogue a posteriori bound of (7) is:

ε
post
i =

1
2na

na

∑
k=dνae

(
na
k

)
(8)

where

νa =
ha+na

2 , na =


∣∣∣Jδ∗

i

∣∣∣+ 1− sgn ha if dhae+
∣∣∣Jδ∗

i

∣∣∣ is even∣∣∣Jδ∗
i

∣∣∣− sgn ha if dhae+
∣∣∣Jδ∗

i

∣∣∣ is odd

ha =
Γi

max
j∈Jδ∗

i

∣∣∣δ∗ij∣∣∣ , Jδ∗
i =

{
j :
∣∣∣δ∗ij∣∣∣ > 0

}
, δ∗ij = min

{
1,

âij

∣∣∣x∗j ∣∣∣
âir |x∗r |

}

In Equation (8), δ∗ij is a parameter used for the proof of the upper bounds and its
definition depends on the uncertainty set adopted: the definition reported in Equation (8)
is related to a polyhedral + box set and makes δ∗ij ∈ [0, 1]. The subscript r corresponds

to the index of the max(1, dΓie)th largest âij

∣∣∣x∗j ∣∣∣. Essentially, it is âijx∗j scaled by a factor
related to the specific uncertainty set. The vector x∗ represents the solution of the robust
optimization.

However, in [24] it is observed that Equation (8) does not provide the expected
reduction in the a posteriori risk when max

j∈Jδ∗
i

∣∣∣δ∗ij∣∣∣ = 1 (that is the case of polyhedral and

polyhedral + box sets) or when the ith constraint is inactive. An alternative formulation of
the a posteriori bound is:

ε
post
i =

1
2nb

nb

∑
k=dνbe

(
nb
k

)
(9)

where

νb = hb+nb
2 , nb =

{ ∣∣J∗i ∣∣+ 1− sgn hb if dhbe+
∣∣J∗i ∣∣ is even∣∣J∗i ∣∣− sgn hb if dhbe+
∣∣J∗i ∣∣ is odd

hb = hi(x∗)

max
j∈J∗i

âij

∣∣∣x∗j ∣∣∣ , J∗i =
{

j : âij

∣∣∣x∗j ∣∣∣ > 0
}

, hi(x∗) = bi −∑
j

aijx∗j ,

But, even if it generally provides lower probabilities than Equations (8) and (7), it is not
exactly the analogue of Equation (7), and thus it can yield higher a posteriori probabilities.
Therefore, it is always preferred to apply both the Equations (8) and (9) and take the
minimum probability generated.

3. Risk Assessment of Technical Constraints Violation

An explicit and detailed assessment of the annual risk to violate technical constraints
in a given distribution network requires a stochastic network analysis, which makes use of
ad-hoc probabilistic descriptions of customers’ uncertain behaviour. Firstly, their yearly
variability has been represented through typical days (with discretization of one hour) that
capture the daily, weekly, and seasonal changes in electricity consumption or production, so
reproducing the positive and/or negative interactions among loads and non-dispatchable
renewable energy sources and the operational impact of the flexibility services. Secondly,
their hourly uncertainty has been modelled by assuming Gaussian probability distribution.
Consequently, Probabilistic Load Flow (PLF) calculations have been solved for each time
step of typical days [12], to identify any critical operating condition with its occurrence
probability and to correctly assess the results of possible remedy actions.
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The risk assessment procedure (flow chart of Figure 3) starts with the definition of
the impedance matrix [Z]b, relative to the bth network configuration in the N − 1 security
analysis (where b = 0 means the network in normal configuration and b > 0 means the
network reconfigured without the bth element), and the acquisition of the nodal current
matrix [Inode]f in the f th hour of the typical daily profile. The results of the PLF are the
nodal voltage [Vnode]f and the branch current [Ibranch]f matrixes (expressed in terms of mean
value, µ, and standard deviation, σ, of a normal distribution), by which the probability (ptcv)
to overcome the voltage regulation band [Vmin, Vmax] or the conductor ampacity (Imax) is
estimated. Only the Nc operating conditions with non-negligible probability to violate the
technical constraints (ptcv > 0) are stored (Figure 3—case A), while the cases on which the
extremes values of any nodal voltage and branch current (V̂min

i , V̂max
i and Îmax

j ), assumed
equal to µ ± 3σ, do not exceed the technical limits are disregarded (Figure 3—case B).
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Figure 3. Identification of potential contingencies (ptcv > 0) and flow chart of total risk assessment.

In order to calculate the risk of technical constraints violation (Rbf) when the bth
network configuration is in force during the f th hour, the ptcv is multiplied by the occurrence
probability (pbf) of the relative operating conditions. The sum of all these risk components,
determined for each configuration in each interval of the typical days, forms the total risk
(RT) that characterises the distribution network examined, i.e., the number of hours per
year when it is possible to overcome a technical constraint. When the total risk is greater
than the acceptable limit fixed by the DSO planner, RA, planning solutions must be put
in place to reduce RT below RA and make the distribution network robust enough for the
whole planning period considered.

Each potential contingency is faced by resorting separately to both flexibility services
from DERs and network reinforcement (upgrade of existing conductors or transformers),
with the goal of minimizing residual risk. The paper is focussed on the first kind of so-
lutions, by developing an optimization tool able to find the correct amount of flexibility,
taking account of the uncertainties that may characterize the behaviour of the resources in-
volved.

4. Robust Exploitation of Flexibility from DER and Its Residual Risk

The focus of the paper is on the new category of remedy actions: the active man-
agement of the available energy resources in a given distribution system. Specifically,
generation curtailment and demand response are the flexibility services that DSO can
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purchase from a local ancillary services market to solve network contingencies. In previous
works, the problem of the optimal flexibility exploitation has been solved with a Linear Pro-
gramming (LP) approach that minimizes a cost-function, CFlex, expressed as the weighted
sum of the flexibility services subject to network constraints:

minCFlex =
NRES
∑

g=1
αg∆PRES

g +
NDR
∑

d=1
βd∆PDR

d

s.t. : V̂min
i +

NRES
∑

g=1

(
dV
dP

)
i,ψ(g)

∆PRES
g −

NDR
∑

d=1

(
dV
dP

)
i,ψ(d)

∆PDR
d ≥ Vmin ∀i = 1, . . . , NN

V̂max
i +

NRES
∑

g=1

(
dV
dP

)
i,ψ(g)

∆PRES
g −

NDR
∑

d=1

(
dV
dP

)
i,ψ(d)

∆PDR
d ≤ Vmax ∀i = 1, . . . , NN

Îmax
j +

NRES
∑

g=1

(
dI
dP

)
j,ψ(g)

∆PRES
g −

NDR
∑

d=1

(
dI
dP

)
j,ψ(d)

∆PDR
d ≤ Imax

j ∀j = 1, . . . , NL

− Îmax
j −

NRES
∑

g=1

(
dI
dP

)
j,ψ(g)

∆PRES
g +

NDR
∑

d=1

(
dI
dP

)
j,ψ(d)

∆PDR
d ≤ Imax

j ∀j = 1, . . . , NL

0 ≤ ∆PRES
g ≤ FRES

g , ∀g = 1, . . . , NRES ; 0 ≤ ∆PDR
d ≤ FDR

d , ∀d = 1, . . . , NDR

(10)

In model (10), α and β are weights proportional to the cost of the corresponding
flexibility service, ∆PRES

g is the curtailed electricity production from the gth Renewable
Energy Source (RES), ∆PDR

d is the curtailed electricity consumption from the dth customer
involved on the DR programme, FRES

g and FDR
d are the maximum flexibility offered by

the gth RES and the dth customer, NRES and NDR are respectively the number of RES
and of customers available to provide flexibility services, NN and NL are respectively
the total number of nodes and lines in the distribution network, (dV/dP)i,ψ(g or d) and
(dI/dP)j,ψ(g or d) are the sensitivity coefficients of the voltage in the ith node and the current
in the jth branch with respect to the active power variation of a generic DER, and ψ(g or d)
is a function that associates the ordinal number of a DER with the cardinal number of the
network node where it is connected.

To be more precise about the sensitivity coefficients, each of them has been assessed
by comparing the PLF results in the initial conditions with those of a second PLF obtained
by reducing the active power consumed in a single node. With this procedure, the voltage
sensitivity coefficients are always negative and, by assuming positive the line currents that
flow downstream from the primary substation and negative the line currents that flow in
the opposite direction, the current sensitivity coefficients are always positive. Thanks to
these observations and considering that all the active power variations in the LP problem
(10) are positive (decision variables), the effect of a generation curtailment is inserted in the
corresponding inequality constraint with the plus sign (i.e., if generation is reduced, the
nodal voltage decreases), while the effect of a DR programme is included with the minus
sign (i.e., a load reduction causes a voltage increase). The inequality constraints for the
maximum line currents have been doubled to eliminate the absolute value that should be
used for the left-hand-side of these inequalities (indeed, it is important the magnitude of the
line current and not its direction). It must be noted that, due to the electric characteristics of
distribution networks, the sensitivity coefficient is practically invariant with respect to the
amount of active power variation used for the second PLF calculation. This aspect allows
considering the sensitivity coefficient as constant parameters, so preserving the linearity of
the inequality constraints in Equation (10).

Starting from this basic formulation, additional improvements have been included
in the paper to enlarge the flexibility options, refine the models and take account of the
flexibility exploitation uncertainties. First, the objective function has been expanded to
include also the BESS that DSO can install in its system. Because it is an energy resource
owned by the DSO, only its investment has been added to CFlex, while its operation has
been considered in the inequality constraints. Secondly, a new market model has been
assumed, where the flexibility remuneration is expressed both in capacity and in energy. In
other terms, when a specific DER is enabled to participate to the local ancillary services
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market, it is initially remunerated for the capacity made available within a time-interval
(e.g., a week, a month, a year), and then it is also remunerated each time it is called to
provide the service. With these improvements, a first upgrade to the objective function can
be formulated as:

min
NRES
∑

g=1

[
pRES

g FRES
g +

T
∑

h=1
Rb,h

(
eRES

g ∆PRES
g,h ∆h

)]
+

NDR
∑

d=1

[
pDR

d FDR
d +

T
∑

h=1
Rb,h

(
eDR

d ∆PDR
d,h ∆h

)]
+ 1

AF

NN
∑

k=1

(
cpPnB

k + ceEnB
k
) (11)

where pRES
g and pDR

d are the prices for the capacity remuneration of the gth RES and
the dth customer expressed in €/(kW·year), eRES

g and eDR
d are the prices for the energy

remuneration of the gth RES and the dth customer expressed in €/(kWh), Rb,h is the risk of
constraints violation expressed in hours per year in the bth network reconfiguration during
the hth hour, T is the time-interval considered (e.g., the 24 h of a typical day, the repair time
of a faulted element that causes a specific emergency network reconfiguration, or simply
the single time-step that manifests a contingency), ∆h is the time-step used to discretize T
(typically 1 h), cp and ce are the power and energy unitary cost of BESS, PnB

k and EnB
k are

the nominal power and the nominal capacity of the BESS installed in the kth node, and
AF is the annuity factor used to convert a single investment into an annual expenditure
and allow the comparison between the BESS investment and the annual cost for flexibility
services procurement. By assuming a duration of the investment of n years, equivalent to
the lifespan of the BESS, and a constant interest rate (r), AF is evaluated as:

AF =
1− (1 + r)−n

r
(12)

The factor Rb,h is the risk component calculated with the flowchart of Figure 3 and it is
used to estimate the annual recourse to flexibility services and, consequently, its energy
remuneration. The extension of the optimization to multiple time-steps simultaneously
(T > 1) is motivated by the potential presence of multiple contingency events during the
same network operating conditions (b) and, consequently, the need to correctly assess the
capacity remuneration and the BESS sizing. Indeed, the resort to a flexibility resource may
have different energy requests for different time-steps within the same time-interval T but
it must have the same capacity bid. Also, if two time-steps with Rb,h > 0 are close or one
next to the other, the BESS must be sized for solving sequentially both the contingencies.

In summary, the new problem statement (11) will define the optimal compromise
between the investment in BESS (finding number, site, and size of storage devices) and
the purchase of flexibility services from existing DERs (in terms of capacity available and
energy used). A further improvement of the economic model has been obtained by fixing a
cap in the annual budget available for the DSO (Bcap). This cap can be fixed arbitrarily, or it
can derive from the conventional planning alternative of network refurbishment. In other
words, it can be used to compare the investments in network solutions, needed to solve
the technical issues, with the expenditures in flexibility services (e.g., DR actions) and in
innovative solutions (BESS). Obviously, also Bcap is assessed by applying a suitable annuity
factor to each network upgrade.

This new constraint increases the possibility that the LP problem becomes unfeasible
due to the lack of sufficient resources to solve all the contingencies. It is important to
note that these defective situations have not to be disregarded but they are still useful
in a general planning procedure. Indeed, even if the risk of constraints violation is not
nullified, it is reduced (residual risk) so contributing to the achievement of the planning
goal of RT < RA. To overcome this limitation and allow the optimization to provide always
a solution, “slack” variables have been introduced in the objective function and in the
nodal voltage and line current inequality constraints (sVmin

i , sVmax

i , sImax

j ). Dimensionally,
they represent the residual gaps in nodal voltages or in line currents that the available
DERs are not able to close for satisfying the corresponding technical constraints. In the
objective function, they are weighted by a very large cost, to avoid that they could be
used needlessly, i.e., when flexibility resources are still available below the budget cap.
When returned ( 6=0) by the LP optimization, they allow assessing the residual risk through
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the probability density function of the corresponding nodal voltage or line current. For
instance, referring to Figure 4, the existing probability to overcome the maximum nodal
voltage (ptcv = Pr{Vi > Vmax}) is reduced to the red striped area that corresponds to the
occurrence probability of the operating conditions that bring the ith nodal voltage within
the gap not solved by the available DERs (p∗tcv = Pr

{
Vi > V̂max

i − sVmax

i

}
).
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Figure 4. Assessment of the residual probability of technical constraints violation (p*
tcv).

Taking account of all these improvements, the full deterministic formulation of the
optimal exploitation of flexibility from private DERs and from BESS owned by the DSO is
expressed by the following LP problem:
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0 ≤ FRES

g ≤ FmaxRES
g , ∀g = 1, . . . , NRES ; 0 ≤ FDR

d ≤ FmaxDR
d , ∀d = 1, . . . , NDR

∆PB
k,h = 1

ηtrip∆h [SoCk,h − SoCk,h−1] ∀k = 1, . . . , NN , ∀h = 1, . . . , T∣∣∣∆PB
k,h

∣∣∣ ≤ PnB
k , σmEnB

k ≤ SoCk,h ≤ σMEnB
k ∀k = 1, . . . , NN , ∀h = 1, . . . , T

SoCk,T = SoCk,0 ∀k = 1, . . . , NN (this constraint is active only when T refers to the whole typical day)
0 ≤ PnB

k ≤ PB
max , dminPnB

k ≤ EnB
k ≤ dmaxPnB

k ∀k = 1, . . . , NN

sVmin

i,h ≥ 0 , sVmax

i,h ≥ 0 , sImax

j,h ≥ 0 ∀i = 1, . . . , NN ; ∀j = 1, . . . , NL ; ∀h = 1, . . . , T

(16)

In the inequality constraints (15), the contribution of BESS operation is inserted with
the plus sign, because, when ∆PB

k,h > 0, the storage is charging (SoCk,h > SoCk,h−1) and
its effects is equivalent to a generation curtailment and, when ∆PB

k,h < 0, the storage is
discharging (SoCk,h < SoCk,h−1) and its effects is equivalent to a load curtailment. The
group (16) includes all the technical constraints of the resources (the active power of the
BESS absorbed from or released to the grid must be lower or equal to the nominal power
of the storage device, the state of charge must be always within an acceptable band of
operation, the initial state of charge has to be equal to the last value when considering
the whole typical day) and the external data fixed by the operator (the ranges of power,
[0, PB

max], and duration, [dmin, dmax], for the BESS sizing, the minimum and maximum
states of charge defined as percentage of the BESS capacity, σm and σM, the BESS round-trip
efficiency, ηtrip, and the maximum amount of flexibility that each resource makes available,
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FmaxRES
g and FmaxDR

d ). It has not been considered a minimum size for the BESS power,
in order to optimize also the location and not only the size of the storage. Indeed, when
PnB

k = 0, no BESS is in the kth node. If a minimum size needs to be fixed preserving on
the same time the siting optimization, a Mixed Integer Linear Programming formulation
should be implemented.

As aforementioned, this LP formulation is deterministic, in the sense that all data
are exactly known, and the operation of each resource is certain. However, this is a
weak assumption, and several uncertainties still affect this model, because the active
management of DER is not yet implemented in the actual distribution system (only few
pilot projects have been founded in the last years), and local ancillary services markets does
not exist. Therefore, the estimation of the risk associated to the exploitation of flexibility
from DER is becoming of paramount importance for overcoming the last concerns of
the DSO and arranging feasible and economic implementation plans. Due to the lack of
practical experience, it is extremely difficult defining stochastic models to represent the
uncertain aspects and RO represents one of the few alternatives to face this optimization
problem. Indeed, it is worth to remind that for RO it is not necessary to know exactly the
uncertainty distribution, but it is sufficient the assumption of symmetric and bounded
random variables. In the paper, two kind of uncertainties have been considered: a prediction
uncertainty and an implementation uncertainty [15].

The first category generally depends on the forecast errors of some data entries that
do not exist when the problem is solved. For the LP problem (13), these parameters are the
prices used for assessing the remuneration of the flexibility services (pRES

g , eRES
g , pDR

d and
eDR

d ) that will be represented as symmetric and bounded random variables, whose range of
uncertainty is influenced by the market organization decided by the regulation authority.

The second type of data uncertainty occurs when some of the decision variables
cannot be implemented exactly as computed. This is the case of the DER responses to the
flexibility requests from DSO (∆PRES

g,h and ∆PDR
g,h ), which may differ from the ideal values

calculated due to the partial unavailability of the flexibility offered. These errors can be
represented as equivalent to appropriate artificial data uncertainties. Indeed, reminding
that the contribution of a particular decision variable xj to the ith constraint is the term
aijxj, a typical multiplicative implementation error xj 7−→

(
1± εj

)
xj can be rearranged

as no implementation error on the decision variable and uncertainty applied to the data
coefficient aij 7−→

(
1± εj

)
aij . For making the equations of the LP problem more legible,

the uncertain parameters have been renamed as following:

ãRESC
g = p̃RES

g = pRES
g ± p̂RES

g = aRESC
g ± âRESC

g

ãRESE
g,h = ẽRES

g

(
1± εg,h

)
=
(

eRES
g ± êRES

g

)(
1± εg,h

)
= aRESE

g,h ± âRESE
g,h

ãDRC
d = p̃DR

d = pDR
d ± p̂DR

d = aDRC
d ± âDRC

d
ãDRE

d,h = ẽDR
d (1± εd,h) =

(
eDR

d ± êDR
d
)
(1± εd,h) = aDRE

d,h ± âDRE
d,h

ãVP_res
i,h,ψ(g) =

(
dV
dP

)
i,ψ(g)

(
1± εg,h

)
= aVP_res

i,h,ψ(g) ± âVP_res
i,h,ψ(g)

ãVP_dr
i,h,ψ(d) =

(
dV
dP

)
i,ψ(d)

(1± εd,h) = aVP_dr
i,h,ψ(d) ± âVP_dr

i,h,ψ(d)

ãIP_res
j,h,ψ(g) =

(
dI
dP

)
j,ψ(g)

(
1± εg,h

)
= aIP_res

j,h,ψ(g) ± âIP_res
j,h,ψ(g)

ãIP_dr
j,h,ψ(d) =

(
dI
dP

)
j,ψ(d)

(1± εd,h) = aIP_dr
j,h,ψ(d) ± âIP_dr

j,h,ψ(d)

(17)

where a is the expected value of the uncertain parameter ã and â is its extreme variation.
Observing that uncertain parameters also affect the objective function (13), this last

has been changed and a new constrain has been added for leaving uncertain coefficients
only among the elements of matrix A. Moreover, all constraints have been rearranged as
“≤” inequalities to preserve the canonical formulation (Ax ≤ b). By so doing, the uncertain
formulation of (13)–(15) is:
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min
CF ,∆P,F,Pn,En,SoC,s

CF +
(

103Bcap

) T

∑
h=1

[
NN

∑
i=1

(
sVmin

i,h + sVmax

i,h

)
+

NL

∑
j=1

sImax

j,h

]
(18)

s.t. :
NRES
∑

g=1

[
ãRESC

g FRES
g +

T
∑

h=1
Rb,h

(
ãRESE

g,h ∆PRES
g,h ∆h

)]
+

NDR
∑

d=1

[
ãDRC

d FDR
d +

T
∑

h=1
Rb,h

(
ãDRE

d,h ∆PDR
d,h ∆h

)]
+ 1

AF

NN
∑

k=1

(
cpPnB

k + ceEnB
k
)
− CF ≤ 0 (19)

CF ≤ Bcap −CF ≤ 0 (20)

−
NRES
∑

g=1
ãVP_res

i,h,ψ(g)∆PRES
g,h +

NDR
∑

d=1
ãVPdr

i,h,ψ(d)∆PDR
d,h −

NN
∑

k=1

(
dV
dP

)
i,k

∆PB
k,h − sVmin

i,h ≤ V̂min
i,h −Vmin ∀i = 1, . . . , NN ; ∀h = 1, . . . , T

NRES
∑

g=1
ãVP_res

i,h,ψ(g)∆PRES
g,h −

NDR
∑

d=1
ãVP_dr

i,h,ψ(d)∆PDR
d,h +

NN
∑

k=1

(
dV
dP

)
i,k

∆PB
k,h − sVmax

i,h ≤ Vmax − V̂max
i,h ∀i = 1, . . . , NN ; ∀h = 1, . . . , T

NRES
∑

g=1
ãIP_res

j,h,ψ(g)∆PRES
g,h −

NDR
∑

d=1
ãIP_dr

j,h,ψ(d)∆PDR
d,h +

NN
∑

k=1

(
dI
dP

)
j,k

∆PB
k,h − sImax

j,h ≤ Imax
j − Îmax

j,h ∀j = 1, . . . , NL ; ∀h = 1, . . . , T

−
NRES
∑

g=1
ãIP_res

j,h,ψ(g)∆PRES
g,h +

NDR
∑

d=1
ãIP_dr

j,h,ψ(d)∆PDR
d,h −

NN
∑

k=1

(
dI
dP

)
j,k

∆PB
k,h − sImax

j,h ≤ Imax
j + Îmax

j,h ∀j = 1, . . . , NL ; ∀h = 1, . . . , T

(21)

The group of constraints (16) remains valid and unaltered, so it has not been repeated
just for simplicity. The uncertainty set size of constraint (19) is |J1| = (1 + T)NRES +
(1 + T)NDR, while the number of uncertain parameters for the generic nth inequality of
group (21) is |Jn| = NRES + NDR.

Finally, the robust counterpart of the LP optimization used to find the robust exploita-
tion of flexibility from DER has been obtained by applying model (4). To avoid a tedious
and repetitive mathematical description, only the application to constraint (18) has been
shown:

NRES
∑

g=1

[
aRESC

g FRES
g +

T
∑

h=1
Rb,h

(
aRESE

g,h ∆PRES
g,h ∆h

)]
+

NDR
∑

d=1

[
aDRC

d FDR
d +

T
∑

h=1
Rb,h

(
aDRE

d,h ∆PDR
d,h ∆h

)]
+ ∑

m∈|J1|
w1m + Γ1z1 +

1
AF

NN
∑

k=1

(
cB

p PnB
k + cB

e EnB
k

)
− CF ≤ 0

âRESC
g ·FRES

g − z1 − w1m ≤ 0 ∀g = 1, . . . , NRES ; ∀m = 1, . . . , NRES

âRESE
g,h ·∆PRES

g,h − z1 − w1m ≤ 0 ∀g = 1, . . . , NRES ; ∀h = 1, . . . , T ; ∀m = NRES + 1, . . . , (1 + T)·NRES

âDRC
d ·FDR

d − z1 − w1m ≤ 0 ∀d = 1, . . . , NDR ; ∀m = (1 + T)·NRES + 1, . . . , (1 + T)·NRES + NDR

âDRE
d,h ·∆PDR

d,h − z1 − w1m ≤ 0 ∀d = 1, . . . , NDR ; ∀h = 1, . . . , T ; ∀m = (1 + T)·NRES + NDR + 1, . . . , (1 + T)·(NRES + NDR)

−z1 ≤ 0 ; −w1m ≤ 0 ∀m = 1, . . . , |J1|

(22)

The uncertainty budget Γn has been calculated for each uncertain constraint based on
a prefixed maximum acceptable risk (upper bound ε

prio
n ) by using Equation (7). Finally,

the a posteriori risk (εpost
n ) is determined by taking the minimum value between Equations

(8) and (9). When too few resources are available or the budget limitation Bcap is too tight,
the total residual risk may become higher than the prefixed a priori value, because the
calculated a posteriori risk will be incremented by the highest probability associated to the
non-zero slack variables (red striped area of Figure 4).

5. Case Study

The methodology proposed has been applied to a case study derived from a real
Italian Medium Voltage (MV) distribution network, adequately clustered to reduce the
number of secondary substations from 80 to 21 (Figure 5). It is a rural distribution system,
radially operated, with two feeders in normal operating conditions (F1 and F2), fed by
a Primary Substation with a 16 MVA (132/20 kV) transformer, and interconnected by a
tie-line normally open (branch 4–15).

Long overhead lines supply small loads. The conductor’ cross-sections (S) are rela-
tively small due to the low load density, and voltage drop issues can be expected. Three
PV generators are also connected that may cause overvoltages. Tables 1–3 summarize
respectively the data of customers, branches and conductors. The trunk conductors in an
open-loop topology are sized with a constant cross-section (typical practice of the main
Italian DSO), so that all the secondary substations can be resupplied for the outage of any
trunk branch. Four different kind of customers are connected to the system: the predom-
inant category is the residential (11 secondary substations), followed by agricultural (6),
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tertiary (2) and industrial (2). Their typical load profiles have been taken from the daily
curves of the ATLANTIDE project [25], as depicted in Figure 6.
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Table 1. Load and Generator data.

Node
Load Generator

Node
Load Generator

P [kW] Q [kvar] P [kW] P [kW] Q [kvar] P [kW]

2 216 105 - 13 637 308 -
3 368 178 - 14 456 220 -
4 483 89 - 15 230 11 -
5 364 176 - 16 370 18 -
6 608 295 1000 17 240 6 -
7 770 37 1000 18 100 3 -
8 244 118 - 19 100 3 -
9 456 75 9000 20 100 3 -

10 293 93 - 21 210 10 -
11 441 213 - 22 240 6 -
12 422 204 -

Table 2. Network branch data.

Branch Length [km] S [mm2] Branch Length [km] S [mm2]

1–2 2.097 35 11–12 1.500 20
2–3 1.600 35 11–13 3.035 35
3–4 2.350 35 13–14 2.150 16
4–15 1.725 35 13–15 1.126 35
4–5 1.500 16 15–16 1.790 16
2–6 1.849 16 16–17 2.900 16
6–7 0.500 16 16–18 1.460 16
7–8 0.950 16 18–19 1.760 16
1–9 1.806 35 18–20 1.200 16
9–10 1.000 35 18–21 3.850 16

10–11 0.890 35 21–22 2.665 25

Table 3. Conductor data.

S [mm2] r [Ω/km] x [Ω/km] Ampacity [A]

16 1.118 0.419 105
20 0.871 0.413 120
25 0.720 0.400 140
35 0.520 0.430 190
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Figure 6. Load profiles of customer categories (average hourly values of active power absorbed).

Only one typical day has been used to simulate the customers’ behaviour along the
whole year. Their hourly variability has been represented by a Gaussian distribution with
a mean value reported in the figure and a constant standard deviation of 5%. Obviously,
more detailed representations are possible (multiple typical days for catching the weekly
and seasonal variability, different standard deviations along the day), but this simpler
model has been preferred because the focus of the paper is mainly on the performance
of the new tool for the optimal exploitation of energy resources during critical operating
conditions and not on the whole planning study of the distribution system.

When the network is in its normal operating conditions, excessive voltage drops
may appear in the peripheral nodes, particularly during the evening peak (from 18th to
23rd hour), due to the growth of residential and agricultural electric demand and the
simultaneous fall of the PV production. Minimum voltage violation can happen also at the
7th and 8th hour for the high demand of agricultural and industrial loads and the absence
of PV production. For the sake of argument, the extreme voltage profile along the network
(i.e., the minimum nodal voltages assessed through a probabilistic load flow, V̂min

i,h ) at the
19th hour is depicted in Figure 7a, together with daily voltage profile (Figure 7b) of the
furthest node from the Primary Substation (node 22 of Figure 5).
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Figure 7. (a) Network profile of the minimum nodal voltage at the 19th hour; (b) Daily profile of the minimum voltage of
node 22.

Additional contingencies happen during emergency configurations, when, due to the
outage of a trunk line, the network is reconfigured by closing the emergency connection
4–15 and the electricity supply of all the nodes is preserved. Indeed, even if an augmented
voltage operating range is accepted, technical issues may still happen. An example is
shown in Figure 8, that refers to the isolation of line 1–2 and the resupply of all the network
only from line 1–9. Under this configuration, also the secondary substations 6, 7, and 8
result far from the Primary Substation and in the evening hour, due to the high demand
and the absence of generation, they manifest excessive voltage drops. This situation is
illustrated with the extreme voltage profile along the network at the 19th hour (Figure 8a),
and with the voltage daily profile of node 22 (Figure 8b).
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Each of these contingencies is characterised by a specific risk of occurrence, Rb,h, that
should be determined with the procedure illustrated in the flow-chart of Figure 3. To
simplify the results reading, it has been assumed that all the contingencies during normal
operating conditions are certain, i.e., by using a unique typical daily profile to model
the whole yearly behaviour of the distribution system customers, they happen for 365
h/year. Instead, the risk of occurrence for the contingencies analysed during emergency
configuration has been arbitrarily assumed equal to 1 h/year (considering the relatively
low fault rate for the lines). The uncertainty set size of the technical constraints depends
on the network configuration considered. For instance, in ordinary conditions, |Jn| = 9
for feeder F1 and |Jn| = 15 for feeder F2. All the main data used for the simulations are
summarized in Table 4.

Table 4. Main data adopted for the simulations.

Descriptions Symbols and Values Notes

Technical Constraints

range of nodal voltage Vmin; Vmax [0.96; 1.04] ordinary conditions
[0.90; 1.10] emergency conditions

maximum branch current
(related to conductor ampacity) Imax 1.00 ordinary conditions

1.10 emergency conditions

DER available

n. of generators NRES 3 all generators provide flexibility services
n. of DR resources NDR 21 all loads are involved in DR programme

max generation curtailment FmaxRES 100% related to the nominal rate of the generator
max demand curtailment FmaxDR 40% related to the nominal rate of the load

uncertain behavior εg,h , εd,h 20% for any resource in any hour

Flexibility services remuneration

capacity price [€/kW] pRES 25 p̂RES ±20% for any generator
pDR 40 p̂DR ±10% for any load

energy price [€/kWh] eRES 0.06 êRES ±20% for any generator
eDR 0.10 êDR ±10% for any load

BESS

maximum Power rate [MW] PB
max 3000

duration range [h] dmin; dmax [1; 8] nominal BESS capacity EnB = PB × d
admissible range of operation σm; σM [10%; 90%] related to EnB

roundtrip efficiency ηtrip 97%
initial state of charge SoC0 50% of EnB (equal for every BESS installed)

power unitary cost of BESS [€/kW] cp 160
energy unitary cost of BESS [€/kWh] ce 240
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6. Results and Discussion

Different simulations have been performed to test the proposed optimization tool.
Four core-settings have been considered: deterministic optimization with and without BESS
allocation (i.e., data and resources’ behaviour are assumed known exactly and equal to
their expected values without any uncertainty), and robust optimization with and without
BESS allocation.

Moreover, an initial study has been executed on a single hour, to check the correct
working of the robust linear programming implementation; then, the analysis has been
extended to the whole time period T (24 h in ordinary conditions, and 5 h of repair time in
emergency conditions), in order to identify some general remarks in the exploitation of
flexibility services and the potential support of storage devices.

6.1. Single Hour Analysis

The 19th hour of the typical day in ordinary operating conditions (Figure 7b) has been
used to analyse the performances of the optimization tool. Preliminary, no uncertainties
for the flexibility prices and no budget cap have been considered. Therefore, the only
uncertainty source is the actual response of the resources to the DSO request. In the robust
optimizations, the a priori risk has been changed from 1% to 30%, while the deterministic
optimization is characterized by a 50% risk, being obtained by using the expected values.
Because the technical issue is an excessive voltage drop, the only flexibility service required
is a demand curtailment.

Without storage, the deterministic solution involves 9 secondary substations (SS),
from 13th to 22nd node (except the node 14), for an overall curtailed demand of 801 kW.
All the loads are curtailed to their maximum availability, apart from node 13 (Figure 9a and
Table 5). This result is quite obvious because further the load from the primary substation,
more effective its curtailment for raising the nodal voltage profile.
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Figure 9. Comparison of flexibility exploitation (differentiated by resources with different colours) by varying the a priori
risk: (a) deterministic and robust optimization without storage; (b) deterministic and robust optimization with storage.

All the results of robust optimization require a higher amount of curtailed demand
and a greater number of resources involved, due to the uncertainty in the actual curtailment
that can be the 20% lower than requested. By decreasing the acceptable residual risk, the
amount of flexibility to purchase increases, with the higher values registered for the 1% a
priori risk (11 secondary substations involved for a total curtailed demand of 1145 kW).

This observation confirms the correctness of the robust optimization methodology
implemented. Indeed, if a higher protection against adverse changes of uncertain coeffi-
cients is desired (low residual risk), constraints must be checked against all cases where
up to Γ of these coefficients can change. When the pre-fixed a priori risk grows from 1%
to 30%, the uncertainty budget Γ, calculated for the minimum nodal voltage constraints,
lowers from 9 to 3, allowing less resources to assume their worst response. In Table 5 the
secondary substations that change their expected response in the most critical constraint
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(minimum voltage limit for node 22) have been highlighted (greyed cells). It is interesting
to notice that the adverse behaviour has not been assigned to the DR resources strictly in
order of distance from the primary substation, because the effectiveness of their flexibility
depends also on the amount of demand that can be curtailed. For instance, SS 17 can
reduce its electricity demand more than twice the curtailment of nodes 18, 19 and 20; so,
the improvement of the nodal voltage profile along feeder F2 is greater by acting on node
17, even if it is closer to the primary substation.

Table 5. Detailed results of the four core-settings for the single hour contingency (19th). The values of Γ are calculated for
the technical constraints of feeder F2 (|Jn| = 15).

Core Setting
Residual Risk

Γ

DR Resources Involved—Curtailment Requested [kW] BESS

Ante Post SS
22

SS
21

SS
20

SS
19

SS
18

SS
17

SS
16

SS
15

SS
14

SS
13

SS
11

SS 22 SS 21 SS 17

kW kWh kW kWh kW kWh

Det. w/o BESS 50% 0 96 84 40 40 40 96 148 92 - 166 - - - - - - -

Det. w/BESS 50% 0 96 84 - 28 - 55 - - - - - 157 380 93 225 - -

Rob. w/o BESS

1% 0.10% 9 96 84 40 40 40 96 148 92 182 255 72 - - - - - -
5% 1.07% 7 96 84 40 40 40 96 148 92 182 254 0 - - - - - -

10% 5.47% 5 96 84 40 40 40 96 148 92 182 200 0 - - - - - -
15% 5.47% 5 96 84 40 40 40 96 148 92 182 200 0 - - - - - -
20% 8.98% 4 96 84 40 40 40 96 148 84 182 178 0 - - - - - -
25% 17.19% 3 96 84 40 40 40 96 148 92 76 247 0 - - - - - -
30% 17.19% 3 96 84 40 40 40 96 148 92 76 247 0 - - - - - -

Rob. w/BESS

1% 0.00% 9 0 84 40 11 0 0 0 0 0 0 0 253 613 96 243 48 117
5% 0.00% 7 0 84 40 11 0 0 0 0 0 0 0 253 613 96 243 48 117

10% 1.56% 5 3 84 40 6 3 4 8 0 0 0 0 250 607 94 229 41 100
15% 1.56% 5 3 84 40 6 3 4 8 0 0 0 0 250 607 94 229 41 100
20% 6.25% 4 8 84 40 13 8 10 20 0 0 0 0 247 598 85 206 26 64
25% 10.94% 3 24 84 40 30 29 11 0 0 0 0 0 235 569 66 160 - -
30% 10.94% 3 24 84 40 30 29 11 0 0 0 0 0 235 569 66 160 - -

The greyed cells indicate those SS that assume their worst response in the most critical constraint (i.e., the minimum voltage limit for node 22).

The repercussion of the robustness against problem uncertainties is a deterioration of
the objective function: Figure 10a shows the higher flexibility costs for any robust solution
versus the deterministic result, and the increment of this cost with the reduction of the
accepted residual risk. The relative high value of this cost (61.3 k€ for the deterministic
solution and 87.6 k€ for the robust solution with 1% of a priori risk) derives from the
extreme hypotheses adopted for this case study (minimum nodal voltage limit of 0.96 p.u.,
maximum existing risk of technical constraint violation with Rb,h = 365 h per annum) that
bring to a huge exploitation of demand curtailment. Due to the choice of T = 1 h, the
optimal amount of flexibility accepted from each DR resource in the local ancillary services
market (FDR

d ) always equates the provision of flexibility service (∆PDR
d,h ).
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With storage, a mix of the two kind of resources has been obtained. The deterministic
optimization identifies as optimal the installation of two BESS in the furthest nodes 22
and 21. Due to T = 1 h and the hypothesis of SoC0 = 50% of the battery capacity, the
optimal BESS sizing and its operation are quite intuitive. Indeed, once the optimization
algorithm identifies the allocation node and the amount of power that has to be discharged
(because the technical issue is an excessive voltage drop), the power rate is fixed to this
value (PnB

k =
∣∣∣∆PB

k,h

∣∣∣) and the capacity rate is chosen so that at the end of the single hour

considered the state of charge achieves the minimum admissible capacity (SoCk,1 = σmEnB
k ).

For instance, the two BESS of the deterministic solution discharge at their nominal power
during the 19th hour of the typical day. This power discharged (157 kW + 93 kW = 250 kW)
is added to the demand curtailed (263 kW). Thanks to the increment of flexibility available
in the furthest nodes, the total amount of flexibility service required is drastically reduced
in comparison to the previous cases without storage (Figure 9), because the actions are
more effective.

This general result occurs also for the robust solutions. However, by reducing the
acceptable residual risk, the weight of BESS increases to the detriment of DR actions. For
instance, with an a priori risk of 1%, three storage devices are installed on nodes 22, 21 and
17, for a total power discharged at the 19th hour of 253 kW + 96 kW + 48 kW = 397 kW.
Simultaneously, only three secondary substations (21, 20 and 19) are involved in DR actions,
for a total curtailed demand of 135 kW. This behaviour is justified mainly by the need of
limiting the resort to uncertain resources in favour of the more reliable BESS, and by the
flexibility costs adopted. Indeed, higher unitary costs of storage or lower remuneration
prices for DR actions may change the exploitation ratio between BESS and DR, fostering
this latter.

In terms of objective function, the total cost of the robust solutions with BESS reduces
slightly with the growth of the residual risk, passing from 49.4 k€ with 1% risk to 48.8 k€
with 30% risk. Also, the gap with the deterministic solution is lower if compared to
the solutions without BESS. Obviously, this conclusion is son of the limited resort to
uncertain resources that, consequently, contains the extra cost for guaranteeing the desired
solution’s robustness.

The a posteriori risk of each robust solution (with and without BESS) is confirmed
always lower than the corresponding a priori value (Figure 10b and second and third
columns of Table 5). However, the most valuable result is that the installation of BESS in
parallel to the exploitation of flexibility services from available DER leads to less risky and
cheaper solutions. Revealing are the solutions with lowest a priori risk (1% and 5%), for
which the optimal siting and sizing of BESS nullify the residual risk, i.e., the presence of
storage allows covering all the uncertainties associated to the use of DR actions. Indeed,
looking deeply at these robust solutions, all the auxiliary variables zi of constraint (4)
are set to zero, so excluding the uncertainty budget addendum Γizi and making evident
that the few DR resources involved are all considered with their most adverse behaviour
(worst-case scenario), neutralizing any risk of constraint violation.

If the uncertainty on the flexibility service prices is added (as indicated in Table 4), a
slight rise of requested flexibility is registered (maximum of 8% with an a priori risk of
1%), with a more definite increment in the total cost (more than 14% with an a priori risk
of 1%). Indeed, the robust fulfilment of constraint (19) associates the higher price of the
uncertainty range with the resources that place the bigger amount of flexibility at DSO’s
disposal, determining the objective function to vary from 100.2 k€ (with a priori risk of 1%)
to 76.5 kW (with a priori risk of 30%).

In search of the best planning solution, conventional network refurbishment always
constitutes the benchmark for innovative alternatives. Indeed, DSOs well know costs and
reliability performances of building a new line or upgrading an existing conductor. A
way to include this comparison is to fix an upper bound to the objective function (i.e., a
yearly budget cap for the optimization of flexibility services), assessed by transforming
the overall network investment into an equivalent annual cost. When a budget cap is
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considered, a strong constraint is introduced in the optimization problem, often causing the
impossibility to satisfy all technical inequality constraints. However, also these cases can
become valuable because, in a risk-based planning approach, any improvement (even par-
tial) of the distribution system performances against specific contingencies can contribute
to reduce the overall system risk (RT) below the acceptable value (RA). To test the proposed
optimization tool in providing these partial results, a tight budget cap (Bcap = 40 k€) has
been applied to the previous studies. With this new constraint, none of the combinations of
flexibility services and BESS installations has been able to satisfy all the technical inequality
constraints. In these cases, the slack variables turn active allowing anyway the estimation
of the overall solution improvement.

By way of example, Figure 11 depicts the voltage profiles obtained by resorting only to
DR actions (blue profile) or by exploiting also storage devices (yellow profile), when the a
priori risk accepted for the robust optimization is 10%. Without BESS, the flexibility service
has been requested to all the last seven secondary substations of feeder F2 (from node 16 to
node 22), with a total demand curtailment of 523 kW and a posteriori risk of 1.56%. Note
that this value has not been calculated as the probability to violate the technical limit Vmin,
but the corrected limit Vmin − sVmin

i , i.e., the probability that the voltage profile can be
lower than the “blue” one depicted in Figure 11. In other words, the available DERs are
able to deal with many of the operating conditions that cause an excessive voltage drop,
so raising the voltage profile closer to the technical limit. The residual gap between each
nodal voltage and Vmin is exactly the corresponding slack variable returned by the robust
optimization. Therefore, the overall residual risk associated to this planning solution is
obtained by adding the probability p∗tcv (Figure 4), related to the biggest slack variable
( sVmin

22 ), to the calculated a posteriori risk. By also considering storage devices (yellow
profile), the budget cap allows installing only one BESS in node 22 and involving only two
DR resources (nodes 21 and 22) for a total curtailment request of 180 kW. The calculated
a posteriori risk is null because the robust solution covers the worst behaviour of these
two resources (budget of uncertainty Γ = 5). The voltage profile is further improved, with
a smaller residual probability p∗tcv, now corresponding to the slack variable of node 17
(the biggest).
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6.2. Multiple Hour Analysis

If the contingency lasts for more than one hour or happens more than one time within
the typical day, the time-interval T of the robust optimization tool has to be set greater than
one hour. The two situations described in Figures 7 and 8 has been tested: the first one
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related to the normal operating conditions (T = 24 h of the typical day), and the second one
associated to the repair time (T = 5 h) of the faulted line 1–2 and the network reconfigured
by closing tie-line 4–15.

In normal operating conditions, due to the excessive voltage drops in the early morn-
ing and in the evening hours, a massive exploitation of DR actions is required if no BESS
is installed. The optimization correctly identifies the capacity reserved for each resource
(corresponding to the maximum demand curtailment requested among the 24 h) and the
hourly requests of demand modulation needed to solve the technical issue. As example, in
Figure 12 are depicted the DR requests in the deterministic optimization (all DERs behave
as expected) and in the robust optimization with an a priori risk of 1%. As expected, the
last entails a higher amount of demand curtailment due to the uncertain behavior of DERs,
i.e., the DSO must sign all the resources available for their maximum capacity offered in
order to face this technical issue with a low residual risk. Looking deeply on the results, it
has been noted that, also considering the maximum DR exploitation during the 21st hour
(the most loaded), the possible excessive voltage drop has not been completely answered
(insufficient availability of flexibility), and the furthest two nodes may still suffer a voltage
lower than the technical limit (slack variables activated with V̂min

22 = 0.9583 [p.u.] and
V̂min

21 = 0.9592 [p.u]).
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The comparisons among deterministic and robust approaches, for different a priori
risks, with and without BESS, are substantially similar to those obtained with the previous
studies of a single hour: deterministic solutions are always better than corresponding robust
ones (because they disregard uncertainties), the cost of flexibility decreases by increasing
the residual (a priori) risk accepted, the exploitation of BESS allows limiting the recourse to
DR actions and obtaining solutions at lower flexibility cost and with reduced a posteriori
risk in respect to those without BESS. The optimal allocation of storage devices has been
again identified in the peripheral secondary substations (nodes 22 and 21), so as to raise
their available flexibility and reduce the overall amount of load curtailment (Figure 13).
The anomalous load curtailment of the 24th hour (no violation of minimum voltage exists
before DSO active management) has been caused by the BESS operation and the presence
of constraint (16) that imposes the same State of Charge at the beginning and at the end of
the typical days. Indeed, the storage devices have been charged to their maximum capacity
before 17th to be totally discharged between 18th and 23rd (peak shaving service). By
so doing, in the last hour of the day they must be recharged at their maximum power in
order to achieve their original SoC, so creating a new contingency (an artificial growth
of the demand that is limited with an additional DR request). Despite this extra demand
curtailment, the global objective function stays below the solutions obtained without BESS,
i.e., the solution is still optimal. This example stresses the importance of extending the
time-interval T of the optimization for more than one hour, when the optimal exploitation
of some resources depends on the chronological sequence of their states (like for storage
devices) [10]. Obviously, this behavior can be avoided by assuming a different SoC0: e.g.,
with 10% of En

B the need of recharging in the 24th hour does not exist. However, a BESS is
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often used for multiple services (peak shaving, voltage regulation, losses reduction) and the
initial State of Charge can be uncertain. This aspect will be modeled in a next improvement
of the present paper.
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Figure 13. Request of demand curtailment with BESS (green bars) vs. solutions without BESS.

The objective function varies from 298 k€ to 253 k€ for the robust solutions without
BESS (deterministic cost equal to 196 k€) and from 154 k€ to 144 k€ for the robust solutions
with BESS (deterministic cost equal to 125 k€). Looking at the formation of the flexibility
cost, the energy component (i.e., the remuneration in energy) is higher than the capacity
component (77% vs. 23%), because the contingency simulated happens with a high proba-
bility (in ordinary conditions, i.e., every day of the year) and the resort to flexibility services
is persistent.

On the contrary, the contingency illustrated in Figure 8 is occasional, because it
happens when a permanent fault occurs in the line 1–2 and the consequent repair phase
involves peak hours of the typical day. By assuming a risk of occurrence of this event
Rbf = 1 h/year, the flexibility cost (only DR actions) needed to solve the contingency is
formed essentially by the capacity remuneration (the energy remuneration weighs for less
than 1%). This aspect also causes the unattractiveness of BESS investment in respect to the
exploitation of flexibility services from DERs, even considering the robust optimization
with the minimum a priori risk.

7. Conclusions

The oncoming transition towards the smart electric distribution system will need
to manage and exploit massively the flexibility services that all the DERs are potentially
able to provide. However, this innovative system operation is affected by implementation
uncertainties, due to the lack of experience, that holds its full acceptance by distribution
utilities. Therefore, it is essential the development of new tools able to deal with these
uncertainties and provide an estimation of the associated residual risk.

Robust Optimization represents an interesting and promising methodology able to
face this problem, as shown in the paper for the optimal use of generation curtailment, DR
actions and the installation of BESS owned and operated by DSO. The main remarks of the
paper are:

• RO allows finding reliable application of services from flexibility resources (i.e., con-
trolling the residual risk) without worsening too much the objective function (in terms
of flexibility cost and number of resources involved).
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• The main advantage of RO is the limited number of hypotheses required for modelling
the uncertainties (only the range of variability and its symmetry), useful when few
information is available.

• The application of BESS helps containing the effects of the flexibility uncertainties,
so providing a more confidence way to introduce this new smart network operation
for DSO.

• The exploitation of flexibility services has more chance to become a successful plan-
ning solution, if the occurrence probability of technical issues is low. In other words,
if the evolution scenario of a distribution system causes frequent contingencies, it is
still preferable the resort to conventional network refurbishment; however, if contin-
gencies are occasional, solutions based on smart system operation may become the
correct choice.

The following research will concern the improvement of flexibility models (e.g., the
payback effect associated to the DR action) and the addition of new ones (e.g., DERs
aggregators), the identification of new uncertainties, the inclusion of new flexibility services
(e.g., voltage regulation with reactive power), and the simultaneous view of all technical
issues in a given network for the correct definition of the flexibility costs.
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