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Abstract: The Massachusetts Eye and Ear Infirmary (MEEI) database is an international-standard
training database for voice pathology detection (VPD) systems. However, there is a class-imbalanced
distribution in normal and pathological voice samples and different types of pathological voice
samples in the MEEI database. This study aimed to develop a VPD system that uses the fuzzy
clustering synthetic minority oversampling technique algorithm (FC-SMOTE) to automatically detect
and classify four types of pathological voices in a multi-class imbalanced database. The proposed FC-
SMOTE algorithm processes the initial class-imbalanced dataset. A set of machine learning models
was evaluated and validated using the resulting class-balanced dataset as an input. The effectiveness
of the VPD system with FC-SMOTE was further verified by an external validation set and another
pathological voice database (Saarbruecken Voice Database (SVD)). The experimental results show
that, in the multi-classification of pathological voice for the class-imbalanced dataset, the method
we propose can significantly improve the diagnostic accuracy. Meanwhile, FC-SMOTE outperforms
the traditional imbalanced data oversampling algorithms, and it is preferred for imbalanced voice
diagnosis in practical applications.

Keywords: imbalanced learning; voice pathology detection and classification; SMOTE; intelligence
medical diagnosis system

1. Introduction

Traditional pathological voice detection mainly depends on experienced clinicians
or laryngoscopes to observe the vocal cord structure [1], which is subjective and inva-
sive. In recent years, we have witnessed the success of artificial intelligence in medical
applications [2–4]. A voice pathology detection (VPD) system based on machine learning
algorithms and well-established features has become a hot topic in research. In biomed-
ical engineering, different features are extracted from signals to build VPD systems that
automatically detect pathological voices. Most of these studies have experimented with
the Massachusetts Eye and Ear Infirmary (MEEI) database [5], which has become one of
the standard databases for VPD systems [6]. Nevertheless, in the past studies on voice
pathology detection, many researchers ignored the class-imbalanced distribution of voice
samples in the MEEI database. The MEEI database contains 657 pathological voice samples
but only 53 normal voice samples from healthy speakers. Thus, taking the Acc as the evalu-
ation result of the classifier makes the pathological voice detection model’s performance
better than it actually is. This is because learning with imbalanced datasets usually results
in a biased classifier that obtains a higher detection accuracy in majority classes and a lower
one in minority classes [7]. For example, given a dataset with 95% of the samples labelled
as positive, if all negative samples are misclassified and positive samples are all classified
correctly, we can obtain an Acc = 95%. However, the accuracy rate for negative samples is
0. Obviously, this is too optimistic regarding the performance of the classifier when the
data are imbalanced [8,9]. In practical applications, the class-imbalanced data result from

Appl. Sci. 2021, 11, 3450. https://doi.org/10.3390/app11083450 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1075-1970
https://orcid.org/0000-0002-3718-6254
https://orcid.org/0000-0001-6022-0943
https://orcid.org/0000-0001-8715-6603
https://doi.org/10.3390/app11083450
https://doi.org/10.3390/app11083450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11083450
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11083450?type=check_update&version=2


Appl. Sci. 2021, 11, 3450 2 of 21

the insufficient number of samples in the pathological voice database, which also makes it
difficult for the traditional VPD system to classify multiple pathological types. Given its
importance, pathological voice diagnoses with imbalanced data have attracted the interest
of researchers [10,11].

Due to the high class-imbalanced ratio in the MEEI database, is not suitable for
researchers to use Acc as the primary model evaluation measure. Thus, it is necessary to
consider imbalanced learning to model the VPD system based on the class-imbalanced
pathological voice database.

1.1. Imbalanced Learning

The class-imbalanced problem is found in many real-world applications, including
fraud detection [12], medical diagnosis [13,14], bioinformatics [15], and so forth. Obtaining
class-balanced datasets is very difficult in medical diagnosis because it requires the expen-
sive endoscopy (e.g., laryngoscopy) of patients and labelling with manual supervision.
Classifiers trained on imbalanced datasets will reduce their robustness and generalization
performance, which is also one of the main challenges of machine learning.

Existing solutions to solve class-imbalanced problems can be divided into internal
methods and external methods. The internal method [16–18] uses a variety of cost adjust-
ment techniques in the learning algorithm and makes full use of the initial class-imbalanced
dataset during the training process. The external method [19–21] refers to rebalancing
the external training data while keeping the learning algorithm unchanged. Current
research [22] shows that external methods are more popular than other methods and are
universally applied in various fields. The external method includes oversampling; under-
sampling; and hybrid undersampling, which combines oversampling and undersampling.
The majority of classes are usually undersampled to reduce the number of samples to
balance each class’s sample distribution. Minority classes are usually oversampled to
generate new samples by duplicating or synthesizing the samples to decrease the classes’
imbalance ratio. The synthetic minority oversampling technique (SMOTE) [23] is one of
the main oversampling methods used to handle imbalanced data. SMOTE is a method to
improve Random OverSampling (ROS), reducing the risk of overfitting, but it may cause
overgeneralization, is susceptible to generating noise in samples, and causes increased
overlapping between different classes [24]. Due to the generation of wrong minority
samples, this problem generalizes the minority class region to the majority class region.
Therefore, in the current research on imbalanced learning algorithms, SMOTE has multi-
ple variations intended to solve the original algorithm’s weaknesses. Many researchers
have focused on improving the SMOTE algorithm. The variants of SMOTE that have
been proposed are Borderline-SMOTE [25], adaptive synthetic sampling (ADASYN) [26],
Random-SMOTE [27], among others.

The oversampling algorithm based on clustering works better for imbalanced learning
with a large number of unknown samples. On the one hand, clustering algorithms are
based on unsupervised learning and are vital elements of machine learning in general.
On the other hand, as a soft clustering algorithm, the usefulness of the fuzzy clustering
algorithm has been confirmed in existing work [28]. However, in the recent research
and application of fuzzy clustering [29,30], the algorithm has mainly been used as a
classification technique. Especially for the pathological voice dataset, which has fuzzy
boundaries and overlaps between clusters, fuzzy clustering algorithms can be useful [31].
In imbalanced learning, the indistinct boundaries and overlaps between the clusters affect
the sampling technique’s performance, resulting in the generation of noisy samples with
no information value. Thus, we used this particularity of fuzzy clustering for imbalanced
learning as a consolidation technique for oversampling operations. Some imbalanced
learning algorithms based on clustering have been proposed in [32,33]. They can omit the
steps of labelling all samples in a set and are more suitable for the imbalanced learning of
unknown samples in medical diagnosis. Nonetheless, clustering-based SMOTE algorithms
ignore the imbalanced distribution within the sample class [34], which may lead to the
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generation of non-differentiated minority samples underfitting the classifier. Furthermore,
the related research [35] is mainly based on the k-means clustering algorithm, but it is
limited to the k-means hard clustering principle, which is easily affected by abnormal points
and is not suitable for too-discrete classification. The fuzzy clustering synthetic minority
oversampling technique algorithm (FC-SMOTE) used in this paper overcomes the influence
of noise points and abnormal points and the imbalanced distribution between and within
classes at the same time. Finally, it is necessary to generate as many differentiated and
representative minority samples as possible to improve the pathological voice classification
model’s performance.

1.2. Objective

Researchers usually use the MEEI database as the standard training database for
VPD systems in the research on pathological voice detection and intelligent diagnosis, but
ignore the imbalance between normal and pathological classes of this database. As a model
evaluation measure, Acc is not suitable for class-imbalanced data, leading to inaccurate
model results. The current classification studies of pathological voices only focus on binary
classification between normal and pathological voices or binary classification between
one pathological voice type and other pathological voices; there are few studies on the
multi-classification of pathological voices.

To tackle these issues, we propose a VPD system that combines the data oversampling-
based fuzzy c-means clustering SMOTE method and machine learning models to resolve the
multi-classification of pathological voices with imbalanced datasets. Mel-Frequency Cep-
stral Coefficients (MFCCs) are some of the most effective feature parameters in speech recog-
nition [36–38] and were proposed based on the human auditory perception structure [39].
Recent studies have shown that the feature extraction of MFCCs has been widely used
in VPD systems. Thus, this paper selects MFCCs as the input parameters of the model.
Considering the issue of class-imbalance in the MEEI database, we conjunct the c-means
clustering algorithm with SMOTE and propose a VPD system in the class-imbalanced
pathological voice database called FC-SMOTE. FC-SMOTE finds safe areas where minority
class samples are located by the c-means clustering algorithm and oversamples minority
class samples in safe areas according to the density of the minority sample distribution.
Ultimately, more samples will be generated in sparse minority areas to solve the imbalance
within the class. Moreover, FC-SMOTE can detect safe oversampled areas without consid-
ering all sample class labels. In the modeling of the VPD system, a set of machine learning
models are evaluated and validated using the resulting class-balanced dataset as an input.
Some reasonable metrics [40] include Recall, Specificity, G value, F1 value, and AUC/PRC
as evaluation metrics for the classifier model. The FC-SMOTE algorithm is used to select
minority and majority classes, and a class-balanced training dataset is constructed to train
machine learning models. The results show that the VPD system with FC-SMOTE has
shown good results in the detection and multi-classification of pathological voices, which
helps in the pathological diagnosis of voices in practical clinical use. For the selected model
evaluation measures, FC-SMOTE outperforms other traditional oversampling algorithms,
which include SMOTE, Borderline-SMOTE, and ADASYN.

2. Methodology
2.1. Overview of the Framework

In this paper, we develop a VPD multiple classification system for class-imbalanced
data in the pathological voice database and provide a framework to solve the problem,
which is shown in Figure 1, including three steps—feature extraction, FC-SMOTE algorithm
handing, and model validation and evaluation. The theoretical background of the MFCC
feature parameters is briefly described. We use FC-SMOTE to generate new minority
samples to obtain a balanced dataset from the initial dataset. Finally, we evaluate and
validate a set of machine learning models using the resulting class-balanced dataset as
an input.
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Figure 1. The architecture of the voice pathology detection (VPD) system using machine learning.

2.2. Feature Extraction

MFCC is one of the most common feature extraction techniques used in automatic
VPD systems. The steps are as follows: (1) Preprocessing: the pre-emphasis, framing, and
windowing of the voice signal. (2) Fast Fourier Transform: a short-time Fourier analysis
is performed to obtain the magnitude spectrum. (3) Mel filter: The magnitude spectrum
is wrapped as a Mel spectrum using 24 overlapping triangular windows with an equal
distribution of centre frequencies of the Mel scale windows. (4) Log power: calculates each
filter bank output’s log power, which is the square of the Mel spectrum. (5) Discrete Cosine
Transform (DCT): The 13th-order MFCC coefficients are obtained by log power to apply
DCT. (6) Perform cepstral liftering: extract the first and second-order differences of MFCCs.

In the feature extraction step, we can compute a set of MFCCs for each speech frame
of one-second audio to obtain approximately 64 MFCC samples (window size = 32 ms,
frame overlapping rate = 50%). Finally, we use their multi-frame averaging as the MFCC
vector for a voice. A total of thirty-six MFCC parameters includes MFCCs’ original feature
parameters and their first-order and second-order derivatives.

2.3. FC-SMOTE Algorithm Handing

As one of the standard oversampling methods used to deal with class-imbalanced
datasets, SMOTE artificially generates new minority class samples. It combines the gener-
ated samples with the initial training set to balance the training dataset. SMOTE generates
synthetic samples in three steps. Firstly, it selects a random minority sample~a for observa-
tion. Then, it selects the sample~b among its k nearest minority sample neighbours. Finally,
it creates a new sample ~x by randomly interpolating two samples. The ~x function is shown
in Formula (1).

~x =~a + ~w× (~b−~a), (1)

where w is the random weight in [0, 1]. However, SMOTE randomly selects a minority
sample to oversample, which may generate minority class samples in majority regions in
the presence of noise, as shown in Figure 2a.

The cluster-based SMOTE can avoid the generation of noise by oversampling only
in safe areas, as shown in Figure 2b. Besides, when considering the clinically imbalanced
dataset dealing with the pathological voice, FC-SMOTE focuses on within-class imbalance
by expanding the sparse minority areas to generate more differentiated minority samples
to avoid underfitting the classifier. Thus, it can generate as many differentiated and
representative minority samples as possible to improve the VPD system performance.

FC-SMOTE consists of three steps—clustering, filtering, and oversampling. In the
clustering step, after setting the number of clusters to be divided according to the number
of categories, the fuzzy c-means (FCM) clustering algorithm is used to cluster the input
samples to specify the number of clusters. The FCM algorithm is one of the most widely
used fuzzy clustering algorithms and a popular iterative method for finding groups. It
first selects the number of clusters. Then, it assigns coefficients between [0, 1] randomly to
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initialize the membership matrix. The centroid of the cluster is calculated as the average of
all points and weighted according to the degree of the cluster to which they belong. The
position of the centroids for each cluster and coefficient in the clusters for each data point
is updated. Repeat until the algorithm has converged. In the filtering step, the safe area for
oversampling was selected based on the fuzzy set’s spatial distribution. In the safe area,
the Euclidean matrix of the membership degree of the minority samples and the centroid of
a cluster is calculated to obtain the density distribution matrix to perform the next step of
oversampling. Therefore, the filtering step allocates more generated samples to the sparse
minority samples space in the safe area rather than in the dense minority sample space
in order to generate as many minority samples with significant differences as possible to
overcome the underfitting problem of the classifier caused by oversampling. Finally, in the
oversampling step SMOTE is used in each selected cluster based on sampling weight to
balance the number of samples in the minority and majority classes.

Minority Sample

Majority Sample

Generated Sample

Noise sample

(a)

Minority Sample

Majority Sample

Generated Sample

Safe area  Boundary

(b)

Figure 2. (a) SMOTE may generate noise sample (k = 2). (b) fuzzy clustering synthetic minority oversampling technique
algorithm (FC-SMOTE) synthesizes new minority samples in safe areas.

The safe areas used for oversampling are selected based on a fuzzy set. A fuzzy set is
a set that has degrees of membership between 0 and 1. In the following formula, the fuzzy
set is represented with a tilde character(∼). We define the safe area C̃(k_sa f e) as shown in
Formula (2). {

C̃(k_sa f e) = C̃k −∑
j
i=1,i 6=k(C̃k ∩ C̃i) (k = 1, 2, ..., j)

Ũ = ∑
j
i=1 C̃i.

(2)

In Formula (2), j is the class number of minority samples and Ũ is the membership
matrix universal set. In the safe area, the Euclidean matrix of the membership degree of the
minority samples and the membership degree of the cluster center is calculated according
to Formulas (3)–(5).

Duv = |U−V| (3)

U =


u11 u12 · · · u1j
u21 u22 · · · u2j

...
...

. . .
...

un1 un2 · · · unj

 (4)

V =
[
v11 v12 · · · v1j.

]
(5)

In Formula (3), n is the number of minority samples. The distance matrix Duv means
that each row of U is subtracted by each row of V, and its Euclidean distance is calculated.
The Euclidean distance matrix of each selected cluster is calculated based on the above
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formulas, and the majority of samples are ignored. The mean minority distance within each
safe area is obtained by dividing all non-diagonal elements of the distance matrix by the
number of non-diagonal elements. The density of each safe area is defined as the distance
matrix of the safe area divided by the mean minority distance raised to the membership
matrix’s dimension root. Sampling weight is defined as the inversion of the density. The
sampling weight(SW) can be calculated according to Formulas (6) and (7).

density =
Duv

mean minority distance
1
c

(6)

SWu =
1

density
(u = 1, 2, ..., Smin). (7)

For the initial class-imbalanced dataset, c is the membership matrix dimension and
Smaj and Smin are used to represent the sample number of the majority class and the
minority class, respectively, and their difference equals the total number of new minority
samples that need to be synthesized. Therefore, the sample number of the synthetic
minority classes around each minority sample can be calculated using Formula (8).

Nu
min = round((Smaj − Smin)× SWu) (u = 1, 2, ..., Smin) (8){

W1 = (Smaj − Smin)−∑Smin
u=1 Nu

min if (Smaj − Smin) > ∑Smin
u=1 Nu

min
W2 = ∑Smin

u=1 Nu
min − (Smaj − Smin) if (Smaj − Smin) < ∑Smin

u=1 Nu
min

(9)

{
Nu

min = Nu
min + PwW1 if (Smaj − Smin) > ∑Smin

u=1 Nu
min

Nu
min = Nu

min − PwW2 if (Smaj − Smin) < ∑Smin
u=1 Nu

min.
(10)

In Formula (8), the function round(·) represents rounding a number down or up
according to the decimals. Thus, Nu

min represents the number of new minority samples
that need to be generated by SMOTE around the uth minority sample. The distribution of
samples generated in oversampling depends on the sampling weight—that is, high and
low sampling weights correspond to minority samples of low density and high density, re-
spectively. In Formula (10), Pw ∈ [20%, 18%, 16%, 14%, 12%, 8%, 6%, 4%, 2%](w = 1, 2, ..., 9).
When (Smaj − Smin) > ∑Smin

u=1 Nu
min, each sample of the first nine initial minority samples

with a higher SW corresponds to the weight in Pw in turn, and increases PwW1 synthetic
samples around it. When (Smaj− Smin) < ∑Smin

u=1 Nu
min, each sample of the last nine initial mi-

nority samples with a lower SW correspond to the weight in Pu in turn and decrease PwW2
synthetic samples around them. If PwW2 is bigger than the number of synthetic samples
around the minority sample, we skip this minority sample without deleting the generated
sample and assign the weight to the next minority sample. The steps of FC-SMOTE are
shown in Algorithm 1, and the flowchart is as follows in Figure 3.

2.4. Model Validation and Evaluation

After processing the imbalanced algorithm FC-SMOTE, four types of pathological
voice class-balanced datasets and normal and pathological voice samples are obtained
from the initial class-imbalanced dataset. In this process, in order to ensure that our
results are not biased towards specific machine learning models and reduce the risk of
overfitting, we validated and evaluated a set of standard representative machine learning
classifiers (logistic regression(LR), naive Bayes (NB), decision tree (DT), support vector
machine (SVM), K nearest neighbours (KNN), random forest (RF), XGBoost, and gradient
tree boosting (GBDT)), as well as a deep-learning-based classification model (multi-layer
perceptron (MLP) and convolutional neural network (CNN)).
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Figure 3. The flowchart of FC-SMOTE.

Algorithm 1 The algorithm of the FC-SMOTE

Input: X = {x1, x2, ..., xn}, j(a specify a number of clusters), k(number of nearest neighbors
to be found by SMOTE), c(membership matrix dimensions).

Output: a class-balanced dataset.
Step 1: The input elements X is clustered into j clusters by Fuzzy C-means.
Step 2: Select the safe areas used for oversampling based on fuzzy set, according to
Formula (2).
Step 3:
for safe areas j

′
do

(a): Calculate the distance matrix Dj′ between the membership value of each
minority sample point Smin and the cluster center point, according to Formulas
(3)–(5).
(b): Obtain the mean distance of minority samples.
sum euclidean distance← ∑Smin∈j′ Dj′ ,
mean minority distance← mean(sum euclidean distance)
(c): Calculate the sampling weight.
density← ‖Ui−Vi‖

mean euclidean distance
1
c

,

sampling weight← 1
density

(d): Calculate the number of new minority samples that need to be generated by
SMOTE around each minority sample, according to the sampling weight.
number o f samples← |(Smaj − Smin)× sampling weight|,
generated samples← Smin ∪ {SMOTE(u, k)}, u = (1, 2, ..., Smin)

(e): Combine (Smaj − Smin) and ∑Smin
u=1 Nu

min to construct a class-balanced dataset,
according to Formulas (9) and (10).

end for
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3. Experiment
3.1. Database

The database we used was developed by the Massachusetts Eye and Ear Infirmary
(MEEI) Voice and Speech Lab. The speakers in the MEEI database samples are native
English speakers. The MEEI database is the most widely used international commer-
cial database in voice pathology detection, but it has the defect of a class-imbalanced
distribution of samples. The MEEI database contains more than 1400 voiced samples of
the sustained vowel /a/, but only 53 normal voice samples. In this study, all available
53 normal samples and four pathology types—vocal cord nodules, vocal cord polyps, vocal
cord edema, and vocal cord paralysis—were chosen because these four are common in
clinical diagnosis. Table 1 summarizes the primary information of the MEEI database
samples used.

Table 1. The primary information in the Massachusetts Eye and Ear Infirmary (MEEI) database.

Signal
Characteristics

Information
Included

Binary
Classification

Multiple
Classification

1–3 s
recording time,
25 or 50 kHz
sampling frequency

Gender,
Age,
Clinical
diagnosis

53 normal
samples,
149 pathological
samples

19 vocal cord nodules samples,
20 vocal cord polyps samples,
43 vocal cord edema samples,
67 vocal cord paralysis samples

It can be seen that in the MEEI database, there is a class-imbalanced distribution
between normal and pathological voice samples, as well as each type of pathological voice
sample. The class-imbalanced distribution of samples will lead to the poor performance
of a classifier, which many researchers have ignored. To better illustrate this problem
of imbalanced characteristics and the difficulties of example distribution in the attribute
space, we visualized them in a two-dimensional space using Principal Component Analysis
(PCA). Figure 4a,b show the data distribution of the normal and pathological samples
before and after using FC-SMOTE in the MEEI database.

In this work, we first focus on modeling VPD systems in the class-imbalanced MEEI
database, which can mislead the diagnosis results. Therefore, an improved SMOTE tech-
nique based on the fuzzy c-means clustering algorithm is proposed for balancing the
dataset. In order to broaden the scope of the problem and maximize the applicability of
the proposed method, we selected vowel /a/ samples with vocal cord nodules, vocal cord
polyps, vocal cord edema, and vocal cord paralysis from another voice pathology database
(Saarbruecken Voice Database (SVD) [41]) and conducted the same experiment using the
proposed method. The SVD database is German, and is a collection of voice recordings and
EGG signals from more than 2000 persons. It contains recordings of 687 healthy persons
and 1356 patients with one or more of 71 different pathologies. Table 2 summarizes the
primary information of the SVD database samples used. Figure 4c,d shows the sample
point distribution before and after using FC-SMOTE in the SVD database.

Table 2. The primary information in the SVD database.

Signal
Characteristics

Information
Included

Binary
Classification

Multiple
Classification

16-bits
resolution,
50 kHz
sampling frequency

Gender,
Age,
Clinical
diagnosis

687 normal
samples,
194 pathological
samples

17 vocal cord nodules samples,
45 vocal cord polyps samples,
68 vocal cord edema samples,
64 vocal cord paralysis samples
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Figure 4. Sample point distribution (a) before and (b) after using FC-SMOTE in the database; sample
point distribution (c) before and (d) after using FC-SMOTE in the Saarbruecken Voice Database
(SVD) database.

3.2. Parameter Settings

All 50 kHz files were downsampled to 25 kHz to ensure that all voice files had the
same sampling frequency. All 3-second files were edited to include only the first second of
phonation. The 36-dimensional MFCC parameters and their first and second derivatives
were extracted from each file in the database. The parameters for extracting the MFCC
features were set as follows: frame size = 32 ms, frame overlapping rate = 50%, Mel filter
order = 24. For FC-SMOTE, the 3 nearest neighbours SMOTE algorithm was used (k = 3),
four clusters needed to be found by c-means for an imbalanced class of four pathology
types (j = 4), and two clusters needed to be found by c-means for an imbalanced class of
normal and pathological voices (j = 2). This work focused on the robustness of the method
to generate minority class samples rather than adjusting the classifier hyperparameters to
obtain the classifier’s optimal performance. Therefore, Bayesian Optimization [42] was
used to find the relatively optimal hyperparameters so that the machine learning classifier’s
performance was in a good performance range. Table 3 lists the main hyperparameter
search space of each model. For the experimental verification of the deep learning model
CNN, we refer to the method proposed in [2] to construct the network. Experiment results
were obtained by 10-fold cross-validation to sure that each fold of the training or testing
contained at least one sample of the minority class. To illustrate the generated data’s
reliability, we randomly isolated 10% of the dataset not used for oversampling from the
initial dataset as external validation. Table 4 presents the training and test data distribution
information of the experimental database. In the experiment based on the MEEI database,
we set up an external dataset to prove the effectiveness of the FC-SMOTE algorithm in
generating samples. Therefore, in the SVD database experiment no external dataset was
set to repeat this verification experiment. The calculations and models were implemented
by Python 3.7 with the Imbalanced-learn, Scikit-learn, and TensorFlow 2.0 libraries.



Appl. Sci. 2021, 11, 3450 10 of 21

Table 3. The main hyperparameters of each model (except for the convolutional neural network (CNN), other parameters
of the model are the default values in Scikit-learn).

Model Main Hyperparameters Search Area

LR L2-norm parameter [0.001, 0.1]

NB Smoothing parameter [0, 2.0]

DT Number of estimators
Maximum depth

[10, 100]
[2, 20]

SVM Penalty parameter
Kernel parameter

[10−3, 103]
[0.1, 3.0]

KNN Number of neighbors [1, 10]

RF Number of estimators
Maximum depth

[10, 500]
[2, 30]

XGBoost

Number of trees estimators
Maximum depth
L1-norm parameter
L2-norm parameter

[10, 300]
[2, 20]
[0.001, 0.1]
[0.001, 0.1]

GBDT
Number of estimators
Maximum depth
Minimum samples in the leaf node

[10, 100]
[2, 30]
[10, 100]

MLP
Three hidden layers with relu activation functions (50 neurons for each layer);
The weight optimization with lbfgs optimizer;
The learning rate is 0.001; The maximum number of iterations is 700

CNN

Four consecutively convolutional layers with ReLu activation functions (64, 64, 32, 32
convolutional masks for each layer, each convolutional masks with a kernel of size 3 × 3);
Four max pooling layers with size 2 × 2;
One dense layer with 1024 nodes (each node with ReLu activation function);
One softmax output layer with four neurons

Table 4. Number of samples of the experimental dataset.

Database Case 10-Fold Cross-Validation
(Class-Imbalanced/Class-Balanced)

External Validation
Tarining/Test Set

MEEI Binary Normal: 47/136
Pathological: 136/136

Normal: 136/8
Pathological: 136/13

Multi-class Nodules: 17/60, Polyps: 18/60
Edema: 39/60, Paralysis: 60/60

Nodules: 60/2, Polyps: 60/2
Edema: 60/4, Paralysis: 60/7

SVD Binary Normal: 687/687
Pathological: 194/687

Multi-class Nodules: 17/68, Polyps: 45/68
Edema: 68/68, Paralysis: 64/68

3.3. Model Evaluation Measure

Traditionally, the metric most commonly used to measure classifier performance has
been Acc. However, in imbalanced datasets the common measure of classifier performance
is inappropriate because its results can be misleading. If the wrong metric is chosen to
evaluate models, it is likely to choose a flawed model, or, in the worst case, be misled about
the model’s expected performance. Thus, this study adopts some reasonable evaluation
measures, including recall, specificity, G value, F1 value, and AUC/PRC, to measure the
model’s performance in a class-imbalanced dataset. Recall can represent the minority class
accuracy rate. Specificity can represent the majority class accuracy rate. G value and F1
value also consider the classification performance for the minority class. When dealing with
imbalanced datasets, precision—recall curves (PRC) give a more informative picture of an
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algorithm’s performance. In short, these evaluation measures will not be affected by the
number of samples in different classes, so they are usually considered “unbiased” and can
be used in scenarios where classes are imbalanced. Relevant model evaluation measures are
calculated according to Formula (9) through to Formula (14). In the formulae, the meanings
of TP, TN, FP, and FN are shown in Table 5. TP is the number of accurate positive samples
(actual minority and predicted as a minority), FN is the number of false-negative samples
(actual minority, but predicted as a majority), FP is the number of false-positive samples
(actual majority, but predicted as a minority), and TN is the number of accurate positive
samples (actual majority, and predicted as a majority).

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

Speci f icity =
TN

TN + FP
(13)

G =
√

Recall × Speci f icity (14)

F1 =
2× Precision× Recall

Precision + Recall
(15)

AUC = ∑
n
((Recalln − Recalln−1)× Precisionn) (16)

where n is the number of samples. For multi-class models, the macro average rule is used
to calculate the above model evaluation measures.

Table 5. The confusion matrix.

Actual Classes
Prediction Results

Positive Class Negative Class

Positive class TP FN
Negative class FP TN

3.4. Experimental Results and Analysis

In the construction part of the multi-classification system, the classification problem is
extended to four exact types of pathological voice: vocal cord nodules, vocal cord polyps,
vocal cord edema, and vocal cord paralysis. The model evaluation measure is obtained by
recall, specificity, G value, and F1 value through 10-fold cross-validation. Meanwhile, each
classifier training time is also presented to evaluate the data complexity.

Table 6 shows the results of ten machine learning models before using FC-SMOTE
to balance the dataset. The predictive ability of all models is inferior. Due to the class-
imbalanced distribution of the sample in the MEEI database, most of the model evaluation
measures are lower than 0.5, which may also be due to the current lack of work on the multi-
classification of pathological voices. The model evaluation measures of each classifier after
imbalanced handing using the FC-SMOTE algorithm are shown in Table 7. Additionally,
the results of external validation are shown by a multi-class confusion matrix in Figure 5.
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Table 6. Evaluation measures of each machine learning model in the multi-imbalanced MEEI dataset.

LR NB DT SVM KNN RF XGBoost GBDT MLP CNN

Recall 0.31 0.41 0.25 0.28 0.33 0.30 0.27 0.33 0.30 0.33
Specificity 0.78 0.82 0.77 0.76 0.79 0.77 0.78 0.79 0.78 0.78
G value 0.48 0.58 0.44 0.46 0.51 0.46 0.45 0.50 0.48 0.47
F1 value 0.41 0.41 0.29 0.48 0.42 0.44 0.40 0.34 0.42 0.41
Time(s) 0.45 0.23 0.44 0.32 0.27 7.81 6.25 11.29 19.25 25.49

Table 7. Evaluation measures of each machine learning model in the multi-class balanced MEEI dataset.

LR NB DT SVM KNN RF XGBoost GBDT MLP CNN

Recall 0.72 0.70 0.78 0.82 0.72 0.83 0.82 0.74 0.72 0.73
Specificity 0.92 0.90 0.93 0.95 0.92 0.95 0.95 0.93 0.92 0.90
G value 0.81 0.79 0.85 0.88 0.80 0.88 0.88 0.83 0.82 0.81
F1 value 0.76 0.68 0.79 0.85 0.76 0.86 0.85 0.80 0.77 0.77
Time(s) 0.73 0.12 0.38 0.39 1.29 18.72 19.29 16.16 27.77 54.60

Figure 5. The multi-class confusion matrices of logistic regression(LR), naive Bayes (NB), decision
tree (DT), support vector machine (SVM), K nearest neighbours (KNN), multi-layer perceptron (MLP)
and random forest (RF) after FC-SMOTE processing.
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It can be seen from the comprehensive model evaluation measures of the ten clas-
sifiers in Table 7 that the VPD system with FC-SMOTE performs better in terms of the
recall, specificity, G value, and F1 value. Compared with the single model and the neural
network model, the three ensemble models (RF, XGboost, GBDT) have the most significant
improvement and have the best overall performance in model evaluation measures after
the FC-SMOTE algorithm handing. The optimal classifier RF increases the recall to 0.83, the
specificity to 0.95, the G value to 0.88, and the F1 value to 0.86. As an ensemble learning
model, RF performs better than single classifiers in pathological voice classification, which
is also reflected in the latest review paper [6]. Meanwhile, the same effect is shown in two
other typical ensemble learning models (GBDT, XGBoost). The external validation set sam-
ples are regarded as independent data and do not participate in the imbalanced algorithm
handing. From the multi-class confusion matrix of the ten models, it can be seen that the
method we proposed has an excellent overall effect on the number of correct predictions
for each class. Such results indicate that the FC-SMOTE processing is an effective method
to build a multi-classification model of pathological voices, which means that the VPD
system can learn minority classes better to improve performance in multi-classification.
Since MFCC is a well-established feature in the field of speech recognition, the VPD system
can also show promising results in binary classification detection in imbalanced datasets,
as confirmed in a recent research work [43,44]. Therefore, in the class-imbalanced binary
classification, we focus on the correct recognition of minority samples by models in binary
classification. In addition, to respond to the experimental results after using the FC-SMOTE
algorithm, an external validation set composed of the same samples was used to generate
a confusion matrix. The confusion matrix gives the class-imbalanced binary classification
results of external validation in Figure 6.

Figure 6. The binary classification confusion matrices of LR, NB, DT, SVM, KNN, MLP, and RF in the initial class-
imbalanced dataset.

Figure 6 shows the confusion matrix of each machine learning model for detecting
normal and pathological voices in the initial class-imbalanced dataset. As can be observed,
the classifier’s recognition ability is obviously biased towards the majority class samples
(pathological type), while the recognition ability of the minority class samples (normal
type) is lacking. Therefore, the model has misleading results for the overall accuracy

(Acc =
TP + TN

TP + FN + FP + TN
). Meanwhile, the binary classification results of the class-

balanced dataset are shown in Table 8. Similarly, in the binary classification our experiment
focuses on the confusion matrix of the external dataset, as shown in Figure 7.
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Table 8. Evaluation measures of each machine learning model in the normal and pathological voice class-balanced
MEEI dataset.

LR NB DT SVM KNN RF XGBoost GBDT MLP CNN

Recall 0.96 0.97 0.98 0.99 0.98 1.00 0.98 0.98 0.99 0.97
Specificity 0.96 0.98 0.99 0.98 0.99 1.00 0.98 0.98 0.98 0.97
G value 0.96 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.97
F1 value 0.95 0.97 0.98 0.98 0.98 1.00 0.98 0.99 0.99 0.96
Time(s) 0.35 0.23 0.42 0.41 0.34 8.32 5.76 7.52 15.32 34.17

Figure 7. The binary classification confusion matrices of LR, NB, DT, SVM, KNN, MLP, and RF in the class-balanced dataset.

All the models exhibit good predictive capabilities for the binary classification results
of normal and pathological voices with FC-SMOTE. Similarly, the ensemble learning
model showed the best performance overall. RF performs better than the other models
in all model evaluation measures for recall (1.00), specificity (1.00), G value (0.99), and F1
value (1.00). When comparing the distribution of the confusion matrix in the scenarios of
Figures 6 and 7, it can be seen although the VPD system with the FC-SMOTE algorithm
sacrifices some degree of recognition capability for majority class samples (pathological
voice), it significantly improves it for the minority class samples (normal voice). For the
time consumption of the machine learning model, the training time of a single classifier is
the shortest, and the training time of the deep learning model is the longest. In contrast, the
ensemble learning model reflects the best performance in the pathological voice detection
and classification experiments of the MEEI database.

Furthermore, the area under the curve (AUC) of pathological voice multi-classification
and binary classification in the external validation dataset corresponding to each model is
shown by the corresponding PRC curve diagram. Figure 8a,b show the PRC curves of each
model without and with the FC-SMOTE algorithm, respectively, in the multi-classification.
Figure 8c,d show the binary classification PRC curves of the class-imbalanced and class-
balanced datasets, respectively, which are graphed as curves.
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(a) (b)

(c) (d)

Figure 8. (a) Precision-recall curves for multi-class without FC-SMOTE. (b) Precision—recall curves for multi-class with
FC-SMOTE. (c) Precision–recall curves for binary classification without FC-SMOTE. (d) Precision–recall curves for binary
classification with FC-SMOTE.

The commonly used model evaluation measure AUC/ROC is a biased metric. Al-
though it is commonly used to summarize the ROC curve and is widely used in medical
applications, it is too optimistic regarding the performance of the classifier when the data
are imbalanced [8]. Both precision and recall are helpful in cases where there is a class-
imbalance in the observations. The precision and recall are focused on the positive class
(the minority class) and are unconcerned with the true negatives (majority class). Therefore,
the PRC was not impacted by the addition of majority classes. Compared with the AUC
value of multi-classification in the initial class-imbalanced dataset, the VPD system with
FC-SMOTE improves all the models’ AUC values. Our method increases the AUC values
of LR, NB, DT, SVM, KNN, RF, XGBoost, GBDT, MLP, and CNN in multi-classification from
0.44, 0.41, 0.26, 0.48, 0.43, 0.49, 0.36, 0.33, 0.47, and 0.43, respectively, to 0.73, 0.68, 0.76, 0.84,
0.75, 0.88, 0.85, 0.76, 0.76, and 0.75. The perfect test will have a PRC that passes through the
upper right corner (corresponding to 100% precision and 100% recall). Generally, the closer
a PRC is to the upper right corner, the better the test is. Figure 8 reports the comparison
results of the AUC, showing that the use of the FC-SMOTE algorithm can greatly improve
the machine learning model’s ability to detect the minority class voice samples. Meanwhile,
the PRCs demonstrate that the VPD system with FC-SMOTE has a good multi-class clas-
sification ability for pathological voices and illustrates that FC-SMOTE has a high ability
to improve the multi-classification efficiency. Furthermore, the PRC curve in Figure 8d
shows the AUC for the binary classification with FC-SMOTE. It can be seen that the AUC
can reach 1.00 in most models. Additionally, this indicates that the VPD system with the
FC-SMOTE algorithm used in this paper can achieve excellent results in the diagnosis of
pathological voice.

Subsequently, to widen the problem scope and verify the applicability of the proposed
method, we experimented with the same scenario in the SVD database. For the multi-
classification system, Tables 9 and 10 present the model evaluation measures of each
classifier without and with the C-SMOTE algorithm by 10-fold cross-validation in the SVD
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database. In the experiment based on the MEEI database, we set up an external dataset to
prove the effectiveness of the FC-SMOTE algorithm in generating samples. Therefore, in the
SVD database experiment no external dataset was set to repeat this verification experiment.

Table 9. Evaluation measures of each machine learning model in the multi-class imbalanced SVD dataset.

LR NB DT SVM KNN RF XGBoost GBDT MLP CNN

Recall 0.47 0.33 0.28 0.41 0.37 0.45 0.31 0.33 0.31 0.37
Specificity 0.82 0.79 0.75 0.79 0.80 0.79 0.78 0.80 0.78 0.84
G value 0.61 0.49 0.45 0.56 0.54 0.53 0.48 0.51 0.48 0.55
F1 value 0.43 0.31 0.32 0.49 0.45 0.42 0.40 0.42 0.40 0.42
Time(s) 0.69 0.24 0.49 0.34 0.30 8.25 13.70 8.35 8.41 31.27

The results in Table 9 show that pathological voice classification with a class-imbalanced
dataset cannot obtain good results in these typical machine learning models. This problem
also exists in the SVD database. As can be seen from Tables 9 and 10 regarding the time con-
sumption of the machine learning model of the SVD database, although the performance of
the deep model obtained the best results, the training time was also significantly extended
compared to that of the other two types of models. Therefore, in our opinion, the ensemble
learning model with a sub-optimal performance is still a preferred choice for pathological
voice detection and classification. Besides this, the overall performance of the machine
learning model in the SVD database is lower than that in the MEEI database, which may
be due to the higher complexity of the data in the SVD database. This is because there are
multiple types of speech disorders in the same voice sample in the SVD database, resulting
in classifiers that do not classify well. The data complexity of the two databases can be
shown indirectly through the sample point distribution in Figure 4. Thus, in the result
of the SVD database, the model based on deep learning is better than the other learning
models, and MLP yields good results for recall (0.75), specificity (0.94), G value (0.84), and
F1 value (0.76), which are better than those of the other models. However, it is worth
noting that compared with the result of non-sampling, the performance of the VPD system
constructed by the FC-SMOTE algorithm was significantly improved.

Table 10. Evaluation measures of each machine learning model in the multi-class balanced SVD dataset.

LR NB DT SVM KNN RF XGBoost GBDT MLP CNN

Recall 0.67 0.64 0.67 0.64 0.64 0.68 0.67 0.61 0.75 0.74
Specificity 0.92 0.89 0.93 0.88 0.88 0.93 0.89 0.87 0.94 0.91
G value 0.78 0.74 0.78 0.74 0.75 0.78 0.74 0.70 0.84 0.80
F1 value 0.69 0.63 0.69 0.64 0.64 0.70 0.63 0.60 0.76 0.72
Time(s) 1.03 0.23 0.45 0.38 0.31 15.42 19.26 19.81 24.20 49.72

Similarly, the binary classification results of the 10-fold cross-validation before and
after the FC-SMOTE treatment are shown in Tables 10 and 11, respectively. Tables 11 and 12
show that the ten machine learning models with the FC-SMOTE algorithm in the SVD
database perform better than the non-sampling models. The model evaluation measures
produced by CNN are all 0.90, which is a little higher than that of other models. Thus, it
can be concluded that the proposed method can effectively improve the performance of
the pathological voice diagnosis model.
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Table 11. Evaluation measures of each machine learning model in the normal and pathological voice class-imbalanced
SVD dataset.

LR NB DT SVM KNN RF XGBoost GBDT MLP CNN

Recall 0.83 0.75 0.77 0.85 0.82 0.84 0.82 0.83 0.84 0.85
Specificity 0.51 0.50 0.58 0.53 0.53 0.52 0.52 0.56 0.63 0.65
G value 0.65 0.61 0.67 0.67 0.66 0.67 0.66 0.68 0.72 0.73
F1 value 0.67 0.62 0.66 0.66 0.65 0.70 0.70 0.71 0.70 0.75
Time(s) 1.10 0.24 1.61 1.11 0.63 17.97 14.67 20.59 73.29 99.47

Table 12. Evaluation measures of each machine learning model in the normal and pathological voice class-balanced
SVD dataset.

LR NB DT SVM KNN RF XGBoost GBDT MLP CNN

Recall 0.89 0.86 0.85 0.88 0.88 0.90 0.88 0.89 0.89 0.90
Specificity 0.89 0.86 0.85 0.87 0.88 0.90 0.86 0.89 0.89 0.90
G value 0.89 0.86 0.85 0.88 0.88 0.90 0.88 0.89 0.89 0.90
F1 value 0.87 0.83 0.85 0.87 0.85 0.87 0.87 0.87 0.88 0.90
Time(s) 3.24 0.26 1.94 1.51 0.81 18.84 21.61 25.96 96.40 179.72

To further demonstrate the effectiveness of FC-SMOTE in solving the problem of a
class-imbalanced database, a comparison is made with SMOTE and two typical SMOTE-
based extension approaches: Borderline-SMOTE and ADASYN. Table 13 shows the perfor-
mance of SMOTE, Borderline-SMOTE, ADASYN, and the proposed FC-SMOTE with the
optimal classifier in binary and multi-class pathological voice classification in the MEEI and
SVD databases. The results show that our proposed FC-SMOTE method outperforms the
other three methods by 0.02–0.17 and 0.03–0.14 in terms of the model evaluation measure
in the MEEI and SVD databases, respectively. Thus, it can be concluded that the proposed
method outperforms SMOTE, Borderline-SMOTE, and ADASYN in class-imbalanced
pathological voice detection and classification.

Table 13. Performance comparison between SMOTE, Borderline-SMOTE, ADASYN, and the proposed FC-SMOTE in the
MEEI database.

Database Case

SMOTE Borderlin
-SMOTE

ADASYN The Proposed
FC-SMOTE

Performance Improvement
by Proposed Work

Model Evaluation Measure
(Recall/Specificity/G Value/F1 Value)

MEEI
Binary 0.97/0.97

/0.97/0.97
0.94/0.95

/0.94/0.94
0.96/0.97

/0.96/0.96
1.00/1.00

/0.99/1.00
(0.03∼0.06)/(0.03∼0.05)

/(0.02∼0.05)/(0.03∼0.06)

Multi-class 0.74/0.89
/0.80/0.75

0.67/0.84
/0.71/0.69

0.74/0.89
/0.78/0.70

0.82/0.96
/0.88/0.86

(0.08∼0.15)/(0.07∼0.12)
(0.08∼0.17)/(0.11∼0.17)

SVD
Binary 0.86/0.87

/0.87/0.87
0.84/0.85

/0.84/0.84
0.85/0.82

/0.84/0.83
0.90/0.90

/0.90/0.90
(0.04∼0.06)/(0.03∼0.08)

/(0.03∼0.06)/(0.03∼0.07)

Multi-class 0.72/0.86
/0.78/0.70

0.69/0.80
/0.74/0.69

0.71/0.85
/0.77/0.70

0.75/0.94
/0.84/0.76

(0.03∼0.06)/(0.09∼0.14)
(0.06∼0.10)/(0.06∼0.07)

4. Discussion

We considered the serious class-imbalance in the MEEI database, an international
standardized database for pathological voice detection research. Researchers have ignored
this problem in the past. Therefore, using Acc as the main model evaluation measure
in most research on modeling VPD systems is misleading. This paper proposed a fuzzy
clustering algorithm-based SMOTE oversampling technology to balance classes for a
pathological voice database with a class-imbalance. The FC-SMOTE algorithm improves
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the SMOTE technique, which avoids unnecessary noise and classifier underfitting and
overcomes the imbalanced data distribution between and within classes. FC-SMOTE has
shown a good performance in processing class-imbalanced datasets with a high overlap
density, such as in pathological voice samples.

In the research on pathological voice detection, most current works have regarded
pathological voice detection as a binary classification whose results are only output as
normal and pathological voice, and there is less research on multi-classification between
different pathologies. Table 14 presents some of the performances in existing works on
pathological voice detection based on cross-validation in the MEEI database. In Table 14,
recall and specificity indicate the recognition ability of the classifier for the minority
class and the majority class, respectively. These works were conducted in an imbalanced
dataset, with notable deviations between recall and specificity ranging from 0.20 to 0.64.
Our proposed method improves the recall and specificity by 0.04–0.65 and 0.00–0.07,
respectively, compared to the performance in existing works.

In summary, our VPD system used the FC-SMOTE algorithm to handle the multi-
class imbalanced data in the MEEI database and verified the generalization ability of the
algorithm through a set of standard machine learning classifiers. In the multi-classification
of vocal cord nodules, vocal cord polyps, vocal cord edema, and vocal cord paralysis,
compared with a VPD system without FC-SMOTE algorithm, all the performance measures
of our VPD system with the FC-SMOTE algorithm in terms of recall, specificity, G value,
F1 value, and AUC/PRC are higher than the former. This justifies our claim that the
proposed method is a promising strategy for voice pathological multi-class classification.
Additionally, biomedical engineering is applied to pathological voice detection to solve
class-imbalances in limited pathological voice databases.

Table 14. Results of the methods in the MEEI database (binary classification).

Method Features
Extraction

Pathological
Samples

Normal
Samples

Types of
Cross-Validation

Classifier Performance
(Recall/Specificity/Acc)

[45] LLE
+CD

173 53 10 folds GMM 0.88/0.98/0.90

[46] MDVP 95 53 10 folds FDR 0.45/0.93/0.76

[47] Entropy 101 53 10 folds SVM 0.86/0.95/0.91%

[48] MFCC
+Skeweness

173 53 10 folds GMM 0.96/0.98/0.98

[34] MMTLS 657 53 10 folds SVM 0.35/0.99/0.95

[49] MFCC 118 36 4 folds SVM ∼/1.00/0.77

Proposed Method MFCC 136 136 10 folds RF 1.00/1.00/1.00

5. Conclusions

This paper proposes a VPD system combined with an FC-SMOTE imbalanced learn-
ing algorithm. The FC-SMOTE combines the fuzzy c-means clustering algorithm with
SMOTE. By analyzing the distribution between and within classes of the samples, different
oversampling treatments are applied to minority class samples. The empirical experiment
is firstly carried out in the MEEI database. A set of machine learning models are evaluated
and validated using the resulting class-balanced dataset as an input, and a set of reason-
able metrics is selected for model evaluation measures. Meanwhile, the effectiveness of
FC-SMOTE is tested on an external validation set of the MEEI database. The experiment
results are evaluated by the model evaluation measures recall, specificity, G value, F1
value, and AUC/PRC, which are reasonable metrics for class-imbalanced learning. The
experimental results show that the VPD system without the FC-SMOTE algorithm has
a very poor performance in recognizing minority classes and can hardly multi-classify
pathological voices types. The VPD system with FC-SMOTE is an effective method to build
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a multi-classification model of pathological voice, which means that the VPD model can
learn minority classes better to improve the VPD system’s performance. Subsequently, to
broaden the scope of the problem and maximize the applicability of the proposed method,
the same experiment using the proposed method was conducted in the SVD database. The
results again verify the effectiveness of our proposed method. Finally, the performance
of FC-SMOTE and traditional oversampling algorithms are discussed. In pathological
voice detection and classification, FC-SMOTE shows a better performance than traditional
oversampling methods.

In future research, our method can be applied to assist clinicians in diagnosing patho-
logical voices, solving the problem of insufficient medical resources and shortening the
diagnosis time for patients. Besides this, FC-SMOTE can further learn more pathologi-
cal voice types to propose an effective VPD system for more types of class-imbalanced
pathological voice multi-classification problems.
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