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Featured Application: The aim of this work is to strengthen patient awareness and willingness to
quit smoking by presenting them with the diagnostic results obtained using the capillaroscopy-
based deep-learning artificial intelligence methods.

Abstract: Taste function and condition may be a tool that exhibits a rapid deficit to impress the
subject with an objectively measured effect of smoking on his/her own body, because smokers
exhibit significantly lower taste sensitivity than non-smokers. This study proposed a visual method
to measure capillaries of taste buds with capillaroscopy and classified the difference between smokers
and non-smokers through convolutional neural networks (CNNs). The dataset was collected from
26 human subjects through the capillaroscopy with the low and high magnification directly; of which
13 were smokers, and the other 13 were non-smokers. The acquired dataset consisted of 2600 images.
The results of gradient-weighted class activation mapping (grad-cam) enabled us to understand the
difference in capillaries of taste buds between smokers and non-smokers. Through the results, it was
found that CNNs gave us a good performance with 79% accuracy. It was discussed that there was a
shortage of extracted features when the conventional methods such as structural similarity index
(SSIM) and scale-invariant feature transform (SIFT) were used to classify.

Keywords: capillaries of taste buds; convolutional neural network; deep learning; grad-cam;
smokers; non-smokers

1. Introduction

A lot of studies have confirmed that smokers exhibit significantly lower taste sensitiv-
ity than non-smokers [1]. The taste sensitivity level can be measured by electrogustometric
(EGM) thresholds from various parts of the tongue (locus) [2]. After smoking cessation,
thresholds of EGM decrease progressively and reach the taste sensitivity range of non-
smokers depending on locus and time. It is known that the recovery in the posterior loci is
complete after 9 weeks, and the recovery in the dorsal loci is observed only after 2 months
or more. Smoking cessation results in a rapid recovery of taste sensitivity among smokers,
with different recovery times [1,3]. Thus, it is considered that the use of taste sensitivity
could be explored as a motivation tool for smoking cessation.

The function of capillaries of taste buds is the exchange of material between the blood
and tissue cells for gustatory sensitivity [4]. Tobacco users are generally unaware of the
effects of tobacco on general health, oral health, etc. [3]. The effect on sensory perception
and the demonstration of its deficit to the subject might reveal an actual threat the smoker
may wish to avoid. The taste function and the taste condition may be a tool that exhibits
a rapid deficit to impress the subject with an objectively measured effect of smoking on
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his/her own body because smokers exhibit significantly lower taste sensitivity than non-
smokers [1,5,6]. From this point, the authors have an interest in whether there is a difference
in capillaries of taste buds between smokers and non-smokers or not.

There have been two measuring methods of the taste sensitivity; for the whole mouth
and for some mouth regions [2]. The evaluation for the whole mouth can be done with the
use of colorless solutions of sweet, bitter, sour, and salt [7]. Then, the simplest regional
test is EGM which was introduced in the clinical assessment of taste sensitivity during
the 1950s [8]. In addition, contact endoscopy (CE) allows for both in vivo and in situ
observations of pathology in the superficial layer of the tongue, nasal mucosa, vocal cords
in the larynx-microsurgery and nasopharynx [9,10]. However, these methods are not easy
for non-medical practitioners to use in daily life. Furthermore, images from CE are difficult
for normal users to understand features related to diseases.

On the other hand, nailfold capillaroscopy is a non-invasive, inexpensive, and re-
producible imaging technique to evaluate micro-circulations [11,12]. The capillaries are
so abnormally altered that they can be seen with the naked eye, although magnification
is usually required. And this method is used for the diagnosis of vascular dysfunction.
That is the reason we used the nailfold capillaroscopy as the first testing. In nailfold
videocapillaroscopy (NVC) qualitative assessment, scleroderma patterns can distinguish
between primary and secondary Raynaud’s phenomenon (RP) and represent an essential
and reliable parameter for the early, as well as very early, diagnosis of systemic sclerosis
(SSc) [13,14]. Thus, the recent introduction of capillaroscopic assessment into the new 2013
American College of Rheumatology (ACR)/European League Against Rheumatism (EU-
LAR) classification criteria for SSc reflects its pivotal role in the diagnosis of the disease [15].
However, most studies using capillaroscopy focused on images of nailfold capillaries.

For the nailfold capillary analysis, there have been three approaches: manual, semi-
automated, and automated segmentation [16]. The manual method depends on human-
recognizable features and requires experts to perform certain tasks, rendering it impractical
for mass and widespread use. [17]. The semi-automated method requires initial human
intervention to mark the outer and inner parts of each capillary and requires data analysis,
which may cause bias and mistakes [12]. The automated method combine a local threshold
and the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm to
distinguish nailfold capillaries [18]. However, these methods are contaminated by noise and
require post-processing such as morphological operations. Recently, convolutional neural
networks (CNNs) have been proposed for semantic segmentation [19–22]. Although these
methods have been effectively applied on medical image segmentation tasks, such as liver,
pancreas, MRI, and multiorgan, no CNN has been proposed for capillaries of taste buds.

Therefore, this study proposed a visual real-time method to measure capillaries of taste
buds with capillaroscopy and classify the difference between smokers and non-smokers
through CNNs. After that, this study confirmed which extracted featured points should be
used to classify two classes.

This paper is organized as follows: In Section 2, related works about details of capil-
laries microscope and the data choosing for the testing; And we considered the algorithms
with handcrafted feature extraction, such as SSIM, SIFT and algorithms without hand-
crafted feature extraction, such as convolutional neural networks (CNNs). After that, we
chose the best method for classifying capillaries images which is our proposed method;
Section 3 provides the results of the experiment settings and results; Section 4 provides the
discussion; lastly, Section 5 gives the summary and conclusions of this work.

2. Methods

This section describes the capillaries microscope which is the small and simple device
system to capture the capillaries images. Subsequently, we considered when choosing
the nailfold capillaries or the blood vessels on tongue and give the reason of our choice.
Our proposed method was implemented after testing two methods: the algorithms with
handcrafted feature extraction, such as SSIM, SIFT and algorithms without handcrafted
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feature extraction, such as convolutional neural networks (CNNs) on the applied data and
chose the best.

2.1. Experimental Environment and System

Table 1 shows pros and cons of different capillaroscopic devices [15]. Different devices
can be used to perform capillaroscopy, as it is an in vivo imaging investigation that consists
of a magnified view of the structural aspects of the microcirculation. The commercially
available tools range from the wide-field microscope and videocapillaroscope to smart-
phone devices and are characterized by different portability, magnification, and costs.
the USB-connected-typed microscopy is chosen because the necessary magnification for
capillaries of taste buds in this study might be larger than 300× and the device is simple
enough for non-medical practitioners to use.

Table 1. Pros and cons of different capillaroscopic devices [15].

Device Portability Magnification Costs

Stereomicroscopy Not practical Ranging between 10 and 200× Medium to high
ophthalmoscopy Very good Up to 15× Low
Dermatoscopy Very good Up to 10× Low to medium

Smartphone devices Very good Up to 20× Low
Digital USB microscopy Good (laptop connection) Up to 300× Low to medium

Digital videocapillaroscopy Good (laptop connection) Raging between 50 and 500× High

Figure 1a shows an overview of experimental environment and system consisted of the
microscope with the low and high magnification. Table 2 [23] describes the specification of the
experimental system of the microscopy with the low (100×) and high (410×) magnification.

Figure 1. (a) An overview of exp. environment consisting of the microscope with low and high
magnification, (b) Measuring method for nailfold capillaries of finger on the left and measuring
method taste bud capillaries of tongue on the right.
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They are connected by cables and converter set to convert NTSC analogue images to
uncompressed digital images for the real-time displaying on a monitor and saves them
as video and still image. The microscope is a GOKO Bscan-Z (GOKO Imaging Devices,
Kanagawa, Japan) with a vertical, cylindrical body and compact size. The body weight
of the microscope is 150 g when the focus cap is attached; the size of the focus cap is
diameter × length = φ45 × 10 mm, and the body weight is 10 g. The diameter of the stand
unit is φ = 120, the camera holder is φ = 58, and the height of the stand unit is 72.5 mm.
The weight of the stand unit is 250 g. Because of the light body weight, it is easy to carry.

Table 2. Specification of microscope GOKO Bscan-Z.

Feature Descriptions

2-ways-to-use Desk and handheld.
Stand unit Robust and is attached,

- Reduces the tremors.
Zoom and focus Powerful zoom,

- Easy to focus
- No need to change lenses.

Live video Capture smooth without time lags.
Magnification 100× to 410× (on 14-inch monitor).
Dimensions φ45 (external diameter) × 96 (length) mm

- without attachment,
- φ45 (external diameter) × 106 (length) mm
- with attachment.

The range of the x-axis movement for the stand unit is 10 mm from the left to the right
side, and that of the y-axis is 10 mm from the upper to the lower positions, as shown in
Figure 1a. Although there is no range of the z-axis, a human subject can regulate his or
her finger position. The real-time image of capillaries is projected onto a 14-inch monitor
under a range of magnification from low to high magnification [11]. The user can spin the
black middle part around to zoom out, zoom in and focus without any change of lens.

2.2. Data Acquisition

There is no opened data set to classify the difference of capillary distribution on
nailfold and tongue between smokers and non-smokers in the world as we surveyed. Thus,
it is necessary to measure the capillaries of the nailfold and tongue surface and make the
data set directly. There are two measuring parts which had the contact between the tobacco
and the human body while smoking. Figure 1b shows a description to measure capillaries
of nailfold and taste bud by using the microscope. According to the measuring part, it is
possible to attach or detach the microscope and stand unit.

Twenty-six human subjects (height: 172.2 ± 6.3 cm, weight: 68.3 ± 6.2 kg, Age:
24 ± 9 years old) were employed: 13 smokers in the university with the smoking careers
of 5–10 years (class 1), and thirteen non-smokers who were university students without
smoking careers (class 2). No subject from either class reported any health problem or a
history of neurological disease, drug abuse, alcoholism, and medical constrains that might
influence the experimental result. No major difference in body mass index (BMI) was
observed between the two classes.

Figure 2 shows the location of the 9 recording loci on the surface of the tongue.
The nine tongue loci were defined: Tip of the tongue middle (T), right (Tr) and left (Tl)
where the density of fungiform papillae is highest, Dorsal right and left (Dr and Dl) where
the density of fungiform papillae is lowest, Edge right and left (Er and El) on the foliate
papillae, and Posterior right and left (Pr and Pl) just anterior to the circumvallate papillae.

After the authors explained the objectives and procedures of this study, the informed
consent was obtained from all subjects. The experimental procedures were performed
under the Declaration of Helsinki.
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Figure 2. A location of the 9 recording loci on the surface of the tongue. T, tip; Tr and Tl, tip right
and tip left; Er and El, edge right and edge left; Dr and Dl, dorsal right and dorsal left; Pr and Pl,
fungiform papillae just anterior to the circumvallate papillae.

2.3. Data Training with Compound Model Scaling

Four different CNNs, with different different architectures (VGG [24], DenseNet [25],
ResNet [26], and EfficientNet [27]) were trained on measured dataset. All training is
performed using the Python programming language (version 3.8) on a workstation running
on Jupyter Notebook with one Nvidia GeForce RTX 2080ti graphic cards (11 GB of RAM).

2.3.1. Model Scaling

All CNN [28] architectures follow the same general design principles of successively
applying convolutional layers to the input, periodically downsampling the spatial dimen-
sions while increasing the number of feature maps. While the classic network architectures
(LeNet [29], AlexNet [30], and VGG) are comprised simply of stacked convolutional layers,
modern architectures (Inception [31], ResNet, ResNeXt [32], DenseNet, and EfficientNet)
explore new and innovative ways for constructing convolutional layers in a way which
allows for more efficient learning. All these architectures are based on a repeatable unit
which is used throughout the network.

For improving the performance, there are a lot of methods to scale up a CNN for
different resource constraints. ResNet can be scaled up by regulating network depth which
indicates layers, while WideResNet and MobileNet can be scaled by network width which
indicates channels. It is also well-recognized that bigger input image size means bigger
resolution that helps increasing accuracy with the overhead of more FLOPS (float point
operations per second) that is a measure of computer performance. However, there is
still the limitation to scale only one of the three dimensions (depth, width, and image
resolution). That means that we should use only one scaling factor [27].

2.3.2. Compound Model Scaling

This study tries to use the CNN with compound model scaling, which means to use
three scaling factors at the same time, and then evaluate the effect of compound model scal-
ing on classification. The CNN layer i can be expressed as a function: Yi = Fi(Xi), where Fi
is the operator, Yi is output tensor, Xi is input tensor, with tensor shape 〈Hi, Wi, Ci〉1, where
Hi and Wi are spatial dimensions and Ci is the channel dimension [27,28]. A CNN N can
be represented by a list of composed layers: N = Fk � · · · � F2 � F1(X1) = �j=1·cot ·kFX1

j ,
where � means the connection between consecutive layers. CNN layers are often parti-
tioned into multiple stages and all layers in each stage share the same architecture. Thus,
the CNN can be defined as [27]:

N = �i=1···sFLi
i (X(Hi ,Wi ,Ci)

), (1)
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where FLi
i denotes Fi of layer i is repeated Li times in stage i, 〈Hi, Wi, Ci〉 denotes the shape

of input tensor X of layer i.
When it is possible that all layers should be scaled with constant ratio, the problem for

model scaling can be an optimization problem, which is to maximize the model accuracy
for any given resource constraints. This is achieved by the following algorithm:

maximize
d,w,r

Accuracy(N(d, w, r))

subject to N(d, w, r) = �i=1···s F̂d·L̂i
i (X〈r·Ĥi ,r·Ŵi ,w·Ĉi〉)

Memory(N) ≤ target−memory

FLOPS(N) ≤ target− f lops

(2)

where w, d, r are coefficients for scaling network width, depth, and resolution, and F̂i, L̂i,
Ĥi, Ŵi, Ĉi are predefined parameters in baseline network.

The compound scaling method uses a compound coefficient φ to scale network width,
depth, and resolution:

depth: d = αφ

width: w = βφ

resolution: r = γφ

subject to α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(3)

where α, β, γ are constants that can be determined by a small grid search.
From the start with the baseline EfficientNet-B0, the compound scaling method is

applied to scale it up with two steps. At first, it performs the search for α, β, γ through
Equations (2) and (3) after fix φ = 1. The values for EfficientNet-B0 are α = 1.2, β = 1.1,
and γ = 1.15 under the condition of α · β2 · γ2 ≈ 2. Then, scale up baseline network with
different φ through Equation (3) after fix α, β, γ, to gain EfficientNet-B1 to B7.

3. Results
3.1. Example of Dataset

Figure 3 showed an example of the capillary image of nailfold (a) and taste bud (b)
between smokers and non-smokers. The capillary image of the nailfold cannot give us
the big difference between smokers and non-smokers. During daily activities such as
washing, and doing something with hands, etc., the attached chemicals on the skin surface
are eliminated.

On the other hand, the size of taste buds on the tongue for smokers seems to be
smaller than that for non-smokers, thus, it looks like the condition of capillary distribution
is different. The results of measurement as shown in Figure 3b was the dorsal for the
middle of tongue (Dr and Dl) as shown in Figure 2.
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Figure 3. An example of the capillary image of nailfold (a) and tongue (b) between smokers
and non-smokers.

3.2. Results of the Training and Prediction

Figure 4 shows the results of the training and loss for four applied models of CNNs:
EfficientNet, VGG16, ResNet50, and DenseNet121. Although the results through VGG16
were not trained well, others showed good performance with nearly 80% accuracy. Our
dataset includes 2 classed: smoker and non-smoker with 220 images per one class. We
used rate (60/20/20) to split our dataset: 132 images in train set, 44 images in test set
and validation set. Because the number of human subjects was small, the function of
ImageDataGenerator Class in Keras was applied for increasing the number of images. It
is well-known that CNN is only relevant when they are trained with a huge amount of
data. In order to make the most of our few training examples, we can augment them via
several random transformations. This helps to prevent overfitting and improves the gener-
alization of the model. In Keras, this can be done by the class keras.preprocessing.image.
ImageDataGenerator. The total number of images was 2600: 80% was used for the training
and validation, and the left 20% was for the testing. We implemented experiment on four
CNNs models: VGG, ResNet, DenseNet and EfficientNet with our dataset. And the result
was showed on Tables 3 and 4.

Figure 4. Results of training (a) and loss (b) for four models of CNNs: EfficientNet (blue color plot), VGG16 (orange color
plot), ResNet50 (green color plot), and DenseNet121 (red color plot).
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Table 3 represents the trainable and non-trainable parameters of four CNN models:
EfficientNet-B1, VGG16, Resnet50 and DenseNet121. These results show that the total
number of parameters of EfficientNet-B1 is the least of the four models, and is equal to
the one fourth of the number of parameters of ResNet and half of VGG16 ’s. However,
EfficientNet-B1 is the most effective, thus EfficientNet-B1 is considered to be the good
choice in our data.

Table 3. The number of parameters for four models of convolutional neural networks (CNNs):
EfficientNetB1, VGG16, ResNet50, and DenseNet121.

Model Total Params Trainable Non-Trainable

EfficientNet-B1 6,576,513 6,514,465 62,048
VGG16 14,715,201 14,715,201 0

ResNet50 23,589,761 23,536,641 53,120
DenseNet121 7,038,529 6,954,881 83,648

Table 4 represents the results of prediction for four different algorithms of CNNs:
EfficientNet, VGG16, ResNet50 and DenseNet121. It is shown that the results of prediction
for EfficientNet indicates the best performance among four different CNNs.

Table 4. Results of prediction for four models of convolutional neural networks (CNNs): EfficientNet-
B1, VGG16, ResNet50, and DenseNet121.

Model Accuracy [%] Loss

EfficientNet-B1 79.68 1.39
VGG16 50.00 0.69

ResNet50 60.94 0.89
DenseNet121 48.43 3.67

Compared to the result of algorithms with handcrafted feature extraction such as
SSIM and SIFT, it was found that most of CNN algorithms without handcrafted feature
extraction worked better for the image processing of capillaries, although VGG16 showed
the failure.

3.3. Results of the Class Activation Map

The Class Activation Map (CAM) helps in the analysis of understanding as to what
region of an input image influence the CNN’s output prediction. The technique relies on
the heat map representation which highlights pixels of the image that triggers the model to
associate the image with a particular class.

Figure 5 compares the CAM images for three representative human subjects. Images
are randomly picked from CNN validation set. The left image indicates the original image,
the middle one indicates the results of CAM, and the right indicates the overlapped image
with the original and CAM images. The results show that the CNNs tend to predict the non-
smoker class by finding the large capillaries and white-colored taste buds. Additionally, it
was also confirmed that the CNN model tended to predict the smoker class with the small
capillaries and white-colored taste buds without capillaries [33].
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Figure 5. Results of Class Activation Map (CAM) visualization for Convolutional Neural Network (CNN).

4. Discussion

We would like to analyze the CNNs model which is the best choice for classifying
image data of capillaries. In the case, the algorithms with handcrafted feature extraction
get the good result for capillaries images, there is no need to use the CNNs model without
handcrafted feature extraction. However, the result of algorithms with handcrafted feature
extraction gave us the bad score which showed in Figures 6 and 7.

Figure 6 shows the results of the structural similarity index (SSIM) score [34] between
two different tongue images for two smokers (a), and between two images for the smoker
and non-smoker (b). SSIM score 1.00 represents that two images are same, and the 0.0 of
that represents that those are fully different. The SSIM is a perceptual metric that quantifies
image quality degradation based on the change in structural information, while also
incorporating important perceptual phenomena, including both luminance masking and
contrast masking terms. The difference to other methods, such as mean squared error (MSE)
or Peak Signal-to-noise ratio (PSNR), is that these approaches estimate absolute errors.
Structural information that pixels have strong inter-dependencies especially when they
are spatially close. Through the results, it was confirmed that there were some difficulties
in classifying the difference of tongue bud between two images of the smoker and the
non-smoker through the SSIM score.

Figure 7 shows the results of the scale-invariant feature transform (SIFT) score [35]
between two different tongue images for two smokers (a), and between two images for
the smoker and non-smoker (b). The 100.0% of SIFT score represents that two images
are same, and the 0.0% of that represents that those are fully different. SIFT keypoints of
targets are first extracted from a set of reference images and stored in a database. A target
is recognized in a new image by individually comparing each feature from the new image
to this database and finding candidate matching features based on Euclidean distance of
their feature vectors. Through the full set of matches, subsets of keypoints that agree on
the target and its location, scale, and orientation in the new image are identified to filter
out good matches. Through the results, it was confirmed that there were some difficulties
in classifying the difference of tongue bud between two images of the smoker and the
non-smoker through the SIFT score, because there was the shortage of good match points.

As a result, it was confirmed that there were some difficulties in classifying the
difference of tongue bud between two images of the smoker and the non-smoker through
the SSIM and SIFT score, because there was the shortage of good match points. It is
necessary to have a lot of parameters when the feature from the image of capillaries is
extracted. Thus, it is considered that algorithms with handcrafted feature extraction are
not good for the image processing of capillaries.



Appl. Sci. 2021, 11, 3460 10 of 12

Figure 6. (a) The structural similarity index (SSIM) score between two tongue images for two different
smokers, and (b) SSIM score between two images for the smoker and non-smoker.

Figure 7. (a) The scale-invariant feature transform (SIFT) score between two tongue images for two
different smokers, and (b) SIFT score between two images for the smoker and non-smoker.
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5. Conclusions

In this study, some CNN models such as EfficientNet, ResNet, and DenseNet enabled
us to train the data set of capillaries of taste buds, although two conventional methods such
as structural similarity index (SSIM) and scale-invariant feature transform (SIFT) did not
work well because of a shortage of extracted featured points. The results of class activation
map (CAM) enabled us to understand a difference between smokers and non-smokers
because CAM allowed us to know what were extracted featured points through CNNs.

The CNNs model without handcrafted feature extraction, especially EfficientNet with
compound model scaling, proved the good performance to detect difference between
smokers and non-smokers via tongue capillaries images which captured by the microscope,
compared with conventional methods with handcrafted feature extraction. Then, the CAM
enabled us to classify a difference in capillaries of taste buds between smokers and non-
smokers. Our system with the bigger data, we can apply in hospital to support doctor
in diagnosing disease, and it can be used daily for self-checking health and detecting the
abnormal point of capillaries.

Author Contributions: Conceptualization, Formal Analysis, Investigation, and Writing—Original
Draft Preparation: H. N. T. P. and H. J.; Writing—Review and Editing, H. N. T. P., C. S. and H. J.;
Project Administration, C. S. and H. J. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was financially supported by the Design Innovation Program (AHA Platform
and Personalized Services for the Elderly Using Universal UX Design, No. 20012692) funded By
the Ministry of Trade, industry & Energy (MOTIE, Republic of Korea), and the BK21 plus program
through the National Research Foundation (NRF) funded by the Ministry of Education of Korea.

Institutional Review Board Statement: This study approved by the Institutional Review Board
(IRB) of Applied Sciences (ISSN 2076-3417; CODEN: ASPCC7) which is an international, peer-
reviewed, open access journal on all aspects of applied natural sciences published semimonthly
online by MDPI.

Informed Consent Statement: After the authors explained the objectives and procedures of this
study, the informed consent was obtained from all subjects. The experimental procedures were
performed under the Declaration of Helsinki.

Data Availability Statement: You can refer to the source code and the data set via this:
https://github.com/urgonguyen/efficientSmokingDetection.
The authors are waiting for any responses and comments.

Acknowledgments: The authors would like to express my gratitude to Human-Media Laboratory
members (Myoungjae Jun and Yeongju Woo) in Chonnam National University who are experiencing
infinite trial and error with us.

Conflicts of Interest: The authors declare no conflict of interest.

References
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