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Abstract: In this work, using the first-principle density functional theory (DFT) method, we study the
properties of a new material based on pillared graphene and the icosahedral clusters of boron B12 as a
supercapacitor electrode material. The new composite material demonstrates a high specific quantum
capacitance, specific charge density, and a negative value of heat of formation, which indicates its effi-
ciency. It is shown that the density of electronic states increases during the addition of clusters, which
predictably leads to an increase in the electrode conductivity. We predict that the use of a composite
based on pillared graphene and boron will increase the efficiency of existing supercapacitors.
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1. Introduction

Currently, the rapid development of electronics requires energy-intensive, safe, and
efficient energy storage sources for portable and stationary applications. Lithium-ion
batteries (LIBs) are usually used if high energy density and long-term operations are
required. Supercapacitors (SCs) are applied when high power density with a short exposure
time should be obtained [1]. The operation principles of these two sources are different:
LIBs work on electrochemical Faraday processes, while SCs use an electrostatic charge
storage process. Faraday processes are slower than electrostatic processes. This limits
the maximum power density of batteries and their discharge/charge currents. SCs have
a huge power density due to electrostatic interactions, but the energy density is much
lower. Modern lithium batteries have a limited life span of tens of thousands of cycles and
require sophisticated tracking systems to safely charge and discharge them [2,3]. In turn,
the lifetime of SCs exceeds one million cycles, the charging method is quite simple and
safe, and full discharge does not lead to degradation of the electrodes [4–6]. Thus, in terms
of lifetime and ease of use, SCs have obvious advantages over batteries, but low-energy
density is still the main limiting factor to their widespread application. The energy of
a SC is contained in its capacitance of the double electric layer, which is formed at the
media boundary and depends on the effective area of the electrodes [7]. In addition to the
double-layer capacitance, there is also a quantum capacitance that directly affects the total
electrode capacitance:

1
CTotal

=
1

CD
+

1
CQ

(1)

Quantum capacitance, first investigated in [8], is directly related to the density of states
(DOS), so for materials with a low DOS near the Fermi level, the quantum capacitance will
also be a low value. For metal electrodes (for example, electrodes of a classical dielectric
capacitor) in which the DOS is high, the quantum capacitance will also be high.

Here, the quantum capacitance CQ and the double-layer capacitance CD contribute
to the total capacitance CTotal , according to the law of addition of capacitors connected in
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series. From the expression above, it can be concluded that for increasing the efficiency of
SCs, it is necessary to simultaneously increase both CQ and CD.

SCs are divided into two types of devices: EDLC and hybrid. In EDLC, both electrodes
have the same structure and electrostatic mechanism of charge accumulation. In hybrid
ones, electrostatic charge accumulation occurs on one of the electrodes, and the Faraday
process occurs on the other [9]. Hereinafter, according to the SC, we denote the EDLC.

To increase CD, the electrode material must have a sufficiently large effective area. Car-
bon materials, for example, widely used activated carbon, are suitable for this role [10–12].
Due to the developed surface, the electrolyte penetrates into the pores of the activated
carbon and thereby creates a double-layer capacitance. The disadvantages of the activated
carbon electrode are its low mechanical strength and electrical conductivity due to the
amorphous structure and the gaps between the layers [13]. In addition, researchers [14,15]
revealed a pattern of reduction in the total capacitance of carbon materials due to the low
value of CQ. It is possible to increase the CQ value of carbon materials by adsorption of
various compounds on their surfaces, as shown in theoretical [16–19] and experimental
works [20,21]. Boron compounds are actively used for modification of such carbon struc-
tures as single-walled carbon nanotubes (SWCNTs) and graphene. The total capacitance of
the synthesized SC in this case ranges from 32.2 F to 1544 F/g [22–25]. The carbon material
by itself must have good electrical conductivity for efficient transfer of stored charge, high
porosity for penetration of the electrolyte into the material cavities, and strong mechanical
properties, since the flow of large discharge currents can lead to its overheating and destruc-
tion. These criteria are well met by a composite based on SWCNTs and graphene-pillared
graphene (PGR). The use of this material in SC is currently being actively researched and
discussed. Electrodes with a specific capacity of 145 to 200 F/g, excellent cyclicity, and
high power density have already been synthesized [25–29], but a numerical experiment
can indicate the most effective direction for researchers.

In our study, using the ab initio density functional theory (DFT) method performed
in SIESTA software, we predicted methods to increase the efficiency of the SC electrode
material on the base of pillared graphene and icosahedral boron clusters.

2. Materials and Methods

The SIESTA 4.1 software package [30,31] is widely used for geometry relaxation, for
the search of the potential energy minima, and for the calculation of the carbon nanos-
tructures electronic properties [32–34]. We used the density functional theory (DFT) basis
set with generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof (PBE)
parameterization, since these calculation parameters have been well-proven both in terms
of computational accuracy and calculation duration. The force acting on each atom after
relaxation was set to 0.03 eV/Å, and the energy limit was chosen to be 350 Ry. The Bril-
louin zone was sampled by a 4 × 4 × 1 Monkhorst-Pack grid. The relaxation process was
performed by the Broyden algorithm [35] and the Pulay corrections.

The expression for the CQ(V) calculation is given below [36]:

CQ(V) =
1

mV

V∫
0

eD(EF − eV)dV. (2)

As can be seen from Equation (2), the quantum capacitance CQ directly depends on
the density of electronic states D, at an applied bias, the Fermi level EF, and the bias V,
calculated as a change in the Fermi level with a change in the object’s charge and object
mass m.

The considered model of pillared graphene consisted of SWCNT with a chirality index
of (9,9) of 1.2 nm in diameter and two graphene sheets. The choice of SWCNT with such
diameter was caused by its stability in pillared graphene framework [37].
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3. Results and Discussion

Figure 1a shows a supercell of PRG containing 400 carbon atoms. The translation
vectors of the supercell after geometric relaxation are 24.61 Å in the X direction and 21.44 Å
in the Y direction. During the PGR supercell building, a SWCNT (9,9) with open edges was
attached by chemical bonds to a graphene sheet in the area of the hole that was preliminary
cut in the graphene surface. The resulting structure matched the experimental data of
pillared graphene [38]. The heat of formation of the supercell is 1.2–142 kcal/mol·atom
and does not depend on the CNT length. In the graphene-CNT contact area, six pairs of
penta- and heptagons as well as three octagons were formed.
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with 12 boron atoms. As can be seen from the figure, the B12 clusters formed bonds with 
the carbon near the defects in the area of the junction between the graphene sheets and 
SWCNTs. The length of the bonds varied in the range of 1.669 to 1.682 Å. The mass fraction 
of the boron ranged from 2.64% for one cluster and up to 11.92% for five clusters. The 
Mulliken charge distribution pattern between the PGR and B12 framework (Figure 1b) 
shows that the carbon framework received additional electrons from the B12 clusters. For 
the case of five clusters, the additional charge on the PGR is −0.287 electrons. 

To calculate CQ and predict changes in the material’s conductivity, it was necessary 
to calculate the DOS curves for all considered cases of B12 concentration. Figure 2 shows 
the DOS curves for the pure PGR and for PGR decorated with one to five boron clusters. 

Figure 1. The PGR/B12 composite supercell. (a) The supercell of the pure PGR and the charge distribution over atoms in
the XY and ZY planes; (b) the supercell of PGR with five boron clusters and the charge distribution over atoms in the XY
and ZY planes. Red indicates a lack of electrons; blue indicates an excess of electrons.

The supercell in Figure 1b has five B12 clusters. B12 clusters are icosahedral clusters
with 12 boron atoms. As can be seen from the figure, the B12 clusters formed bonds with
the carbon near the defects in the area of the junction between the graphene sheets and
SWCNTs. The length of the bonds varied in the range of 1.669 to 1.682 Å. The mass fraction
of the boron ranged from 2.64% for one cluster and up to 11.92% for five clusters. The
Mulliken charge distribution pattern between the PGR and B12 framework (Figure 1b)
shows that the carbon framework received additional electrons from the B12 clusters. For
the case of five clusters, the additional charge on the PGR is −0.287 electrons.

To calculate CQ and predict changes in the material’s conductivity, it was necessary to
calculate the DOS curves for all considered cases of B12 concentration. Figure 2 shows the
DOS curves for the pure PGR and for PGR decorated with one to five boron clusters. It
can be seen that the growth in the B12 amount increases the DOS amplitude over the entire
energy range by increasing the number of electronic states.

Earlier [39], we showed that B12 clusters in the modified CNT increase the DOS peak
amplitude and the CNT conductivity. Here, we observed a similar effect, so we assumed
that the resistance of the boron-decorated PGR-based electrode would also decrease.

To predict the effectiveness of the model as an electron SC material, we built CQ curves
in the voltage range from −3 to 3 V (Figure 3). In comparison with the pure PGR (black
curve), the modified model had the characteristic peaks in the positive branch of the plot
reaching ~1.266 kF/g for five B12 clusters. In accordance with Formula (2), an increase in
DOS in the energy range from −3 to 3 eV (Figure 2) also leads to an increase in CQ. Despite
the increase in the electrode mass due to the addition of clusters, the CQ continued to grow
as the clusters introduced new electronic states. The details of all CQ values are shown
in Table 1.
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Table 1. Heat of formation, specific charge density, and specific capacitance for the pure PGR and for
the PGR decorated with 1 to 5 boron clusters.

No. ∆H, eV QSCD, kC/g CQ, kF/g

Pure PGR - −2.384/1.748 0.749
PGR/(B12) × 1 −0.00607 −2.359/2.036 0.691
PGR/(B12) × 2 −0.00965 −2.466/2.418 0.943
PGR/(B12) × 3 −0.01271 −2.532/2.757 1.105
PGR/(B12) × 4 −0.01743 −2.608/3.030 1.187
PGR/(B12) × 5 −0.02272 −2.534/3.317 1.266
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In this study, we did not conduct a numerical estimate of the capacitance CD. However,
according to previous articles [26–29], it can be seen that the value of the total capacitance of
SCs built on the basis of pillared graphene gives values in the range from 144.5 to 352 F/g,
where the value CD must be greater than these capacitance values. Thus, an increase in CQ
will lead to an increase in the total capacity of the SC.

Finally, to determine whether the electronic material for symmetric SC devices was
ELCC or hybrid SC, specific charge density curves were calculated (Figure 4). QSCD were
calculated by the method described in [40]:

QSCD =

V∫
0

CQ(V)dV (3)
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The look of the curves in Figure 4 indicates the symmetrical behavior of the material
with an increase in number of B12 clusters up to two. However, with further clusters up to
five, the picture slightly changed, and the asymmetry of the negative and positive branches
appeared. In the negative branch, the curves were almost constant, and this was directly
related to the values of CQ in the voltage range from −3 to 0 V. Here, the change in CQ was
not so pronounced. Specific charge density indicates how much charge, in terms of mass,
the electrode material can store. The increase in charge capacity is explained as a direct
result of the additional availability of states near the Fermi level in DOS. From the nature
of the QSCD distribution, it follows that by changing the boron concentration, this electrode
material can be used both in hybrid SCs and in symmetric SCs.

Heat of formation per atom (∆H) for each added boron cluster, CQ at the 0.1 V and
QSCD for voltages −3 and 3 V, are shown in Table 1.

4. Conclusions

In the present paper, the objects of research were the models of PGR decorated
with boron clusters. Based on the ab initio method in the SIESTA code, the specific
quantum capacitance, electronic properties, and energy stability of PGR modified by
clusters of boron-containing compounds were calculated. The calculation of the specific
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charge density demonstrated symmetry with respect to the positive and negative bias at
a concentration of 5.13 wt% (two B12 clusters). With the increase in boron concentration,
branch asymmetry was observed, which expanded the application of the electrode material
for both symmetric and hybrid SC devices. Thus, the modification of PGR by B12 boron
clusters can significantly improve the characteristics of the electrode material and expand
its application in the electrode material SC.
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