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Abstract: Allelopathy is described as the interference to plant growth resulting from chemical
interactions among plants and other organisms mediated through the release of bioactive secondary
metabolites. Since only a few studies have been reported about the role of seed allelopathy, an
experiment was designed to evaluate the interactions among seeds of Portulaca oleracea L. and the
crop species common bean (Phaseolus vulgaris L.), onion (Allium cepa L.), sugar beet (Beta vulgaris L.),
broad bean (Vicia faba L.), and pea (Pisum sativum L.) on seed and seedling growth parameters. The
results indicated that P. oleracea seeds had a negative effect on the germination of P. vulgaris and
A. cepa. Conversely, germination of P. oleracea in the presence of P. vulgaris, A. cepa, and B. vulgaris
seeds was strongly reduced with a higher inhibitory effect found for the seeds of A. cepa. The highest
negative effect on root and shoot length was observed in P. vulgaris. Seedling vigor of all crop species
decreased in the presence of P. oleracea. Our results suggest that seeds of P. vulgaris, A. cepa, and B.
vulgaris exhibited high allelopathic effects against seeds of P. oleracea and can be used as potential
bio-herbicides in future screening programs.

Keywords: allelopathy; bio-herbicide; germination inhibition; weeds

1. Introduction

Weeds are a threat in all cropping systems. These undesirable plants decrease input
efficiency, interfere with agricultural practices, impair the quality of plant products, deplete
resources such as soil nutrients, moisture, and space allocated to crop plants, and ultimately
cause heavy losses in plant production [1]. It has been estimated that the economic
damage of weeds is more than 100 billion dollars worldwide [2]. Therefore, eradicating
or decreasing the harmful effects of weeds on crop plants is the main target of weed
management.

Allelopathy is a natural process that can be considered as a tool for biological weed
control in agriculture [3,4]. According to the International Allelopathy Society, allelopathy
is defined as any process in which the secondary metabolites produced by plants affect
the growth and development of biological systems [5]. Approximately 100,000 secondary

Appl. Sci. 2021, 11, 3539. https://doi.org/10.3390/app11083539 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1877-4760
https://orcid.org/0000-0003-0550-4366
https://orcid.org/0000-0003-3340-7619
https://orcid.org/0000-0001-7557-9473
https://orcid.org/0000-0002-5063-1236
https://doi.org/10.3390/app11083539
https://doi.org/10.3390/app11083539
https://doi.org/10.3390/app11083539
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11083539
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11083539?type=check_update&version=2


Appl. Sci. 2021, 11, 3539 2 of 11

metabolites have been identified to date in plants [6]. A smaller number of these are
described as bioactive allelochemicals and are generally classified as members of specific
chemical families that include phenolics, terpenoids, glycosteroids, and alkaloids [7]. These
compounds are present in various concentrations in many plant parts, including leaves,
stems, roots, flowers, seeds, rhizomes, pollen, bark, and buds [8], and are released through
root exudates, leaching, volatilization, and decomposition of plant residues [9,10].

Several researchers have reported that some plant growth inhibitors from allelopathic
plants can inhibit weed growth [11]. Consequently, allelopathic plants and allelochemicals
can also be applied in the biological and non-synthetic chemical control of weeds; thus,
introducing a new generation of environmentally friendly weed inhibitors and reducing
the costs of crop productivity [12,13].

Purslane (Portulaca oleracea L.) is a summer annual C4 weed from the Portulacaceae
family and is a very troublesome weed worldwide. This weed has been ranked as the
9th worst weed in the world, recorded in 45 crops in 81 countries [14]. It can severely
decrease the yield of plants such as wheat (Triticum aestivum L.), maize (Zea mays L.), tomato
(Solanum lycopersicum L.), and other vegetables [14]. This weed species has been identified
as an allelopathic plant containing terpenes [15], tannins [16], saponins [17], alkaloids [18],
phenolic acids, and flavonoids [19,20]. Silva et al. [21] indicated that leaves and roots
of P. oleracea had detrimental effects on the germination and growth of Allium cepa L.,
Brassica oleracea L., Raphanus oleracea L., and S. lycopersicum. In addition, leaf and root
aqueous extracts of P. oleracea adversely affected the activities of antioxidant enzymes and
photosynthetic pigments of Cucurbita pepo L. So far, no study has reported the allelopathic
effect of P. oleracea seeds on seed germination and seedling growth of other species. For this
reason, the aim of the present study was to investigate the allelopathic effect of P. oleracea
on seed germination and growth of Phaseous vulgaris L., A. cepa, Beta vulgaris L., Vicia faba L.,
and Pisum sativum L.

2. Materials and Methods
2.1. Experimental Design

In addition to P. oleracea seeds, common bean (P. vulgaris L. cv. Nassau), onion (A. cepa L.
cv. Blanca de Pompei), beet (B. vulgaris cv. conditiva), broad bean (V. faba cv. Muchamiel.),
and pea (P. sativum cv. Dulce de Provenza) seeds (Semillas Battle, Molins de Rei, Barcelona,
Spain) were surface sterilized with hypochlorite (10%) and then soaked eight times with
distilled water.

We collected matured seeds of P. oleracea from natural communities in Zanjan, Iran
(36◦41′ N and 48◦23′ E; altitude 1634 m), which were stored at room temperatures (15–19 ◦C,
20–35% humidity) until the start of the experiment. Each replicate consisted of a Petri
dish (11 cm diameter) with 25 seeds (only weed or only crop) or 50 seeds (weed + crop)
on two layers of filter paper moistened with 3 mL of distilled water. Four replicates were
established for each treatment combination and the Petri dishes were placed randomly
within a climate-controlled room at 25 ◦C for 14 days with 12 h light per day. The crop
seeds were placed at regular intervals between the weed seeds. Petri dishes with only
weed or crop seeds were used as controls. The number of germinated seeds was recorded
daily up to 14 days, and each seed was considered germinated when the protrusion of the
radicle was visible [22].

Germination percentage was estimated by using the following equation:

GP = 100∗(NG/NT),

where NG is germinated seeds and NT is total seeds [23].
The root and shoot length of all germinated seeds were measured using a metric ruler.
Seedling vigor index was evaluated with equation:

SVI = (s + r)G,
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where s and r are the shoot and root length (in cm), respectively; G is the percentage of
germination [24].

Coefficient of allometry (CA) = radicle length/plumule length [25].

Inhibition (−) or stimulation (+) = GST − GSC/GSC∗100,

where GST is germination of seeds in treatments (seed close to seed); GSC is germination
of seeds in control.

2.2. Statistical Analysis

The data were subjected to analysis of variance (ANOVA) and means were compared
using Duncan’s multiple-range tests (p≤ 0.05). The Software SAS (Version 9.1, SAS Institute
Inc., Cary, NC, USA) was used to conduct all the statistical analysis. Excel software was
used to obtain figures.

3. Results
3.1. The Effect of P. oleracea on the Germination and Seedling Growth of Crop Species

The presence of P. oleracea caused differential responses in the germination percentage
of crop species. The results revealed that the germination percentage of P. vulgaris and
A. cepa seeds was reduced by the presence of P. oleracea seeds. In contrast, B. vulgaris,
V. faba, and P. sativum were not affected (Figure 1). The germination rates of P. vulgaris and
A. cepa decreased marginally with the presence of P. oleracea, while B. vulgaris, V. faba, and
P. sativum were not influenced (Figure S1).

Figure 1. Germination percent of crop species grown together with P. oleracea seeds (mono = only
crop plant; mix = crop grown together with P. oleracea). Bars represent the means of 4 replicates ± SE.
Bars topped by the same letter indicate no significant difference between treatments at the 5% level
using Duncan’s multiple-range test.

The proximity of P. oleracea strongly affected the root length of P. vulgaris, V. faba,
and P. sativum. The root length of these plants was reduced by 77%, 39%, and 34% in
comparison with their respective controls. This weed species had the highest inhibitory
effect on the root length of P. vulgaris. In contrast, variation of the root length of A. cepa and
B. vulgaris was not influenced by the presence of P. oleracea (Figure 2).
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Figure 2. Root length of crop species grown together with P. oleracea seeds (mono = only crop plant;
mix = crop grown together with P. oleracea). Bars represent means of 4 replicates ± SE. Bars topped by
the same letter indicate no significant difference between treatments at the 5% level using Duncan’s
multiple-range test.

Shoot length of P. vulgaris, A. cepa, and V. faba was decreased by P. oleracea seeds.
Among these crop species, P. oleracea had less effect on reducing the shoot length of A. cepa
(Figure 3). There were no significant differences (p > 0.05) in the shoot length of B. vulgaris
and P. sativum grown with P. oleracea.

Figure 3. Shoot length of crop species grown together with P. oleracea seeds (mono = only crop plant;
mix = crop grown together with P. oleracea). Bars represent the means of 4 replicates ± SE. Bars
topped by the same letter indicate no significant differences between treatments at the 5% level using
Duncan’s multiple-range test.

Seedling vigor of all crop species decreased in the presence of P. oleracea. This weed
showed the highest inhibitory effect on seedling vigor of P. vulgaris (<60%), but the seedling
vigor of A. cepa and B. vulgaris were also reduced in the presence of P. oleracea (Figure 4).
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Figure 4. Seedling vigor of crop species grown together with P. oleracea seeds (mono = only crop
plant; mix = crop grown together with P. oleracea). Bars represent the means of 4 replicates ± SE. Bars
topped by the same letter indicate no significant difference between treatments at the 5% level using
Duncan’s multiple-range test.

The coefficient of allometry of crop species was also affected by the presence of P. oleracea.
The coefficient of allometry of P. vulgaris and P. sativum was negatively affected by the proximity
of P. oleracea, but A. cepa and V. faba showed a comparably higher coefficient of allometry in the
presence of P. oleracea, and the strongest increase was observed in V. faba (Figure 5).

Figure 5. Coefficient of allometry of crop species grown together with P. oleracea seeds (mono = only
crop plant; mix = crop grown together with P. oleracea). Bars represent the means of 4 replicates ± SE.
Bars topped by the same letter indicate no significant difference between treatments at the 5% level
using Duncan’s multiple-range test.

3.2. The Effect of Crop Species on the Germination and Seedling Growth of P. oleracea

The seeds of A. cepa, B. vulgaris, and P. vulgaris exerted inhibitory influences on the
germination percent of P. oleracea. In particular, A. cepa had the highest effect on P. oleracea
germination of −13.5%. In contrast, the presence of P. sativum and V. faba had no effect on
the germination of this weed (Figure 6). Additionally, the germination rate of P. oleracea was
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reduced by P. vulgaris, A. cepa, and B. vulgaris (Figure S2). As a consequence, the proximity
of P. vulgaris and A. cepa with P. oleracea exhibited a mutual inhibition (Figure S3).

Figure 6. Percent germination of P. oleracea grown with crop seeds (mono = weed alone; mix =
weed grown together with crop). Bars represent the means of 4 replicates ± SE. Bars topped by the
same letter indicate no significant difference between treatments at the 5% level using Duncan’s
multiple-range test.

The root length of P. oleracea decreased when grown in close proximity to all the crop
species. The highest reduction was recorded in the presence of B. vulgaris (Figure 7).

Figure 7. Root length of P. oleracea grown with crop seeds (mono = weed alone; mix = weed
grown together with crop). Bars represent the means of 4 replicates ± SE. Bars topped by the
same letter indicate no significant difference between treatments at the 5% level using Duncan’s
multiple-range test.

The shoot length of P. oleracea, which was not affected by the presence of V. faba and
P. vulgaris, was lower when grown near B. vulgaris and P. sativum. Additionally, the shoot
length of P. oleracea was stimulated by the association with A. cepa (>29% compared to
mono (Figure 8).
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Figure 8. Shoot length of P. oleracea grown with crop seeds (mono = weed alone; mix = weed
grown together with crop). Bars represent the means of 4 replicates ± SE. Bars topped by the
same letter indicate no significant difference between treatments at the 5% level using Duncan’s
multiple-range test.

Similar to the root length results, the proximity of all crop seeds had a severe impact
on the seedling vigor of P. oleracea. Among crop plants, the highest effect on seedling vigor
of P. oleracea was observed by B. vulgaris (Figure 9) and the seedling vigor of P. oleracea had
a small, but significant decrease grown in close proximity to P. sativum.

Figure 9. Seedling vigor of P. oleracea grown with crop seeds (mono = weed alone; mix = weed
grown together with crop). Bars represent the means of 4 replicates ± SE. Bars topped by the
same letter indicate no significant difference between treatments at the 5% level using Duncan’s
multiple-range test.

The presence of P. vulgaris, A. cepa, B. vulgaris, and V. faba strongly decreased the
coefficient of allometry of P. oleracea. In contrast, the coefficient of allometry for P. oleracea
did not differ from the control when this weed was grown with P. sativum (Figure 10).
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Figure 10. Coefficient of allelometry of P. oleracea grown with crop seeds (mono = weed alone; mix
= weed grown toghether with crop). Bars represent the means of 4 replicates ± SE. Bars topped by
the same letter indicate no significant difference between treatments at the 5% level using Duncan’s
multiple-range test.

4. Discussion

Reduced germination in A. cepa and P. vulgaris as a result of the allelopathic potential
of P. oleracea indicated that this weed species probably possess allelochemicals which ex-
hibited phytoinhibitory effects on these crops. Alkaloids from seeds of P. oleracea such as
dopa, dopamine and noradrenaline [26], and monoterpenes are widely known to modify
seed germination and seedling growth [27]. Furthermore, inhibition of seed germination
may be attributed to the presence of inhibitory allelochemicals. The latter can exert in-
hibitory effects by affecting cell division and cell elongation [28], and mobilization of stored
compounds [29]. Therefore, the cultivation of A. cepa and P. vulgaris is not recommended
on the farms with P. oleracea. Among crop species, the germination of P. sativum, V. faba,
and B. vulgaris in the presence of P. oleracea was not affected, because these plants were
not influenced by P. oleracea. In contrast, the germination of P. oleracea decreased in the
presence of P. vulgaris, A. cepa, and B. vulgaris. The basic approach used in allelopathic
research for agricultural crops has been to screen both crop plants and natural vegetation
for their capacity to suppress weeds. As a result, the allelopathic potential of these plants
can be used to suppress P. oleracea. There are some phytochemical constituents in the
seeds of P. vulgaris, such as alkaloids, flavonoids, tannins, terpenoids, and saponins, which
alter mitochondrial structure and function, leading to the inability of the cells to use the
storage materials [30]. Dadkhah [31] reported that foliar aqueous extracts of B. vulgaris
had significant herbicidal effects on seedling and plant growth of P. oleracea, and similar
results were observed by El-Shora et al. [32]. According to our results, the presence of
P. oleracea also strongly decreased the root length of crop plants. Since roots are sensitive
to any chemical changes in their surroundings, they may respond more quickly. Reduced
length in roots and shoots might be due to reduced cell division and abnormalities in
growth hormones [18]. Alkaloids are among major allelopathic compounds in P. oleracea.
Alkaloids have been observed to inhibit plant growth by several mechanisms, including
interference with DNA, enzyme activity, protein biosynthesis, and membrane integrity in
developing plants [33]. Flavonoids also affect the breakdown of auxin by IAA oxidases
and peroxidases [34–36] and impact polar auxin transport [35,37,38], thereby affecting the
root growth of target species. For example, flavonols identified from lettuce function as
allelopathic inhibitors of seedling growth [39].

Seedling vigor was evaluated as a component of vegetative performance or fitness of
a plant species. Seedling vigor of all crop species and P. oleracea significantly decreased in
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the presence of each other. These results are in agreement with those of Kiran et al. [40],
who found that the aqueous extract of Psoralea corylifolia L. seeds decreased the seedling
vigor of maize (Zea mays L.). Dhungana et al. [41] evaluated the allelopathic potential of
soybean (Glycine max L.) root extract and maize on beggarticks (Bidens spp.) and goosegrass
(Eleusine spp.), reporting that seedling vigor and weed germination were decreased.

The coefficient of allometry of P. oleracea decreased in the presence of crop species.
Seeds of V. faba and P. vulgaris contain a high amount of phenolic compounds [42,43],
potent inhibitors of cell division, able to decrease radicle and seedling growth [44], thus
reducing the coefficient of allometry. Our results confirmed that the studied crop species
can be categorized into two groups according to their sensitivity to the inhibitory potential
of P. oleracea. The first group include P. vulgaris, B. vulgaris, and A. cepa, with a higher
inhibitory activity on P. oleracea seed germination, and the second group represented by
P. sativum and V. faba with no inhibitory effect on seed germination of the weed.

5. Conclusions

The allelopathic potential of P. oleracea was demonstrated against P. vulgaris and A. cepa
plants. Since seed germination is a pivotal stage in the lifecycle of higher plants, the release
of inhibitory substances from seeds of P. oleracea may impact the competitive ability of
the neighboring plant or crop species during the establishment stage. On the other hand,
seeds of P. vulgaris, A. cepa, and B. vulgaris exerted a higher reduction in the germination
of P. oleracea. Therefore, aqueous extracts or selected allelochemicals of P. olearacea can
be developed as bio-herbicides for controlling weeds, as well as some crop species with
allelopathic potential can be used to suppress weeds, thereby decreasing synthetic herbicide
dependency in conventional weed management [45].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11083539/s1.
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