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Abstract: Communication systems based on chaotic synchronization are gaining interest in the area
of secure and covert data transmission. In this paper, a novel digital communication technique based
on a coherent chaotic data transmission approach is proposed. In general, this technique resembles
the well-known approach based on the modulation of nonlinearity parameters. The key idea of this
study is to modulate a signal by varying not the system parameter but the symmetry coefficient
in discrete chaotic models obtained by the special numerical integration method. For this purpose,
the self-adjoint semi-implicit integration method of order 2 is used to obtain discrete master and
slave models of the considered chaotic oscillator. The experimental results explicitly show that, like
during parameter modulation, transmitting and receiving oscillators may completely synchronize
only if the symmetry coefficients are equal in both systems. The architecture of the communication
system based on the proposed modulation is presented. The practical applicability of the approach is
confirmed by transmitting a test binary sequence between the transmitter and receiver models and
preliminary benchmarking of the obtained communication system. Since the symmetry coefficient
modulation does not significantly impact the chaotic behavior of the transmitting digital system,
its better suitability for covert messaging was experimentally confirmed by comparing it with the
parameter modulation technique.

Keywords: chaotic communication system; symmetric integration; variable symmetry; covert
communication

1. Introduction

Digital modulation is a widely used technique in modern communication systems,
for example, in a direct down-conversion software-defined radio (DDC SDR) which is in
high demand on today’s market [1]. Digital modulation provides opportunities that are not
possible for neither analog nor binary modulation. For example, it allows using arbitrary
carriers, such as ultra-wideband signals and, which is of particular interest, chaotic signals,
as well as applying advanced digital signal processing algorithms.

The idea of using chaotic oscillators to implement communication systems goes
back to the discovery of the chaotic synchronization phenomenon. In the early work by
Cuomo et al. published in 1993 [2], a secure communication system is proposed using
based on two circuits implementing the Lorenz chaotic oscillator. The authors present
two possible data transmission schemes: masking of the analog signal by chaotic signal,
and bifurcation parameter modulation suitable for binary data transfer. This work stated
the fundamental possibility of such type of communication. A similar solution based on
the Chua circuit was described by Dedieu et al. [3]. One of the first papers that used chaotic
communication for the transmission of complex signals such as speech was published by
the Saratov nonlinear dynamics team [4].
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Since these pioneering works, a large number of methods for modulating chaotic
signals had been developed, based on different possible types of synchronization, includ-
ing full, generalized, and phase synchronization. The prospective application of chaotic
communication include wired [5], wireless [6], optical [7], and underwater acoustic [8]
communication. The influence of noise and multipath propagation on the chaotic com-
munication quality and the transfer rate had been extensively studied in the last three
decades. Ren et al. [9] have shown analytically that the spectra of Lyapunov exponents
preserve in a chaotic signal after being transmitted through a wireless channel. Authors
state that this physical property provides excellent performance of the fully chaos-based
wireless communication system in the presence of bounded noise and the relative motion
between transmitter and receiver. Riaz et al. [7] listed some established advantages of
direct chaotic communication, such as security, secrecy, potentially high data transfer rate,
and the existence of a larger number of addresses in the channel, which allows increasing
the transmission energy without a significant increase in interference. The high transfer
rate may be achieved due to the possibility to encode several different symbols in a short
waveform. The authors mentioned an experimentally reached rate of 1 Gbps with a bit error
rate (BER) of 10−7 when transferring data over optical fiber. Besides, many researchers have
focused their research exclusively on the possibility of secure and covert data transmission
using chaos [5,10].

Among the proposed chaotic communication techniques, two main classes may be
distinguished—coherent and non-coherent systems. Coherent systems are based on the
synchronization of chaotic oscillators, while non-coherent systems perform data recovery
by detecting the features of the received chaotic signal without reproducing the signal
on the receiver side. For both of these classes, several different modulation methods
have been invented. Advanced non-coherent modulation is robust against linear and
non-linear waveform distortions [8,11]. Coherent modulation systems are more sensitive
to distortions and disturbances, but provide simpler ways of data transferring, as well as a
higher potential level of security and secrecy. Therefore the enhancing of coherent data
modulation schemes is an essential task in chaos applications [11].

In this paper, we propose a new coherent chaotic transmission method by modulating
the symmetry parameter of the finite-difference model of a continuous chaotic system,
obtained by symmetric semi-implicit integration, which is used for chaotic waveform
generation. We will call this approach a symmetry coefficient modulation (SCM). The proposed
type of modulation assumes the benefits of the fully chaos-based communication following
from the preservation of the Lyapunov spectrum during signal transmission in the medium.
The key feature of the SCM technique is its good suitability for covert communication.

The main contribution of the study is as follows:
1. A novel modulation technique exploiting the geometric properties of the discrete

chaotic models obtained by symmetric integration is presented.
2. The proposed approach allows avoiding changes in phase space and spectral

characteristics of the carrier because chaotic oscillators do not bifurcate during SCM.
3. The possibility of data transfer by symmetry-based modulation is experimentally

shown. The throughput of the communication channel in the absence of disturbances
is estimated.

The rest of the paper is organized as follows—in Section 2, the investigated chaotic
system and the applied numerical method are described. Then, the architecture of SCM-
based communication systems is proposed. Section 3 presents the results of numerical
simulation and performance evaluation. Section 4 discusses some practical implementation
issues, and Section 5 concludes the paper.

2. Materials and Methods
2.1. Synchronization of Chaotic Systems

Synchronization of two or more chaotic systems in a master–slave configuration
can be performed using the different methods such as Pecora-Carroll common signal
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linking [12], Hamiltonian forms [13] or the Open-Plus-Close-Loop approach (OPCL) [14].
In this study, the communication system is implemented using the classical Pecora-Carrol
method. This technique involves the addition of the synchronization error multiplied by
a parameter, so-called the synchronization coefficient, into one or more lines of the slave
equation system.

Let us consider an autonomous n-dimensional chaotic system:

ẋ = f (x). (1)

Split the system into two parts:

u̇ = g(u, w),
ẇ = h(u, w),

(2)

where

u = (x1, . . . , xm)
>,

w = (xm+1, . . . , xn)
>,

g = ( f1(x), . . . , fm(x))>,

h = ( fm+1(x), . . . , fn(x))>,

and m, n ∈ N, m ≤ n− 1. Now, one can construct new subsystem ĥ with independent
variable subset ŵ, and involving variable subset u from the first system:

u̇ = g(u, w),
ẇ = h(u, w),
ˆ̇w = ĥ(u, ŵ).

(3)

Then, the difference ∆w = ŵ − w tends to zero ∆w → 0 as t → 0 due to the
chaotic synchronization phenomenon [12], that is the generalization of the Haken’s slaving
principle [15].

Applying Pecora-Carroll synchronization [12] to the well-known Rössler system [16]
one can obtain the following equation:

ẋ = −y− z;
ẏ = x + ay;
ż = b + z(x− c).

(4)

Here, a, b, and c are the system parameters. In the study, let nonlinear parameters
be a = 0.2, b = 0.2, c = 5.7. The ordinary differential equation (ODE) for master Rössler
system is as follows:

ẋ1 = −y1 − z1;
ẏ1 = x1 + a · y1;
ż1 = b + z1 · (x1 − c);

(5)

and the slave equation is:

ẋ2 = −y2 − z2 + k · (x1 − x2);
ẏ2 = x2 + a · y2;
ż2 = b + z2 · (x2 − c);

(6)

where k is a synchronization coefficient. For further examples of the Rössler systems
synchronized by the Pecora-Carroll method refer to [17].

2.2. Semi-Implicit Symmetric Integration Method and Variable Symmetry Approach

The basic concept of diagonally-implicit numerical integration methods, or shortly
D-methods, was reported in present works [18–20]. Such methods hold the computational
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efficiency of explicit methods possessing higher stability and precision, as well as preserva-
tion of some geometrical properties of the solution while simulating conservative systems.
The mentioned features were first achieved in Euler-Cromer and Stormer-Verlet semi-
implicit algorithms, though they were created for solving Hamiltonian systems. The di-
agonal implicitness can be resolved by the simple iterations method [20], which makes it
possible to expand the applicability of D-methods to a broader class of dynamical systems.
The only limitation here is that D methods exist only for systems of dimension N ≥ 2,
degenerating for first-order systems to explicit and implicit Euler methods.

The composition D-method, known as the self-adjoint semi-implicit method or com-
position D-method (CD), is a particular case of diagonally implicit methods. The CD
method proved to be well-suited for solving chaotic systems since it prevents chaotic
trajectories of the discrete system from slipping to periodic or quasi-chaotic orbits during
long-term simulation. Moreover, it does not suppress chaos in both conservative and
dissipative systems [20].

Let us consider the CD method Ψ with integration step size h:

Ψh = Φh/2 ◦Φ∗h/2. (7)

It is a composition of a pair of basic adjoint D-methods Φh/2 and Φ∗h/2 taken with
halved step size h/2. In a discrete moment of time tn, where the solution xn is already
known, one can apply the pair of methods Φh/2 consequently to obtain xn+1.

Having a dynamical system of order N ≥ 2

ẋ = f (x), x = (x1, x2, . . . , xN)
>, (8)

one should split it into N parts, for example for case N = 2:

u̇ = fu(u, w);
ẇ = fw(u, w).

(9)

Then, the first adjoint method Φh/2 is:

un+ 1
2
= un +

h
2 · fu(un, wn);

wn+ 1
2
= wn +

h
2 · fw(un+ 1

2
, w),

(10)

and the second adjoint method Φ∗h/2 is:

wn+1 = wn+ 1
2
+ h

2 · fw(un+ 1
2
, wn+1);

un+1 = un+ 1
2
+ h

2 · fu(un+1, wn+1).
(11)

The first adjoint method is fully explicit, and the second adjoint method contains
implicitness in the diagonal elements of the system matrix.

Note that the division of time step h directly by 2 in Equation (7) is just a special case
of more generalized integrator. Let us introduce symmetry coefficient s ∈ (0, 1) and apply
it to step size h to split it into two arbitrary parts:

h1 = h · s;
h2 = h · (1− s).

(12)

Then, a family of adjoint semi-implicit methods with variable symmetry, or VSCD
methods, appears:

Ψh,s = Φh1 ◦Φh2 . (13)

These methods retain some of the basic properties of the CD method and provide the
affine transform of the simulated system phase space without breaking the chaotic regime.
Graphical interpretation of a certain VSCD method is presented in Figure 1.
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In paper [21], Tutueva et al. discovered that master–slave synchronization with
neglectable error cannot be observed if the symmetry coefficient of master and slave VSCD
solvers are not equal. As an alternative of data transmission by the bifurcation parameter
modulation [2,3], the symmetry coefficient modulation for data transfer was investigated.
The possibility of adaptive control of symmetry coefficients was also shown, making
integration methods of the VSCD family suitable to be applied to the design of digital
chaos-based communication systems.

Figure 1. One integration step of the semi-implicit method with variable symmetry.

The discrete model of Rössler master system obtained by applying the VSCD method
is as follows:

xn+s = xn + h1 · (−yn − zn);
yn+s = yn + h1 · (xn+s + a · yn+s);
zn+s = zn + h1 · (b + zn+s · (xn+s − c));
zn+1 = zn+s + h2 · (b + zn+s · (xn+s − c));
yn+1 = yn+s + h2 · (xn+s + a · yn+s);
xn+1 = xn+s + h2 · (−yn+1 − zn+1).

(14)

Then the implicitness can be resolved analytically:

xn+s = xn + h1 · (−yn − zn);
yn+s = (yn + h1 · xn+s) · (1− a · h1)

−1;
zn+s = (zn + h1 · b) · (1− h1 · (xn+s − c))−1

zn+1 = zn+s + h2 · (b + zn+s · (xn+s − c));
yn+1 = yn+s + h2 · (xn+s + a · yn+s);
xn+1 = xn+s + h2 · (−yn+1 − zn+1).

(15)

The finite-difference model of the slave system is as follows:

xn+s = xn + h1 · (−yn − zn + k · (wn − xn));
yn+s = yn + h1 · (xn+s + a · yn+s);
zn+s = zn + h1 · (b + zn+s · (xn+s − c));
zn+1 = zn+s + h2 · (b + zn+s · (xn+s − c));
yn+1 = yn+s + h2 · (xn+s + a · yn+s);
xn+1 = xn+s + h2 · (−yn+1 − zn+1 + k · (wn − xn)).

(16)

Finally, the slave system model with resolved implicitness is:

xn+s = xn + h1 · (−yn − zn + k · (wn − xn));
yn+s = (yn + h1 · xn+s) · (1− a · h1)

−1;
zn+s = (zn + h1 · b) · (1− h1 · (xn+s − c))−1

zn+1 = zn+s + h2 · (b + zn+s · (xn+s − c));
yn+1 = yn+s + h2 · (xn+s + a · yn+s);
xn+1 = xn+s + h2 · (−yn+1 − zn+1 + k · (wn − xn)).

(17)
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2.3. Communication System Architecture

The proposed symmetry coefficient modulation approach is similar to the chaotic
parameter modulation method [22]. The transmission of data is performed as follows.
First, the message is encoded into a set of symbols corresponding to a defined non-binary n-
symbols alphabet. Each symbol of the alphabet corresponds to a certain value of symmetry
coefficient. The set of symbols forms an information message m(t) which affects the
symmetry coefficient s on the transmitter side. The receiver consists of several slave
systems, each with a specific symmetry coefficient corresponding to a particular symbol.
The signal x(t) in the channel is applied to all receiver systems, and a synchronization
error ∆x between x(t) and each receiver response x∗i (t), i ∈ [1, N] is calculated. When the
value of synchronization error ∆x on one of the receivers goes below a certain threshold,
it is treated like a receiving of the symbol conformed to the symmetry coefficient on this
receiver system. Thus, the accepted message m∗(t) is decoded symbol-by-symbol.

The physical receiver may be represented by a single digital device, where systems
with different symmetry coefficients are executed (Figure 2), or a set of devices, where a
certain symmetry coefficient corresponds to the certain device (Figure 3). In the second case,
to transmit a message, an asynchronous protocol can be used, in which various duration
of the synchronized and non-synchronized states will denote different symbols, in the
simplest case, binary 0 and 1.

Figure 2. Block-diagram of the peer-to-peer SCM communication system with alphabet of n symbols.

Figure 3. Block-diagram of one-to-many SCM communication system suitable for asynchronous
binary coding with n receivers.
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3. Experimental Results
3.1. SCM Transfer Analysis

Let us estimate the synchronization time for various initial conditions and determine
the optimal symmetry and synchronization coefficients using average and maximum
synchronization time. All computer experiments were performed with the extended
floating-point data type using NI LabVIEW 2020 and MATLAB 2021a software. The results
for two sets of different initial conditions for master and slave systems with size 200 are
shown in Figure 4. One can see, the value of the symmetry coefficient has almost no effect
on the synchronization time. For obtained results, one can conclude that the optimal value
of k for Rössler system equals 1.4.

(a) (b)

Figure 4. The dependence between average (a) and maximum (b) synchronization time and the
symmetry and synchronization coefficients.

Consider a case of simple peer-to-peer data transfer based on synchronized discrete
Rössler systems with adaptive symmetry. If the binary message is encoded by a two-symbol
alphabet, then the transmitter is modulated with two different symmetry coefficients S1
and S2. For example, one can take S1 = 0.4 and S2 = 0.6 to denote logical 1 and 0. In idle
state, master oscillates with Sidle = 0.5. This value is important for the data transfer rate,
as will be demonstrated further. To receive the message, a system consisting of two slave
oscillators in a peer-to-peer configuration (see Figure 2) is needed. The synchronization
error behavior in receiver systems during transmission of the logical 1 is shown in Figure 5.

Figure 5. Normalized synchronization errors at receiver systems during a symbol transmission
associated with value S1 at the transmitter.
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Note that here the Rössler system is considered in its natural time-scale (4). The system
was simulated with the time step h = 0.01 and required 100 s of simulation time per
symbol. With this time step, the maximal synchronization accuracy for the double-precision
data type was achieved within 6 · 103 samples. An important observation here is that
synchronization error ∆x decreases exponentially over time. In a real communication
system, chaotic oscillators can be executed with an almost arbitrary frequency depending
only on a sample rate. If the transmission is carried out with a sampling frequency of
1 GHz, then the minimal synchronization error will be achieved in 6 µs.

Let us illustrate the transmission of binary messages using the proposed modulation
technique. The synchronization error behavior while transmitting the message “10101100”
is shown in Figure 6.

Figure 6. The behavior of synchronization errors at the receiver during transmission of mes-
sage “10101100”.

From a practical point of view, achieving the minimum possible synchronization error
value during the transmission is unnecessary and even almost impossible due to the noise
presented in a real communication channel. Meanwhile, it is sufficient that the synchro-
nization error of one of the receivers responsible for the symbol associated with a specific
value of S should fall below a certain threshold ∆x0, for example, ∆x0 = 10−6. The second
practical consideration is that for a case of the dense channel occupation, it is of interest to
choose the smallest possible difference ∆ between the values of the symmetry coefficients
associated with the symbols: ∆S = Si − Sj → 0. An additional advantage of such an
approach is that the trajectories of the master and slave systems with slightly different
values of the symmetry coefficients do not diverge much, and when a certain symbol is
transmitted, the error decreases below the specified threshold ∆ = xmaster − xslave faster.

By choosing different values of the synchronization accuracy threshold ∆x and dif-
ferent delta values between the significant and idle synchronization coefficient ∆S and
between the significant and idle parameter ∆a, one can obtain the plot shown in Figure 7.
The noise in the data appears due to the influence of the initial conditions at the moment of
the synchronization beginning. Thus, the scatter of values on each line shows the best and
worst cases of synchronization time.
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(a) Symmetry coefficient. (b) Parameter a.

Figure 7. Dependence of synchronization time from the threshold synchronization error ∆x.

3.2. Comparing the SCM Approach with Parameter-Based Modulation

To compare the proposed method of chaotic modulation with existing solutions,
one can use bifurcation diagrams and bifurcation spectrograms. The concept of a bifurcation
diagram includes several ways of plotting a phase variable on one axis and a parameter on
another. One of the simplest ways to plot the bifurcation diagram using the time series is
to use a peak detector [23].

The bifurcation spectrogram is calculated using the windowed Fourier transform.
The signal s(t) is divided into parts, which usually overlap, and then a Fourier transform
is performed to calculate the power spectral density P for each part:

S(t) = FFT(s(t)),
P = 20 log20(|S(t)|2).

(18)

The obtained spectra are plotted in one image. Each vertical line corresponds to a
single spectrum. Unlike the widely used time-based spectrogram, the bifurcation spectro-
gram is plotted not depending on time, but depending on the value of the certain system
parameter. The bifurcation parameter or the symmetry coefficient may serve as a parameter
plotted along the X-axis of the bifurcation spectrogram.

The above-mentioned analysis techniques allow investigating one of the main disadvan-
tages of communication systems based on parameter modulation for secure and covert data
transmission, namely, the conspicuousness of the parameter switching process. Such switch-
ing can be detected by an interceptor while analyzing the signal spectrum. In contrast,
modulation based on the symmetry coefficient switching does not affect the behavior of the
system. The bifurcation and spectral diagrams of the parameters and the symmetry coeffi-
cient of the Rössler system are shown in the Figures 8a–d and 9a–d respectively. Note that
symmetry coefficient modulation almost does not affect the system dynamics in comparison
with system parameters modulation as it was theoretically predicted.

The comparison of steps from h = 0.05 s to h = 0.001 s is given in Figure 10.
The smaller is the integration step, the smaller is the influence of the symmetry coefficient
on the system dynamics. While decreasing the discretization step, the discrete system
becomes closer to the continuous prototype, thus the specific values of the numerical
integration method parameters lose their influence on the solution.
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(a) parameter a (b) parameter b

(c) parameter c (d) Symmetry coefficient s

Figure 8. Bifurcation diagrams for Rössler system simulated with h = 0.01 s.

(a) parameter a (b) parameter b

(c) parameter c (d) Symmetry coefficient s

Figure 9. Spectrum diagrams for Rössler system simulated with h = 0.01 s.



Appl. Sci. 2021, 11, 3698 11 of 14

(a) Step size h = 0.05 (b) Step size h = 0.01

(c) Step size h = 0.005 (d) Step size h = 0.001

Figure 10. Bifurcation diagrams of the Rössler system for the symmetry coefficient variation at
different numerical integration steps.

The revealed properties make data transmission by varying the symmetry coefficient
much more secretive than transmission by modulating the bifurcation parameter. An il-
lustrative example of transmitting the message “1010110” is shown in Figure 11. When a
message is transmitted by modulating a parameter, specific patterns can be seen on the
spectrogram. Meanwhile, the symmetry-based modulation allows the transmitted symbols
to remain undistinguished. One can see, for symbol 1 there are areas where the most
marked frequency 0.2–0.6 Hz, which is not the case when transmitting a symbol 0, dur-
ing the message transmission using parameter modulation. However, such areas are not
observed during the message transmission using symmetry coefficient modulation.

(a) (b)

Figure 11. Spectrograms for message transmission using parameter modulation (a) and symmetry
coefficient modulation (b). For parameter modulation, values a1 = 0.2 and a2 = 0.22 were switched
while values of b = 0.2 and c = 5.7 were constant. For SCM case, symmetry coefficients were S1 = 0.4
and S2 = 0.6, respectively.
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4. Discussion

The proposed symmetry coefficient modulation can be used as a basic technology
for the practical development of communication systems. Note that in this paper only an
alphabet of two symbols was considered, while there can be many more of them by analogy
with quadrature modulation, in which there can be 1024 or more symbols. For practical
systems, it is of interest to estimate the channel density at different signal-to-noise ratio
(SNR) levels and the data transfer rate. In this article, we fundamentally do not consider
the issues of noise in the channel, since chaos-based coherent systems are mostly used with
noise reduction at the receiver side [11]. As for the transmission rate, it can be calculated
from the data presented in Figure 7. The results are summarized in Table 1. To fill this
table, one should take the worst of achieved synchronization times for a given ∆S or ∆a,
time step h = 0.01 s to find the corresponding number of samples, and estimate the time
needed to transfer these samples having 1 GHz of sampling frequency. The resulting table
approximately shows some realistic data transfer rates, which are possible with the SCM
approach using an alphabet of 2 symbols.

Table 1. The comparison between dependence of the binary data transfer rate on the difference
between symmetry coefficients and parameters a with a defined minimum synchronization error
∆x = 10−6 ( fsamp = 1 GHz).

Symmetry Coefficient Parameter a

∆S Transfer Rate, Mbit/s ∆a Transfer Rate, Mbit/s

0.1 0.4 0.1 0.18
0.01 0.5 0.01 0.47
0.001 0.666 0.001 0.6

An example in Table 1 shows that SCM may outperform the parameter modulation in
terms of the transmission rate, having another advantage in its spectrum stability resulting
in a higher level of secrecy. A more detailed comparison of these systems, as well as with
systems without chaos, is not the subject of this study, since transfer rate depends on
many practically important factors: the used alphabet, the information encoding method,
the number of users in the communication channel, the SNR, the physical transmission
medium, and so forth. Some numerical characteristics of implemented chaotic communica-
tion systems can be found in the Introduction. Another important practical characteristic
of a communication system is a bit error rate (BER). Likewise, the study of the commu-
nication system noise resistance is not the subject of this study, since in depends on the
encoding method and the denoising techniques. Meanwhile, the reader may be interested
in BER estimation for communication systems utilizing chaos, and this issue is addressed
in several studies. For example, Kaddoum et al. [24] compare chaos-based DS-CDMA
(direct-sequence code division multiple access) system with a conventional DS-CDMA
system based on Gold codes and finds that the chaos-based DS-CDMA system outperforms
the conventional DS-CDMA system when the spreading factor is low. Rulkov et al. [25]
estimate BER of binary phase shift keying (BPSK) and chaotic-pulse-position modula-
tion (CPPM) communication systems and finds that the chaotic communication system is
slightly inferior to the conventional one.

5. Conclusions

The key results of the reported study can be summarized as follows:
1. The proposed novel digital communication method based on the synchronization

of chaotic systems (symmetry coefficient modulation, SCM) allows the transmission of
binary-coded messages. The underlying theoretical concept of using semi-implicit models
with variable symmetry coefficient for chaotic signals generation is experimentally verified.

2. It is shown that, unlike the bifurcation parameters, the switching of symmetry
coefficient does not affect the behavior of the transmitting chaotic system, making the
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symmetry-based modulation more suitable for covert messaging. A presented comparison
with parameter-based modulation confirmed these theoretical assumptions.

3. We explicitly show that the transfer of the parameter by the modulation method
leads to noticeable changes in the spectrum of systems even with a slight (10%) change
in the bifurcation parameter, while a significant (more than 50%) change in the symmetry
coefficient does not result in the significant difference in the spectrogram.

Our further research will be dedicated to the study of the channel noise influence on
transmission and BER, as well as the development of efficient methods of noise reduction.
The simulation of the attack to the proposed secure communication system by detecting
spectral patterns and studying more known types of chaotic signal modulation is of great
interest as well. In addition, a comparison of the proposed method with other coherent and
non-coherent types of chaotic coupling and harmonic signal modulation will be performed.
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