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Abstract: Collaborative filtering (CF) is a recommendation technique that analyzes the behavior of
various users and recommends the items preferred by users with similar preferences. However,
CF methods suffer from poor recommendation accuracy when the user preference data used in
the recommendation process is sparse. Data imputation can alleviate the data sparsity problem by
substituting a virtual part of the missing user preferences. In this paper, we propose a k-recursive
reliability-based imputation (k-RRI) that first selects data with high reliability and then recursively
imputes data with additional selection while gradually lowering the reliability criterion. We also
propose a new similarity measure that weights common interests and indifferences between users and
items. The proposed method can overcome disregarding the importance of missing data and resolve
the problem of poor data imputation of existing methods. The experimental results demonstrate
that the proposed approach significantly improves recommendation accuracy compared to those
resulting from the state-of-the-art methods while demanding less computational complexity.

Keywords: artificial intelligence; collaborative filtering; data sparsity; missing data imputation;
recommendation systems; recursive algorithm; reliability

1. Introduction

With the advance of Web-based technologies, there is a rapid growth in products
and services available on online platforms leading to the information overload problem.
As a result, manually searching and finding relevant products and services for a user
have become challenging and time-consuming. Recommendation systems can alleviate
the information overload problem, as they help platforms automatically locate the items
that the users are most likely to consume with respect to their preferences. Thus, the
recommendation systems have been successfully used in various commercial applications,
such as movie recommendations on Netflix, book recommendations on Amazon, or music
recommendations on Last.fm.

One of the most widely used recommendation techniques is collaborative filtering
(CF), which analyzes the behavior of various users and recommends the items preferred
by users with similar preferences. For example, a user may express preferences for an
item through item rating, purchase behavior, and search behavior. The main idea of the
CF method is that a group of users, who are interested in the same item, exhibit similar
tendencies for other items, and the items that are selected together by the same user have a
prerequisite that they are also selected by other users [1,2]. If a CF method only relies on
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the original user–item interaction, we call it a pure CF method [3]. The pure CF method can
only provide satisfactory recommendations for users, considering that there are sufficient
past interactions. However, in actual systems, the user is often restricted in expressing
preferences for items. In other words, the number of evaluations of items is much smaller
than that of the actual number of items selected. As a result, the pure CF methods suffer
from poor recommendation accuracy due to insufficient user preference data. We can refer
to this problem as a data sparsity problem.

Generally, the CF method is used in a variety of recommendation systems to predict
the interests of users, including movie and music [4,5], travel routes [6,7], products [8–10],
and online resources [11]. Various methods are proposed to solve the data sparsity problem
in CF methods by substituting a virtual part of the nonexistent user preferences. For
example, Ma et al. [12] proposed an Effective Missing Data Prediction (EMDP) method,
which prioritizes high-reliability data for imputation and only imputes the missing data
when it exceeds the predefined threshold. Other methods [13–16] incorporated the EMDP
method into their proposed methods to solve a data sparsity problem in various fields. The
main advantage of EMDP is that it can avoid poor imputation (no or insufficient amount
of imputed data) because it imputes all the data whose similarities with the active user and
active item exceed the thresholds. However, the main disadvantage of EMDP is a relatively
poor accuracy because it gives the same value to all missing data [17]. On the other
hand, Ren et al. [18–21] proposed the Auto-Adaptive Imputation (AutAI) and Adaptive
Maximum imputation (AdaM) methods, which consider neighborhood information when
imputing missing data. That is, AutAI and AdaM impute data of high importance by
focusing on data rated by both users. Considering that the data imputed by AutAI and
AdaM are highly important data containing most information on the prediction data, high
accuracy can be maintained even with a small number of imputed missing data. However,
the main limitation of these approaches is the risk of poor imputation, leading to no or
insufficient imputed data in some cases, where the user’s rating history is much smaller
than those of other users [22,23].

In this paper, we propose a k-recursive reliability-based imputation (k-RRI) for CF. The
proposed method can overcome the disadvantage of EMDP of disregarding the importance
of missing data and resolving the problem of poor data imputation of AutAI and AdaM.
More specifically, we make the following contributions in this paper:

• We propose an effective method for missing data imputation that improves the poor
recommendation accuracy of CF caused by the data sparsity problem. The proposed
method, k-RRI, first selects data with high reliability and then recursively imputes
data with additional selection while gradually lowering the reliability criterion. Ex-
isting methods replaced the data with a small amount of real data at once; how-
ever, we replaced the data with real and reliable virtual data to alleviate the data
sparsity problem.

• We also propose a new similarity measure that weights common interests and indiffer-
ences between users and items. This enables us to determine the similarities between
user and items more accurately.

• We evaluated the performance of the proposed approach through experiments with
state-of-the-art methods: EMDP and AutAI. The experimental results demonstrate
that the proposed approach using a new similar measure significantly improves rec-
ommendation accuracy compared to those resulting from the state-of-the-art methods
while demanding less computational complexity.

The rest of this paper is organized as follows. Section 2 explains the preliminaries
for our work. Section 3 discusses related studies that solved the data sparsity problem in
CF. Section 4 describes the proposed method in detail. Section 5 presents the result of the
performance evaluation. Section 6 summarizes and concludes the paper.
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2. Preliminaries

This section explains preliminaries for our work. In this paper, we focus on the
neighborhood-based CF that can generally be divided into two steps: neighbor selection
and rating combination. We first explain the similarity measure for neighbor selection
in Section 2.1. Then, we elaborate the neighborhood-based rating prediction method in
Section 2.2.

2.1. Similarity Measures

The process of neighborhood-based CF is characterized by defining similar users or
items as neighbors and recommending items based on the rating histories of the selected
neighbors. Thus, neighbor selection depends on the definition of similarity. The similarity
measurements widely used in various fields include Pearson’s Correlation Coefficient,
Cosine Similarity, and Jaccard Index. Pearson’s Correlation Coefficient compares the linear
correlation between two variables. Cosine Similarity is a measure of the difference in
orientation between two vectors, and Jaccard Index is a measure of similarity expressed
as the ratio of the intersection of two sets to the size of their union. In this paper, we use
Pearson’s Correlation Coefficient as the primary similarity measure, which is the most
widely used measure in the field of CF [24].

The similarity between users a and b [Simu(a, b)] and that between items s and t
[Simi(s, t)] are defined by Equations (1) and (2), respectively, where I(a, b) is the intersection
of the items rated by users a and b, and U(s, t) is the intersection of the users that rated
the items s and t; ra and rb are the average ratings given by users a and b, respectively,
and rs and rt are the average ratings received by items s and t, respectively [24–26]. The
denominator and numerator indicate the extent to which the ratings of two users and
items change separately and together, respectively. The extent of change in user ratings
can be calculated by adding up the squared deviations obtained by comparing all ratings
pertaining to I(a, b) with the average rating. Similarly, the extent of change in item ratings
can be calculated by adding up the squared deviations obtained by comparing all ratings
pertaining to U(s, t) with the average rating. The similarity measure is a real number in the
closed interval [−1, 1], whereby a higher value indicates a higher correlation. In general, if
the Pearson’s correlation coefficient is greater than or equal to 0.1, it indicates a positive
correlation. If it is less than −0.1, it indicates negative correlation, and any value in the
open interval (−0.1, 0.1) indicates no correlation.

Simu(a, b) =
∑i∈I(a,b)(ra,i − ra)(rb,i − rb)√

∑i∈I(a,b)(ra,i − ra)
2
√

∑i∈I(a,b)(rb,i − rb)
2

(1)

Simi(s, t) =
∑u∈U(s, t)(ru,s − rs)(ru,t − rt)√

∑u∈U(s,t)(ru,s − rs)
2
√

∑u∈U(s,t)(ru,t − rt)
2

(2)

2.2. Rating Prediction Method

This section describes the method to predict user ratings for items in the neighborhood-
based CF process. The predictions of user ratings for items can be divided into user-based
and item-based predictions. User-based predictions are based on the target user’s ratings
for other items and similar users’ ratings for the target item. The item-based prediction is
based on the ratings that the target item has received from other users and the ratings that
similar items have received from the target user.

User a’s neighbor Nu(a) is defined as the set of k users that have high similarities
with a. Similarly, item s’s neighbor Ni(s) is defined as the set of k items that have high
similarities with s. Equation (3) represents the rating of user a’s user-based prediction for
item s, where ux is the average rating of all item ratings from any given user x. Similarly,
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Equation (4) represents the rating of user a’s item-based prediction for item s, where iy is
the average rating of all user ratings for any given item y.

r̂u
a,s = ua +

∑x∈Nu(a) Simu(a, x)× (rx,s − ux)

∑x∈Nu(a) Simu(a, x)
(3)

r̂i
a,s = is +

∑y∈Ni(s) Simi(s, x)×
(
ra,y − iy

)
∑y∈Ni(s) Simi(s, y)

(4)

The rating for item s predicted by user a [r̂a,s] can be obtained by combining user a’s
user-based and item-based rating predictions for item s [r̂u

a,s] in Equation (3) and [r̂i
a,s] in

Equation (4), respectively, using the parameter λ, as expressed by Equation (5). Here, λ
is a real number in the closed interval [0, 1]. Specifically, λ = 0 and λ = 1 represent the
item-based and user-based predictions, respectively, as the user-based prediction is offset
to zero by the coefficient value λ and the item-based prediction is offset to zero by the
coefficient value (1− λ) [18,19].

r̂a,s = λr̂u
a,s + (1− λ)r̂i

a,s (5)

Recall from Section 1 that if a CF method only relies on the original user–item inter-
action, we call it a pure CF method [3]. Generally, the pure CF method can achieve high
efficiency in recommendation tasks. However, when users rarely express their preferences
for items, it is difficult for pure CF methods to gather the required amount of user prefer-
ence data for the recommendation. In other words, most pure CF methods suffer from poor
recommendation accuracy when the user preference data used in the recommendation
process is sparse. We refer to this problem as a data sparsity problem. In the next section,
we discuss the studies that solved the data sparsity problem using EMDP, AutAI and
AdaM methods.

3. Related Studies

In this section, we review related studies. We can roughly classify these studies into the
following three categories: (1) studies that use the CF method in various fields; (2) studies
that solve the data sparsity problem with EMDP method; and (3) studies that solve the
data sparsity problem with AutAI and AdaM methods.

Due to its simplicity and ease of implementation, the CF-based methods are used
in a variety of recommendation systems to predict the interests of users. For exam-
ple, Musa et al. [4] proposed a CF approach for efficient movie recommendations using
two similarity measures: item–item correlation and item–item adjusted cosine similar-
ity. Cohen et al. [5] proposed a method that improves the efficiency of music recommen-
dations by integrating data collected from the web into user ratings. Logesh et al. [6]
proposed a personalized recommender system that considers users’ activities, behaviors,
and relationships between them in predicting Points of Interest (POIs) travel recommen-
dations. Logesh et al. [7] also proposed integrating user’s contextual information, i.e.,
opinion mining from textual reviews and posts, into personalized recommender systems
to provide efficient recommendations to the tourists. Similar work was also performed
by Zhao et al. [8,9], where the authors proposed a product recommendation system that
considers internal user factors, i.e., user sentimental deviations and the review’s reliability.
Recently, an artificial intelligence-based product recommendation approach, called Neural
Interactive Collaborative Filtering, was proposed by Zou et al. [10]. The authors used an
efficient Q-learning mechanism to solve the cold-start and warm-start recommendation
problems. Chen et al. [11] proposed a personalized recommendation method for online
video learning resources using an association rule mining mechanism to discover helpful
videos for students.

There were several methods to solve the data sparsity problem. For example, Ma et al. [11]
proposed an Effective Missing Data Prediction (EMDP) method, which prioritizes high-



Appl. Sci. 2021, 11, 3719 5 of 15

reliability data for imputation and defines imputation data as data with similarity ex-
ceeding the threshold. Here, the similarity is computed using the equation proposed by
Herlocker [27], which is based on the modified Pearson’s Correlation Coefficient. Consid-
ering that the Pearson’s Correlation Coefficient determines similarity based on datasets
of items rated by both users, its reliability decreases if the number of the rated items is
small. Therefore, a higher weight is assigned to larger data size. That is, when the Pear-
son’s Correlation Coefficient values are identical, the data with a larger intersection size is
considered to have a higher similarity. In other words, by adding weight to the similarity
measure in EMDP, we can lower the similarity value obtained from a dataset with a small
number of items rated by both users. Equation (6) for user–user similarity computation
is the result of adding this weight to Equation (1), where |Ia ∩ Ib| is the number of items
rated by both users. In the same manner, the item–item similarity is obtained by adding
this weight to Equation (2), as expressed by Equation (7), where |Us ∩Ut| is the number of
users that rated both items. Here, parameters γ and δ are input values for user similarity
and item similarity, respectively, and the computed similarity value of an item rated by
both users is defined to be reliable only when it is larger than or equal to γ and δ. Ac-
cordingly, when weight is assigned to Sim′u(a, b), the lower value between |Ia ∩ Ib| and
γ is taken as the numerator and is divided by the denominator γ to prevent Sim′u(a, b)
from exceeding 1, as per the basic definition of similarity. The same applies to the weight
of Sim′i(s, t): the lower value between |Us ∩Ut| and δ is taken as the numerator and is
divided by the denominator δ to prevent Sim′i(s, t) from exceeding 1. For example, in
the case of the parameter value γ = 10, if the number of items rated by both users is 10
or more, then Sim′u(a, b) = Simu(a, b). If the number of items rated by both users is 5,
then Sim′u(a, b) = 1

2 Simu(a, b), and half of the computed similarity value is taken. As the
value of γ increases, the number of items rated by both users exerts higher influence on
the similarity value, whereby it is always equal to or lower than the value computed with
Equation (1). Similarly, as the value of δ increases, the number of users that rated both
items exerts higher influence on the similarity value, whereby it is always equal to or lower
than the value computed from Equation (2).

Sim′u(a, b) =
Min(|Ia ∩ Ib|, γ)

γ
× Simu(a, b) (6)

Sim′i(s, t) =
Min(|Us ∩Ut|, δ)

δ
× Simi(s, t) (7)

There were several methods that solved a data sparsity problem based on EMDP in
various fields. For example, Özbal et al. [13] proposed to solve the data sparsity problem
in movie recommendation applications by combining EMDP and Local and Global User
Similarity (LU&GU) [28] methods. These approaches were improved by integrating the
content information of the movies (e.g., cast, director, genre) during the item similarity
calculations. The experiment results showed that the overall system performance im-
proved when the proposed method was augmented with content information. Agarwal
and Bharadwaj et al. [14] proposed a CF method for friend recommendation based on
their interaction intensity and adaptive user similarity in social networks. To solve the
data sparsity problem, the authors incorporated EMDP into the proposed method. As a
result, the proposed method with EMDP outperformed its variants on a sparse dataset.
Shin et al. [15] proposed a content-aware CF for expert recommendation in social networks.
The proposed method uses a new cosine similarity measure, where a weight is assigned for
the local similarities among users. By using this similarity measure, the authors predicted
missing values based on EMDP and formed a preference score prediction table, where
experts are selected with the highest scores. The experiment results demonstrated that the
proposed method outperforms the traditional content-aware CF method. Inan et al. [16]
proposed to combine EMDP with a method proposed by Özbal et al. [13] to achieve more
efficient movie recommendations. Similar to [13], the proposed method was integrated
with content information of the movies during the item similarity calculations. In addition,
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the authors used a goal programming technique to calculate the movie feature’s similarity
scores. The experiment results of the proposed method showed that it outperforms existing
methods when it uses content information with a goal programming technique. The main
advantage of EMDP is that it can avoid poor imputation (no or insufficient amount of
imputed data) because it imputes all the data whose similarities with the active user and
active item exceed the thresholds. However, the main disadvantage of EMDP is a relatively
poor accuracy because it gives the same value to all missing data [17].

According to a study by Cover [29] on the nearest neighbor rule, the nearest neighbor
of a data point in an infinite training dataset shares over 50% of the information with that
data point. In other words, when predicting a value, neighboring data have information
values of different importance. Ren et al. [18,19] proposed the Auto-Adaptive Imputation
(AutAI) method, which considers neighborhood information when imputing missing data.
AutAI imputes data of high importance by focusing on data rated by both users. In AutAI,
the data to be imputed are defined as the dataset combining the items rated by one or more
neighboring users among the items rated by the active user and the users who rated one
or more neighboring items among the users who rated the active item. The main feature
of AutAI is that it can operate with any similarity measure, and it outperforms existing
neighborhood-based CF approaches. Ren et al. [20,21] also proposed an improvement of the
AutAI method, which is called an Adaptive Maximum imputation (AdaM). The main idea
of the AdaM is to maximize the imputation advantage and minimize the imputation error.
To achieve the maximum imputation, the authors proposed determining the imputation
area from both the user and the item perspectives. As a result, there is at least one real rating
guaranteed for each item in the determined imputation area so as to avoid misleading
analysis caused by the imputation error. The experiment results showed that the AdaM
outperforms the existing methods owing to more accurate neighbor identification. As the
data imputed by AutAI and AdaM are highly important data containing most information
on the prediction data, high accuracy can be maintained even with a small number of
imputed missing data. However, the main limitation of these approaches is the risk of
poor imputation, leading to no or insufficient imputed data in some cases, where the active
user’s rating history is much smaller than those of other users [22,23].

4. k-Recursive Reliability-Based Imputation (k-RRI)

This section is devoted to a new imputation method, k-RRI. We first describe k-RRI
in Section 4.1. Then, we explain a stepwise reliability-based threshold reset process of the
proposed method in Section 4.2. Lastly, we analyze a computational complexity of k-RRI
and compare it with those of EMDP and AutAI in Section 4.3.

4.1. k-RRI

In this paper, we propose a k-RRI, which is a recursive imputation method for CF
based on reliability. We first define the related key terms used in this paper as follows:

• Active user: the user of the data targeted for prediction.
• Active item: the item of the data targeted for prediction.
• Key neighbors: a set of data necessary for predicting the active user and the active

item. Each imputation algorithm will define the key neighbors and impute the missing
data, i.e., unrated data, among them.

• High-reliability data: a set of data whose similarity with the active user and active
item exceeds the given threshold.

According to the prerequisite for neighborhood-based CF defined by [17], the similar
nearest neighbor has the most information regarding the data to be predicted. Accordingly,
k-RRI is implemented according to the criteria defined below.

• Definition 1: Missing data are selectively imputed in a stepwise and decreasing order
of reliability.

• Definition 2: Data imputed in the preceding step can be used for imputation in the
succeeding step.
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• Definition 3: The threshold cutoff value decreases as the algorithm progresses. That is,
the reliability-based threshold cutoff criteria are strict in earlier recursive steps and
become increasingly relaxed toward the end.

Similarity is determined by the Herlocker’s modified similarity computation equa-
tion [27] presented in Section 2, whereby the number of data unrated by both users is
included in the weight. In other words, in the case of the identical Pearson’s Correlation
Coefficient, the larger the size of the unrated data subset, the higher the similarity. In k-RRI,
the user–user similarity is defined by Equation (8), which is a modification of Equation (1)
by incorporating a weight factor. The purpose of adding weight to the similarity measure
in k-RRI is to lower the similarity value obtained in cases where there are only a small
number of data rated or unrated by both users. In Equation (8),

∣∣Ic
a ∩ Ic

b

∣∣ is the number of
items that have not been rated by both users. In the same manner, the item–item similarity
is defined by Equation (9), which is a modification of Equation (2) by adding a weight
factor. In Equation (9), |Uc

s ∩Uc
t | is the number of the users who have not rated both items.

Parameters γI and γIc are required as input values when computing user similarity with
the k-RRI algorithm, whereby a user similarity value is considered reliable only if the
number of the data rated by both users is higher than or equal to γI and the number of the
data unrated by both users is higher than or equal to γIc . Thus, when assigning weight
to Sim′u(a, b), the lower values between |Ia ∩ Ib| and γI and between

∣∣Ic
a ∩ Ic

b

∣∣ and γIc are
taken as the numerator and divided by the product of γI and γIc to prevent Sim′u(a, b)
from exceeding 1, as per the basic definition of similarity. Similarly, a user similarity value
is considered reliable only if the number of data rated by both users is higher than or
equal to δU and the number of the data unrated by both users is higher than or equal to
δUc . Accordingly, when assigning weight to Sim′u(s, t), the lower values between |Us ∩Ut|
and δU and between |Uc

s ∩Uc
t | and δUc are taken as the numerator and divided by the

product of δU and δUc to prevent Sim′u(s, t) from exceeding 1. For example, in the case of
the parameter values γI = 10 and γIc = 20, if the number of items rated by both users
is 10 or more and the number of the items unrated by both users is 20 or more, then
Sim′u(a, b) = Simu(a, b). However, if the number of items unrated by both users is 5 but
the number of the items rated by both users is 10, then Sim′i(s, t) = 1

4 Simi(s, t), where
one-quarter of the computed similarity value is taken. As the value of γI increases, the
number of items rated by both users exerts a higher influence on the similarity value. In
addition, as the value of γIc increases, the number of items unrated by both users exerts a
higher influence on the similarity value, whereby it is always equal to or lower than the
value computed from Equation (1). Similarly, as the value of δU increases, the number
of users that rated both items exerts higher influence on the similarity value, and as the
value of δUc increases, the number of users that have not rated both items exerts a higher
influence on the similarity value, whereby it is always equal to or lower than the value
computed from Equation (2).

Sim′u(a, b) =
Min(|Ia ∩ Ib|, γI)

γI
×

Min
(∣∣Ic

a ∩ Ic
b

∣∣, γIc
)

γIc
× Simu(a, b) (8)

Sim′i(s, t) =
Min(|Us ∩Ut|, δU)

δU
× Min(|Uc

s ∩Uc
t |, δUc)

δUc
× Simi(s, t) (9)

The basic steps of the k-RRI are described in Algorithm 1. The input values for
Algorithm 1 are the user–item rating matrix, user–item similarity set, active user and active
item for prediction, number of recursive steps, and final user and item similarity thresholds.
The output is the imputed matrix for the active user and the active item. In Algorithm 1, the
final user similarity threshold ηk is used when selecting a high-reliability user set. The user
similarity threshold at any given step [ηr] is a value between 1 (i.e., maximum similarity
value) and ηk. Similarly, the final item similarity threshold θk is used when selecting a
high-reliability item set, and the item similarity threshold at any given step [θr] is a value
between 1 (i.e., maximum similarity value) and θk. ηk and θk indicate any real number in
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the closed interval [0, 1], which is the similarity range. In the first line, the imputed matrix
is initialized with the user–item rating matrix. Lines 2–13 represent the process of imputing
missing data according to the threshold cutoff value, which is reset at each iteration while
performing the k recursive steps. As the algorithm progresses, the threshold cutoff values
are decreased. In the third line, the current user and item similarity thresholds (ηr and θr,
respectively) are set. The reliability-based threshold reset process for determining ηr and θr
is explained in detail in Section 4.2. The sets of users Ua and items Is satisfying the current
threshold values are generated in lines 4 and 5, respectively. In line 6, the key neighbor
set Na,s is selected, combining the elements of Ua and Is. That is, Na,s is the set of data
containing information necessary for predicting user ua’s rating of item is. In lines 7–12, the
imputed matrix is filled by imputing the missing values among the elements of Na,s. r̂a′s′

in the ninth line is calculated using the rating prediction method described in Section 2.2.

Algorithm 1: k-RRI.

Input: the user–item rating matrixR.
the similarity set sim′.
the active user ua. the active item is.
the number of steps k.
the user’s final similarity threshold ηk.
the item’s final similarity threshold θk.

Output: the imputed matrixR′.
1: R′ ← R ; // initialize the imputed matrix
2: for r ← 1 until k do
3: calculate ηr, θr;
4: Ua ← {ua′ | ηr < sim′(ua′ , ua) ≤ ηr−1, ua′ 6= ua} ;
5: Is ← {is′ | θr < sim′(is′ , is) ≤ θr−1, is′ 6= is} ;
6: Na,s ← {ra′s′ |ua′ ∈ Ua ∨ is′ ∈ Ts} ;
7: for each ra′s′ ∈ Na,s do
8: if ra′s′ = ∅ then
9: calculate r̂a′s′ ;
10: R′(ua′ , is′ )← r̂a′s′ ;
11: end if
12: end for
13: end for

Example. Figures 1 and 2 show the user and item similarity matrices, respectively,
where u1 and i1 are the active user and active item, respectively, which are computed by
the similarity measure employed by the k-RRI algorithm. Let the number of k-RRI steps be
set at k = 3 and the user threshold values in steps 1–3 be η1 = 0.3, η2 = 0.2, and η3 = 0.1,
respectively. Then, the set of users U1 selected in step 1 is {u4} because its similarity with
the active user u1 exceeds threshold η1 = 0.3. Similarly, let the item threshold values in
steps 1–3 be θ1 = 0.6, θ2 = 0.3, and θ3 = 0.1. Then, the set of the items I1 selected in step 1
is {i5} because its similarity with the active item i1 exceeds θ1 = 0.6. Accordingly, the
ratings that {u4} gives to all items and the ratings that {i5} receives from all users become
the set of key neighbors N1,1 in step 1. The missing data to be imputed are the unrated
values among the key neighbors (the parts marked in Figure 3).

On the other hand, the set of users U1 selected in step 2 is {u9}, whose similarity with
the active user u1 is between threshold η2 = 0.2 and η1 = 0.3, and the set of items I1 is
{i10}, whose similarity with the active item i1 is between threshold θ2 = 0.3 and θ1 = 0.6.
Accordingly, the ratings that {u9} gives to all items and the ratings that {i10} receives from
all users become the set of key neighbors N1,1 in step 2. The missing data to be imputed
are the unrated values among the key neighbors (the parts marked in Figure 4).
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Lastly, the set of users U1 selected in step 3 is ∅, whose similarity with the active
user u1 is between threshold η3 = 0.1 and η2 = 0.2, and the set of items I1 is {i4}, whose
similarity with the active item i1 is between threshold θ3 = 0.1 and θ2 = 0.3. Accordingly,
the ratings that {i4} receives from all users become the set of key neighbors N1,1 in step 3,
and the missing data to be imputed are the unrated values among the key neighbors (the
parts marked in Figure 5).
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4.2. Threshold Reset Process

Unlike EMDP and AutAI, k-RRI uses a recursive algorithm with stepwise iteration,
whereby the final imputation matrix can vary depending on the recursive structure. The
imputation error can be defined as an error incurred by imputing an empty dataset with
an arbitrary value. In k-RRI, missing data are imputed in a given step based on the actual
rating histories and the virtual data imputed in the preceding step. Therefore, not only
does the imputation error affect the step concerned, but it is also carried forward to the
next step, as expressed by Equation (10), where k is the number of recursive steps, εr is the
imputation error incurred in the r-th step, and αi and βi are constants.

ε2 = α1ε1 + β1ε3 = α2ε2 + β2 = α2(α1ε1 + β1) + β2 = α1α2ε1 + β1β2
...εk = α1α2 · · · ε1 + β1β2 · · · βk (10)

Owing to the recursive nature of the proposed algorithm, the propagation of imputa-
tion errors is inevitable; however, minimization of initial imputation errors can prevent
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much of the error propagation. In each step, care should be taken to select and impute
only high-reliability data. Equations (11) and (12) represent the user and item similarity
thresholds, respectively, of the reliability-based threshold cutoff values in the r-th step,
where η and θ denote the final user and item similarity thresholds, respectively. As the
algorithm progresses, ηr and θr decrease, while the value of r increases. For example, let
η = 0.7 and k = 3; then, the threshold will have values as follows: η1 = 0.93, η2 = 0.85, and
η3 = 0.70, whereby the deviation increases from−0.08 between η1 and η2 to−0.15 between
η2 and η3. Therefore, by setting strict cutoff criteria in earlier steps, reliable data are left as
imputation candidate data in later steps. Further into the algorithmic process, the cutoff
criterion becomes increasingly relaxed. This threshold cutoff reset method contributes
to minimizing the propagation imputation errors that occur when imputing data from
low-reliability candidate data.

ηr = 1− (1− η)× 2r

2k (11)

θr = 1− (1− θ)× 2r

2k (12)

4.3. Comparison of Computational Complexity

The purpose of this study is to enhance prediction accuracy; however, it is important
to note that the dependence of computational complexity on the system size is also a
significant factor. The benefit obtained by high prediction accuracy can be offset by a higher
computational complexity, rendering the algorithm uncompetitive in a practical setting.
Therefore, we conducted a theoretical comparison of EMDP, AutAI, and k-RRI with a focus
on the computational complexity.

Three imputation algorithms presented in this paper, namely EMDP, AutAI, and
k-RRI, can generally be divided into the following process parts:

• Key neighbor selection stage: selection of the key neighbors of interest.
• Missing data imputation stage [30]: identification of the missing data from the key

neighbors and implementation of missing data imputation.

Equations (13)–(15) represent the computational complexities of EMDP, AutAI, and k-
RRI, respectively, where M and N denote the total numbers of users and items, respectively.

timeEMDP = timekey neighbor selection + timemissing data imputation
= O(MN) + O(NEMDP)
= O(MN +NEMDP)
= O(MN)

(13)

timeAutAI = timekey neighbor selection + timemissing data imputation
= O(MN) + O(NAutAI)
= O(MN +NAutAI)
= O(MN)

(14)

timek−RRI =
(

timekey neighbor selection + timemissing data imputation

)
× k

=
(

O
(

1
2 M2 + 1

2 N2 + MN
)
+ O(Nk−RRI)

)
× k

= O
(

k
(

1
2 M2 + 1

2 N2 + MN
))

+ O(kNk−RRI)

= O
(

M2 + N2 + MN
)
+ O(Nk−RRI)

= O
(
max(M2, N2)) + O(Nk−RRI)

= O
(
max(M2, N2)+Nk−RRI)

= O
(
max(M2, N2))

(15)

In the key neighbor selection stage, all elements of the user–item rating matrix should
be identified, of which the computational complexity is O(MN). EMDP and AutAI im-
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plement this stage once, and k-RRI repeats it k times at each iteration, with the user–item
rating data changing every time. Changes in the user–item rating data entail changes in the
user and item similarities. Therefore, k-RRI updates the similarity matrix at every iteration.
Here, the time required for updating the user similarity matrix is O

(
1
2 M2

)
and for the item

similarity matrix is O
(

1
2 N2

)
. The number of recursive steps k is a negligibly small constant

irrespective of the numbers of users and items; thus, it can be disregarded in terms of big-O
notation. Accordingly, the computational complexity of k-RRI in the key neighbor selection
stage is O

(
k
(

1
2 M2 + 1

2 N2 + MN
))

= O
(
max(M2, N2)

)
.

In the missing data imputation stage, all key neighbors are identified. Considering
the characteristics of each algorithm, the numbers of key neighbors can be expressed
by NAutAI ≤ NEMDP ≈ Nk−RRI � MN. That is, the computational complexity in the
imputation stage is O(NAutAI), O(NEMDP), and O(Nk−RRI), with the maximum time
requirement being O(MN). Given that the key neighbor selection stage is the dominant
part in all three algorithms, the overall computational complexity is O(MN) for EMDP
and AutAI, and O

(
max(M2, N2)) for k-RRI. For similar user and item data sizes, the

overall computational complexity of all three algorithms is O(MN). This suggests that in
a system with similar user and item data sizes, only prediction accuracy plays a role in
algorithm selection.

5. Performance Evaluation

This section describes a performance comparison of the proposed k-RRI with EMDP
and AutAI, which are two conventional imputation algorithms. Their performance accura-
cies are experimentally tested with a focus on prediction accuracy.

5.1. Experimental Setup

We used the MovieLens 1M Dataset provided by the University of Minnesota, which
is widely used to test the performance of recommender systems. This dataset contains one
million ratings from 6000 users on 4000 items. For the purpose of performance testing,
we extracted 500 users from the MovieLens 1M Dataset, generated a training dataset, and
labeled it M500. The test dataset was generated by extracting another 500 users. To assume
data sparsity conditions, items rated by the test dataset users were provided in limited
numbers of 10, 20, and 30, which are labeled as Given10, Given20, and Given30. This is an
experimental setup mostly used to test the performance of recommender systems.

The performance of an imputation algorithm should be evaluated by the final ratings
predicted by the algorithm rather than its interim products. To maintain consistency with
other studies, we applied the Mean Absolute Error (MAE) as a metric to compare the
algorithms [31,32]. Equation (16) is an equation for calculating MAE, where ras and r̂as
are the real and predicted ratings, respectively, by user ua on item ts, X is the test dataset,
and |X| is the size of X. The lower the value of MAE, the higher the prediction accuracy.
Its value can be any real number ranging from 0 to 5 as the MovieLens 1M Dataset uses
ratings from 1 to 5.

MAE =
∑(a, s)∈X|ras − r̂as|

|X| . (16)

Prior to the implementation of the imputation algorithm, the values of the parameters
provided by each imputation algorithm must be defined. To avoid research bias problems,
we employed the values used in other studies [12]. More specifically, the parameters of
EMDP and k-RRI were set at λ = 0.7, γ = 30, δ = 25, and η = θ = 0.4, and those of AutAI
were set at λ = 0.4 and k = 10.

5.2. Experimental Results

Figure 6 shows the results of comparing the prediction accuracies of the EMDP,
AutAI, and k-RRI algorithms for the training datasets M500Given10, M500Given20, and
M500Given30.
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From the graph, we can observe that the MAE scores of EMDP and AutAI for the
M500Given10 dataset were 0.826 and 0.823, respectively, indicating that AutAI slightly
outperformed EMDP. For the M500Given10 dataset, the highest accuracy was shown by
the proposed method k-RRI, outperforming EMDP by 11.3% and AutAI by 10.9%. On the
other hand, the MAE scores of EMDP and AutAI for the M500Given20 dataset were 0.776
and 0.836, respectively, indicating that EMDP outperformed AutAI. For M500Given20, the
highest accuracy was shown by the proposed method k-RRI, outperforming EMDP by 5.6%
and AutAI by 13.8%. Lastly, the MAE scores of EMDP and AutAI for M500Given30 dataset
were 0.820 and 0.804, respectively, indicating that AutAI slightly outperformed EMDP. As
in the previous two cases, the highest accuracy was shown by k-RRI, outperforming EMDP
by 12.2% and AutAI by 10.0%.

Figure 7 demonstrates the results of comparing the prediction accuracies of k-RRI as
the number of k values varies. From the graph, we can observe that the highest accuracy
can be obtained when the number of k values is set to k = 8 for the M500Given10 and
M500Given20 datasets, and k = 6 for the M500Given30 dataset. It is important to note that
the prediction accuracy of k-RRI varied depending on the number of recursive steps with
standard deviation (SD), which is a measure of the variation or dispersion of a dataset.
The SD exhibited values of 0.0047, 0.0048, and 0.0022 at Given10, Given20, and Given30,
respectively. The SD may be significantly high or negligibly low depending on the system’s
characteristics. From this perspective, k = 2 is recommended for a system less sensitive to
prediction accuracy in terms of computational time. For a system sensitive to prediction
accuracy, it is recommended that the value of k should be optimized according to the
system under consideration.
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6. Conclusions

In this paper, we have proposed an effective imputation method for missing data
to improve the poor recommendation accuracy due to data sparsity in CF. The proposed
method, k-RRI, is a recursive imputation method based on reliability. We have also pro-
posed a new similarity measure that weights common interests and indifferences between
users and items. As a result, the proposed k-RRI has achieved the following advantages
over existing methods: (1) poor imputation can be avoided because the threshold values
are adjusted depending on the reliability level required in each step; (2) the importance of
missing data is reflected in imputation because priority is given to the nearest neighbors
with important information on the data to be predicted; and (3) a sufficient number of
candidate data for imputation can be ensured because the data imputed in the preceding
step are used in each step. We compared the prediction accuracy of k-RRI with EMDP and
AutAI through the experiments, using the benchmark dataset, MovieLens. Experimental
results show that the prediction accuracy of k-RRI outperforms existing methods by 13.8%.

As for the future work, we are planning to improve the processing time of k-RRI
by developing an efficient neighbor searching method according to the reliability. We
are also planning to study an algorithm that automatically determines parameters such
as the number of steps, the similarity threshold, and so on. Furthermore, we are plan-
ning to incorporate the trust constraint into the proposed method in the future work as
trust-awareness can also alleviate the data sparsity problem and further improve the ac-
curacy of our method. Lastly, we are planning to apply the proposed method in various
fields. For example, airplane services can greatly benefit from the proposed method con-
sidering that achieving high recommendation accuracy in airplane services is essential to
satisfy customers.
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