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Abstract: This paper presents a crossed rib diffuser (CRD) as an effective tool for room acoustic
control. We performed an experimental investigation of its effectiveness using a specimen manufac-
tured for this trial. The CRD is constructed by overlapping two one-dimensional (1D) periodic rib
diffusers with different specifications so that they are crossed at non-right angles. The CRD achieves
a higher scattering coefficient than 1D periodic rib diffusers in a wide band while maintaining the
simple and friendly design of 1D periodic rib diffusers applicable to various architectural spaces.
Moreover, inserting an absorbing layer between upper and lower ribs of the CRD, (CRD-A) yields a
high broadband absorption coefficient. We first evaluated the random-incidence scattering coefficient
of CRD using a 1/5 scaled model in comparison with those of 1D periodic diffusers assessed with a
numerical method. Then, absorption coefficients for the CRD and the CRD-A were measured using
a reverberation room. Subsequently, an experiment on a small meeting room with a 1D periodic
rib diffuser, the CRD and the CRD-A was conducted to present performance of the CRD in room
acoustic control. Impulse response measurements and evaluations of reverberation parameters (T20

and EDT) and speech clarity (D50) were conducted. Additionally, we present differences in structure
of reflected sounds found for the flat wall, the CRD and the CRD-A visually using a four-channel
sound field microphone.

Keywords: acoustic diffuser; architectural acoustic; meeting room; reverberation; room acoustic
control; scattering coefficient; speech clarity

1. Introduction

Along with acoustic absorbers, acoustic diffusers are also classical tools for room
acoustic control. To evaluate the reflective properties of a diffuser’s two indexes, the diffu-
sion coefficient [1,2] and the scattering coefficient [3–5] were proposed and standardized.
The diffusion coefficient characterizes the uniformity of a polar response of sounds reflected
from a diffuser, thereby presenting the quality of the diffuser. However, the scattering coef-
ficient represents a ratio of non-specularly reflected sounds to total reflected sounds, which
which is useful for theoretical and numerical room acoustic modeling [6,7]. Details of the
advantages and difficulties related to the two indexes were reviewed in [8,9]. This report
specifically describes only the scattering coefficient as a reflective property of diffusers
because of its applicability to room acoustic modeling and because of its ease in measuring
a random-incidence value using a scaled reverberation room. Diffusers have been applied
mostly to acoustic control and elimination of flutter echoes in music spaces such as concert
halls, rehearsal rooms and recording studios because of their feature of reducing harmful
reflected sounds without excessive energy loss [10]. However, the acoustic diffuser is also
attractive for non-performance spaces because it has flexibility in terms of design and
constituent materials. Some works used acoustic diffusers in non-performance spaces such
as meeting rooms [11,12] and classrooms [13,14].
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A one-dimensional (1D) periodic rib-type acoustic diffuser is the simplest and most
widely used acoustic diffuser. The 1D periodic rib diffuser is constructed with a pattern of
ribs and voids, presenting a simple and friendly design well suited to various architectural
spaces. However, its simple periodic structure simultaneously produces strong sound
incident-angle dependence [15]; i.e., a frequency bandwidth acquiring high scattering
performance is narrow like a peak of sound absorption coefficient characteristic of a simple
Helmholtz resonator without porous material. Consequently, to use the 1D periodic rib
diffuser effectively for room acoustic control, more elaborate investigations related to
characteristics of room acoustics, rib configurations and locations at which diffusers are set
are needed for comparisons with diffusers with higher scattering coefficients in wide-band
applications. The present study was conducted to increase the acoustical performance of a
1D periodic rib diffuser while maintaining its convenient design.

The scattering performance of a 1D periodic rib diffuser is likely to be improved with
ease by overlapping two 1D periodic rib diffusers with different configurations so that
they are mutually crossing at non-right angles, because a superposition of two periodic
rib structures yields two-dimensional and more complex periodic structures than a 1D
periodic rib diffuser. The crossed rib diffuser maintains the simple and intimate design of
a 1D periodic rib diffuser. Moreover, it is easier to manufacture than high-performance
diffusers such as [16,17]. Additionally, inserting a thin absorbing layer between the upper
and lower ribs can transform the crossed rib diffuser into a broadband absorber like
a quadratic residue diffuser with a fabric cover [18], extending the applicability of the
crossed rib diffuser. From those features, some versatile activity of the crossed rib diffuser
in architectural spaces is expected, but no study has examined acoustical properties of such
crossed rib diffusers or their applications in rooms.

This paper describes a manufactured crossed rib diffuser (CRD) and an experimental
investigation of its applicability to room acoustic control. First, the CRD’s scattering
performance was evaluated using a 1/5 scale specimen and a 1/5 scale reverberation
room, where random-incidence scattering coefficients were compared for CRD and 1D
periodic rib diffusers. Subsequently, diffuse-field absorption coefficients of the CRD, a CRD
with an absorbing layer (CRD-A) and 1D periodic rib diffusers composing the CRD were
measured in a reverberation room with 1/1 scale specimens. Finally, an experiment was
conducted in a small meeting room with a 1D periodic rib diffuser, the CRD and the CRD-A
to demonstrate the applicability of the crossed rib structure for room acoustic control.
There impulse response measurements and evaluations of room acoustic parameters were
conducted. Additionally, we present structural differences of reflected sounds for a flat
wall, the CRD and the CRD-A visually using a four-channel sound field microphone.
The present paper is organized as follows. Section 2 first introduces the manufactured
specimen’s configuration. Then, the CRD’s scattering and absorption performance is
presented. Section 3 presents an experiment to demonstrate the CRD and the CRD-A
effectiveness for acoustic improvement. Section 4 concludes by presenting findings from
this study.

2. Specification and Acoustic Properties of CRD

A CRD consists of two overlapping 1D periodic rib diffusers crossed at non-right
angles. Herein, the two 1D periodic rib diffusers constituting the CRD are designated as R-1
and R-2. R-1 and R-2 were manufactured using the same square pieces of wood with cross-
sectional areas of 21 mm × 21 mm. The period lengths of R-1 and R-2 were, respectively,
84 and 42 mm. Figure 1 presents the cross-sections of R-1 and R-2. For this study, CRD was
manufactured by superimposing R-2 on top of R-1 so that the periodic directions intersected
at 30◦. Photographs of the specimens of R-1 and R-2 and the their overlain CRD are shown
in Figure 2. The single specimen size is 525 mm × 525 mm. For a later experiment, plural
specimens were installed onto surfaces of room walls. The manufactured CRD was a trial
production. The geometrical specifications were not optimized. However, the evaluation of
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material acoustic properties and the experiment show the better performance of the CRD
than the 1D periodic rib diffusers.

Figure 1. Cross-sections of R-1 (Upper) and R-2 (Lower).

Figure 2. Manufactured samples: R-1 (Left); R-2 (Center); and crossed rib diffuser (Right).

2.1. Scattering Characteristics

We evaluated the random-incidence scattering coefficients of the fabricated CRD and
compared the obtained results with those for R-1, R-2, a two-stacked R-1 (R-1-W) and a
two-stacked R-2 (R-2-W). As the CRD was a diffuser having a two-dimensional structure,
the scattering coefficient was measured using a 1/5 scaled reverberation room, in which
the 1/5 scaled test specimen was placed on wooden circular base. The use of a scale model
for the scattering coefficient is recommended in [9]. Measurements for random-incidence
scattering coefficients were conducted in accordance with ISO 17497-1 [5] and Sakuma and
Lee [19]. The reverberation room’s volume and the circular base diameter were 212 m3 and
3.75 m, respectively, at 1/1 scale. In fact, the 1/5 specimen of CRD was constructed using
square members with 5 mm edge length. Additionally, the respective period lengths of R-1
and R-2 were 1 and 20 mm because of the availability of square members. The 1/5 model
of the crossed rib diffuser located in the 1/5 reverberation room is shown in Figure 3. For
impulse response measurements in the 1/5 reverberation room, two source points and
three receiver points were set up. A swept-sine signal with signal length of 1.365 s was
used as a sound source signal. A rotation period was set to 162 s/rev. To measure the
reverberation time in the rotating condition, we used the continuous method wherein
119 signals were emitted during the circular table rotations. To reduce the edge diffraction
effects, the edge of the circular base was covered with a 1-mm-thick plastic plate.

The random-incidence scattering coefficients of 1D periodic rib diffusers were cal-
culated using AMFG Reflex [20], where the correlation scattering coefficient proposed by
Mommertz [4] was evaluated using the two-dimensional boundary element method. To
reduce the effect of edge diffraction, each 1D periodic rib diffuser was modeled with
11 periods. Though the theoretical background of the correlation scattering coefficient is
different from that of the reverberation room method, with random-incidence, the corre-
lation scattering coefficient is theoretically nearly equivalent to the measured scattering
coefficient in the reverberation room [21].
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Figure 3. 1/5 scale sample of CRD surrounded with a plastic border for scattering coeffi-
cient measurement.

Figure 4 presents a comparison of random-incidence scattering coefficients of various
rib-type diffusers. R-1 and R-1-W, respectively, showed peaks at 2.5 kHz and 3.15 kHz.
However, they also present large declines before and after the peaks, leading to a narrow
frequency band with high scattering coefficient, which is a typical shortcoming of 1D
periodic rib diffusers. R-2 shows the low scattering coefficient in broadband. R-2-W
presents the peak of scattering coefficient at 1.25 kHz, but the peak value is smaller than 0.4.
The CRD shows an increase in the scattering coefficient with frequency. Additionally, the
CRD scattering coefficient has a peak at 2.5 kHz and a dip at 3.15 kHz, derived from the
structural property of R-1, the lower part of CRD. However, the declines in the scattering
coefficient before and after the peak were reduced more than those of R-1 and R-1-W. This
result demonstrates that the two-stage crossed structure of CRD overcomes the shortcoming
of 1D periodic rib diffusers, engendering a higher scattering coefficient in a wide band.

Figure 4. Random-incidence scattering coefficients of various 1D periodic rib diffusers (R-1, R-2,
R-1-W and R-2-W) and the CRD.

2.2. Absorption Characteristics

This subsection evaluates diffuse field absorption coefficients for R-1, R-2 and the CRD.
Measurements were conducted in a reverberation room of 212 m3 (Technical Research
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Institute, Hazama Ando Corp.) with a projected surface area of the test specimens of 10 m2.
As a sound source signal, the swept-sine signal of 30 s signal length was used. Other
settings were in accordance with JIS A 1409 (ISO 354 [22] compatible). Here, to address
the potential for transforming the CRD to a broadband absorber by inserting a sound-
absorbing layer between the upper and lower ribs, we also manufactured a CRD with a
sound-absorbing layer, CRD-A. Then its sound absorption performance was measured.
The inserted sound-absorbing layer was a 0.4 mm thick, permeable, high-density polyester
fabric [23]. Figure 5 shows the status of laying a sound-absorbing layer on R-1 (Upper) and
of the sound absorption measurement of the CRD-A. As a reference, a statistical sound
absorption coefficient of the sound-absorbing layer with a 21 mm air layer was calculated
using a theoretical model for a single-leaf permeable membrane sound absorber [24]. As
shown in [23], the theoretical model can accurately predict the absorption performance of
a thin porous layer with a rigid-backed air cavity. As the ribs behind the sound-absorbing
layer can play the role of a honeycomb structure [25], we calculated the statistical sound
absorption coefficient of a single-leaf permeable membrane absorber with two assumptions
for wave propagation in the air layer, i.e., the extended reaction (ER) and the local reaction
(LR). The specific acoustic impedance ratio z of a single-leaf permeable membrane absorber
is calculated using [24]

z =
(ρ0c0

R
+

ρ0c0

iωM
)−1 − i

cos θ
cot(kL cos θ), (1)

where ρ0 and c0 denote air density and the speed of sound, respectively. Therein, R and
M represent the flow resistance and the surface density of the sound-absorbing layer,
respectively. In addition, L and θ are the length of air layer and the sound-incident angle.
ω and k, respectively, denote the angular frequency and the imaginary unit i2 = −1.
The statistical absorption coefficient with ER assumption was calculated by substituting
Equation (1) into the following equation:

αstatistical =

∫ π/2
0 αθ sin θ cos θdθ∫ π/2

0 sin θ cos θdθ
, (2)

with

αθ =
4Re[z] cos θ

(Re[z] cos θ + 1)2 + (Im[z] cos θ)2 . (3)

For this study, we calculated the theoretical absorption coefficients with M = 0.20 kg/m2

and R = 1050 Pa s/m [23]. Additionally, c0 and ρ0 were set to 343.7 m/s and 1.205 kg/m3,
respectively. The statistical absorption coefficient with LR assumption was assessed by
substituting θ = 0 into Equation (1).

Figure 6 presents a comparison of diffuse field absorption coefficients of R-1, R-2, the
CRD and the CRD-A; and the statistical absorption coefficients for a single-leaf perme-
able membrane absorber based on ER and LR assumptions. R-1 had almost no sound
absorption performance, whereas R-2 showed absorption coefficient values of around
0.2 at frequencies higher than 2 kHz, with a gentle peak at 3.15 kHz. The CRD has ab-
sorption coefficients of around 0.2 at frequencies higher than 1 kHz, presenting better
sound absorption performance of the CRD than R-1 and R-2. Furthermore, CRD shows
a peak of the absorption coefficient at 1.6 kHz, which is lower frequency than that of R-2.
The CRD-A had a broadband high absorption coefficient of larger than 0.6 at 800 Hz and
higher, showing that the CRD can be altered to a practical absorber easily. Additionally,
the measured result of CRD-A agreed well with theoretical absorption coefficient with LR
assumption up to a peak frequency of 1.25 kHz. Thereafter, the measured value converged
gradually to the theoretical value with an ER assumption. These results indicate that, for
CRD-A, the ribs behind the absorbing layer play an identical role to that of a honeycomb
structure at low-mid frequencies, resulting a local reacting behavior with a weak sound
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incident angle dependency. Then, the sound incident angle dependency became stronger
with increasing frequency because the wavelength is smaller than the spaces between ribs.

Figure 5. Laying a sound-absorbing layer on R-1 (Upper), and a sound absorption measurement of
the CRD-A (Lower).

Figure 6. Measured absorption coefficients of R-1, R-2, CRD and CRD-A compared with the theoreti-
cal absorption coefficients of a single permeable membrane absorber based on an assumption of an
extended reaction (ER) and a local reaction (LR).
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3. The Experiment Using a Small Meeting Room

This section describes an experiment conducted with R-1, CRD and CRD-A using a
small meeting room. Figure 7 portrays interior views of the small meeting room measured
for this study. The meeting room had a gypsum board ceiling, a tile carpet floor, one
gypsum board wall and three glass walls. A wooden table was placed at the center of
the room with six chairs. Additionally, a wooden shelf was located at the back of the
room. The room had slight sound absorption. Consequently, some flutter echo could
be perceived by hand clapping. The room’s impulse responses without specimens and
with R-1, the CRD and the CRD-A were measured using an omnidirectional microphone.
Then, reverberation parameters (reverberation time T20 and early decay time EDT) and
a speech clarity parameter (definition D50) were compared with each case to examine
CRD and CRD-A effects on the room’s acoustic parameters. Furthermore, sound intensity
measurements were taken using a four-channel sound field microphone to investigate
the structural differences of reflected sounds among a flat wall, the CRD and the CRD-A.
Virtual source locations were visualized, revealing the described incident direction and
intensity of reflected sounds incident to the microphone. To observe the effect of scattering
reflection by the CRD and absorption by the CRD-A, the visualizations were conducted at
2 kHz octave bands because the CRD and the CRD-A represent a high scattering coefficient
and a high absorption coefficient at the frequency band, respectively. As references, the
cases at 500 Hz and 1 kHz octave bands were also visualized in Appendix A.

Figure 7. Interior views of the small meeting room measured for this study.
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3.1. Setup

Two source points (S1 and S2) and four receiving points (R1–R4) were located above
the chair at a height of 1.2 m from the room floor for the impulse response measure-
ments. Figure 8a shows the floor plan of the small meeting room and locations of source
points and receiving points. The receiving points of R2 and R3 were excepted for sources
located respectively at S1 and S2. R-1, CRD and CRD-A were installed on only Surface 1
or both Surface 1 and Surface 2 shown in Figure 8. We took impulse response measure-
ments using an omni-directional microphone in the seven cases presented in Table 1. Both
Surface 1 and Surface 2 consisted of three glass plates separated with sashes. Figure 8b,c
shows cross-sections for Surface 1 and Surface 2. The figures also present cases 1–6 of
specimens of 2 × 3 on each glass plate. Figure 9 presents examples of the statuses of
measurement in case 2 and case 5. We used an omnidirectional microphone (M-23; Earth
Works) and a four-channel sound field microphone (Ambeo VR MIC; Sennheiser Elec-
tronic GmbH and Co. KG), respectively, for impulse response measurements and sound
intensity measurements. The method for measuring sound intensity using the sound field
microphone was well described in [26]. All measurements used the swept-sine signal with
signal length of 17 s as a source signal. In addition, the source signal was emitted by a
unidirectional speaker to simulate the directivity of human vocalization. Other settings
for impulse response measurement were in accordance with the standard [27]. All mea-
surements and calculations of room acoustic parameters and sound intensity vectors were
conducted using IRIS2.0 [28].

Figure 8. (a) Floor plan of the meeting room, including locations of source points and receiver points. (b) A cross-section of
Surface 1, and (c) a cross-section of Surface 2.
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Table 1. Room conditions for impulse response measurements.

Case Location Material

0 – –
1 Surface 1 R-1
2 Surface 1 CRD
3 Surface 1 CRD-A
4 Surface 1 + Surface 2 R-1
5 Surface 1 + Surface 2 CRD
6 Surface 1 + Surface 2 CRD-A

Figure 9. Status of measurements for case 2 (Upper) and case 5 (Lower).

3.2. Comparisons of Room Acoustic Parameters
3.2.1. Reverberation Time T20

Figure 10 presents a comparison of spatially averaged T20s measured in each case. By
installation of acoustic diffusers, cases 1–6 show shorter T20 than case 0 at all frequency
bands. In particular, cases 3 and 6 using highly absorptive CRD-A reduced T20 greatly.
Comparing cases 3 and 6, the reverberation time in case 6 decreased as the frequency
increased; and a dip is apparent at 1 kHz in case 3. This dip occurred because the diffusivity
of sound field at high frequencies lowered in case 3, where the highly absorptive surface
was concentrated on one surface of the room. On the other hand, case 2 showed a T20
shorter than in case 1 at frequencies higher than 1 kHz. Case 5 showed a T20 shorter than
in case 4 at frequencies higher than 500 Hz. Additionally, the T20 of case 2 was shorter than
that of case 4 above 1 kHz. These results clarified that CRD with smaller installation area
can reduce the reverberation time in a wide bandwidth more than R-1.
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Figure 10. Spatially averaged reverberation time, T20s, in a small meeting room for cases 0–6.

3.2.2. Early Decay Time EDT

Figure 11a,b shows a comparison of spatial averaged EDTs measured in each case
and reductions in EDT relative to case 0 normalized with a just noticeable difference
(JND) for each case. Here, we used 5% as the JND, which is from ISO3382-1 [29]. The
normalized difference was used as the measure to present a magnitude of change in the
acoustic parameter before and after the installation of the diffusers. We note that whether
the normalized differences and perceptibility of difference have a linear relation or not
is unclear. Cases 1–6 show shorter EDT at all frequency bands than case 0, as in the T20
results. Case 6, with CRD-A installed onto two surfaces, presents the shortest EDT values
at all frequencies. Case 6 showed reduced EDT compared to that of case 0—more than
4.9 and 10.6 JND, respectively, at 500 Hz and 1 kHz, indicating that CRD-A has potential
for greatly improving reverberation in reflective small meeting rooms. Although case 5,
in which the CRD was installed onto two surfaces, showed a longer EDT than case 3 at
frequencies higher than 500 Hz, case 5 reduced EDT by 2.2 and 4.6 JND at 500 Hz and
1 kHz in comparison with case 0, respectively. This result presents that CRD without a
sound absorbing structure can also improve reverberation in the room more than JND.
Additionally, case 5 showed a shorter EDT of more than 1 JND compared to case 4 at
frequencies higher than 250 Hz, indicating that CRD has better performance than the 1D
periodic diffuser with same installation area for broadband reverberation control.
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Figure 11. Spatially averaged EDTs for a small meeting room for cases 0–6 (Left) and differences
from case 0 normalized by the JND value (5% [29]) (Right).

3.2.3. Definition D50

Figure 12a,b presents comparisons of spatial averaged D50s measured in each case and
increases in D50 relative to case 0 normalized with JND (5 % [29]) for each case. The D50
values increased more than 1 JND in comparison with case 0 in the following conditions:
case 2 at 500 Hz and 4 kHz; case 3 at 500 Hz and higher; case 4 at 4 kHz; case 5 at 500 Hz
and higher; and case 6 at 250 Hz and higher. Case 6 using CRD-A on two surfaces mostly
improved D50 in all cases, augmenting D50 more than 3 JND compared with case 0 at
500 Hz and higher. Additionally, for identical installed area, the CRD enhanced speech
clarity in a wider frequency band than the 1D periodic diffuser.

Figure 12. Spatially averaged D50s in a small meeting room for cases 0–6 (Left) and differences from
case 0 normalized by JND value (5% [29]) (Right).

3.3. Visualization of Reflected Sound Structure

Figure 13 shows visualized virtual source locations in the 2 kHz octave band for the
source to receiver distance of S2 to R2 for cases 0, 5 and 6, where the center of the figure
corresponds to the location of R2. The figure expresses the respective strengths of incident
sounds by circle size and the delay of incident time by the distance of the figure’s center to
the circle’s center. We show sound intensities temporally integrated per 2 ms. Then, sounds
fainter than −40 dB from direct sounds were excluded. Furthermore, assuming the speed of
sound as 340 m/s, a circle 34 m distant from the center represents a reflected sound arriving
0.1 s after the direct sound. In addition, x–y axes in Figure 13 and Figure 8a are identical.
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Therefore, circles on the left side or a lower side from the centers represent sounds reflected,
respectively, by the CRD and the CRD-A in cases 5 and 6. In case 0, the virtual sources
were distributed continuously along both the x axis and the y axis, which led to multiple
reflections between parallel walls, potentially introducing long reverberation and flutter
echo. Case 5 resolved the continuous distribution of virtual sources in case 0. Additionally,
virtual sources on the left side and lower part of the figure decreased, meaning that the CRD
prevented harmful reflected sounds by scattering reflection. This reflection is a mechanism
for the reduction of T20 and EDT, and for an increase of D50 with installation of the CRD.
On the other hand, in case 6, the later virtual sources at all directions, which brought
the continuous distribution observed in case 0 and deterioration of D50, were drastically
reduced. The result indicates that the CRD-A improved the reverberation parameters and
D50 in the room thanks to its high absorption property.

Figure 13. Visualized virtual source locations on the x–y plane for the source to receiver distance of
S2 to R2 in the 2 kHz octave band in case 0 (Left), case 5 (Center) and case 6 (Right).

4. Conclusions

This paper described a crossed ribs diffuser (CRD) as an effective tool for room acoustic
control and explained an experimental investigation of its effectiveness. The CRD was
constructed by overlapping two 1D periodic rib diffusers with different specifications.
We first evaluated the random-incidence scattering coefficients of CRD and 1D periodic
diffusers using a 1/5 scaled model and numerical method. The CRD overcame an important
weak point of 1D periodic diffusers by which high scattering performance was obtained
in a narrow frequency band, achieving a better scattering coefficient than 1D rib diffusers
composing the CRD in a wide band. Then, the absorption performances of manufactured
specimens were compared via sound absorption measurements using a reverberation
room. The CRD showed a diffuse field absorption coefficient of around 0.2 above 1 kHz
without absorptive materials, which was slightly higher than those of 1D periodic diffusers.
Here, we also measured the absorption coefficient of the CRD-A, inserting an absorbing
layer between upper and lower ribs of the CRD, resulting in a porous-type absorption
mechanism and broadband high absorption coefficient. We also presented that the diffuse
field absorption coefficient of CRD-A was predicted accurately using a theoretical model
for the single permeable membrane absorber. Subsequently, we conducted an experiment
as the demonstration of CRD performance. The experimental results demonstrated that
the CRD and the CRD-A improved the reverberation parameters and speech clarity in the
small meeting room more than JND values. In particular, the installation of CRD-A onto
two walls reduced EDT more than 4.8 JND compared with that of a vacant room at 500 Hz
and higher. Furthermore, the CRD was able to improve the reverberation parameters and
speech clarity more than the 1D rib diffuser with same installation area as broadband.
Finally, we visualized structural differences in reflected sounds among those of a flat wall,
the CRD and the CRD-A. The results clarified that CRD controlled acoustics by preventing
multiple reflections between parallel walls with scattering reflection, whereas the CRD-
A improved acoustics by removing later reflected sounds with their highly absorptive
properties. To explore the further applicability of the crossed ribs structures, we are now
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attempting the next experiment with a larger meeting room. In addition, the presented
CRD design was a trial. Thus, the optimum geometrical specification for the CRD is unclear
in this stage. Development of a prediction method for the scattering property of CRD is
also a subject for examination in future studies.
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Appendix A. Visualization of Reflected Sound Structure at 500 Hz and 1 kHz

This appendix presents the visualized virtual source locations at 500 Hz and 1 kHz
octave band in the source to receiver condition of S2 to R2 for cases 0, 5 and 6 as references,
which are shown in Figure A1.

Figure A1. Visualized virtual source locations on the x–y plane for the source to receiver condition
of S2 to R2 at 500 Hz and 1 kHz octave band in the cases of case 0 (Left), case 5 (Center) and case 6
(Right). The upper figures and the lower figures respectively present the cases at 500 Hz and 1 kHz.
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