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Abstract: The magnetic states and the magnetic anisotropy barrier of a transition metal molec-
ular complex, dimolybdenum tetraacetate, are investigated via density functional theory (DFT).
Calculations are performed in the gas phase and on a calcite (10.4) bulk insulating surface, using
the Generalized-Gradient Approximation (GGA)-PBE and the Hubbard-corrected DFT + U and
DFT + U + V functionals. The molecular complex (denoted MoMo) contains two central metallic
molybdenum atoms, embedded in a square cage of acetate groups. Recently, MoMo was observed to
form locally regular networks of immobile molecules on calcite (10.4), at room conditions. As this is
the first example of a metal-coordinated molecule strongly anchored to an insulator surface at room
temperature, we explore here its magnetic properties with the aim to understand whether the system
could be assigned features of a single molecule magnet (SMM) and could represent the basis to
realize stable magnetic networks on insulators. After an introductory review on SMMs, we show that,
while the uncorrected GGA-PBE functional stabilizes MoMo in a nonmagnetic state, the DFT + U
and DFT + U + V approaches stabilize an antiferromagnetic ground state and several meta-stable
ferromagnetic and ferrimagnetic states. Importantly, the energy landscape of magnetic states remains
almost unaltered on the insulating surface. Finally, via a noncollinear magnetic formalism and a
newly introduced algorithm, we calculate the magnetic anisotropy barrier, whose value indicates the
stability of the molecule’s magnetic moment.

Keywords: transition metals; DFT + U; DFT + U + V; single molecule magnets; magnetic anisotropy
energy; antiferromagnetism; ferromagnetism; ferrimagnetism; insulating surfaces; calcite

1. Introduction

Single-molecule magnets (SMMs) have been the objects of intense investigation for
almost three decades. SMMs carry a magnetic moment (M) at the molecular level and
are characterized by a large magnetic relaxation time at low temperatures and by the
presence of a magnetic hysteresis loop. They differ from magnetic nanoparticles where M
results from a 3D arrangement of ≈1000–100,000 atoms (superparamagnets), as SMMs are
comparatively much smaller. Their behaviour also differs from the one of paramagnets,
where the magnetic moments are carried by single atoms. Thus, as they are small and not
3D entities, but still composed of many atoms, SMMs are said to have a superparamagnetic-
like behaviour [1].

From the technological point of view, SMMs would allow us to store high-density
magnetic information at molecular level. Moreover, their magnetic bistability and their
long coherence times [2,3] make them promising for applications in quantum computing,
where SMMs represent a possible strategy for the realization of qubits [4–7]. Further
applications include spintronics [3,7–10], solar cells, molecular transistors [3,9,11] and use
as drug carriers [7].

The first molecule identified as a single magnet was a dodecanuclear Mn complex
exhibiting a magnetic anisotropy energy [1] (MAE), i.e., an energy barrier separating
two anti-parallel magnetic moments along an “easy” magnetization axis [1,3,12] (EMA).
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The complex, commonly denoted [Mn12], was synthesized for the first time [13] more
than ten years before its magnetic properties were discovered [1,7,12]. Later, a variety
of molecules exhibited SMMs features: other polynuclear Mn-based derivatives [7,12],
iron-based molecules (e.g., the [Fe8] complex [14,15] ) and the class of phthalocyanines
containing a single lanthanide ion, known as “double-decker” complexes [9,11,16,17].
The latter were the first examples of mononuclear SMMs (containing only one magnetic ion)
and due to the strong spin-orbit coupling of the 4 f heavy ion, exhibit a very large magnetic
anisotropy (around 80 meV) [7], far larger than the one of [Mn12] (5.2 meV). [1]. More
recently, investigations on complexes containing 5 f actinides have been performed [7,18]
and the challenge to increase the MAE boosted also investigations on single-ion SMMs
containing 3d transition metals (TM) [11,19–22]. Measurements on spin dynamics were
done on molecular rings [10,23] and hydrated sodium salt containing single-ion SMMs [24].

Thermal fluctuations allow these systems to overcome the magnetic energy barrier.
However, thermal-assisted resonant tunnelling also allows to switch between magnetic
ground states, as observed by the presence of steps in SMMs hysteresis loops [25]. As it is
often difficult to observe these steps, a more practical signature of SMM features is given by
the frequency dependence of the magnetic susceptibility imaginary part when employing
external ac magnetic fields [20].

Important challenges for SMMs applications have been the possibility to operate at
blocking temperatures (TB) above liquid-helium and, currently, above the boiling point
of nitrogen (77 K). Recently, a magnetic bistability up to TB = 60 K [26] and even to
TB = 80 K [27] was found in different SMMs containing dysprosium, which represent
dramatic improvements over the TB ≈ 3 K of the archetypal [Mn12] compound. In order to
increase coherence times, encapsulation techniques with endohedral fullerenes have been
employed, with the fullerene cage used to shield external sources of decoherence affecting
the magnetic ions spins [6].

Since the early 2000s, SMMs synthesized in the gas-phase and as bulk materials
have been deposited on substrates [9,11,28], such as Au(111), where SMMs self-assemble,
forming molecular chains on terraces [29]. Examples include on-surface lanthanide and
transition-metal phthalocyanines and porphyrins, which showed a high magnetic tun-
ability by changing ligands, metal-centers, end-groups and underlying substrates [11,28].
These complexes exhibit a high thermal stability and versatility [11], and besides be-
ing synthesised in gas-phase as catalysts [30], they were sandwiched on thin films [31],
deposited on metallic substrates [32] or used as thin films on silicon surfaces [33,34]. Met-
allophthanocyanines magnetic properties on substrates exhibit both a ferromagnetic-like,
collective behaviour (due to exchange interactions) and an individual, SMM behavior with
no collective order [28,35].

Investigations on SMMs include also computational studies, based on CASSCF meth-
ods [36] and DFT [37,38] in the gas-phase, on thin films [39] and on metallic [29,32] and
semiconducting substrates [34,40]. The DFT + U method was used to investigate Mn-
porphyrins on ferromagnetic substrates [41]. First-principles methods, based on wavefunc-
tions and density functionals were also reviewed [38,42].

A relevant issue is that SMMs, when deposited on conductive nonmagnetic substrates,
might loose their magnetic properties, making their magnetic remanence vanishingly
small and exhibiting narrow hysteresis loops [43]. In general, the magnetization and the
hysteresis of a molecule depend on the chemical environment surrounding the magnetic
ion(s). This includes the crystal field of the molecular complex but also the presence of the
substrate, via electronic screening, molecule–surface electronic hybridization and charge
transfer [44,45]. Substrates-molecules combinations show cases where the molecular mag-
netic moment is unaffected or partially/completely quenched. Interestingly, sometimes this
is not only related to the ion magnetic moment, but to an overall change in magnetization,
where also other atoms (e.g., N or C) contribute to the total moment [46].

Strategies to preserve the SMMs properties include the decoupling between the SMM
and a metallic surface, through the insertion of nonmagnetic insulator films [43]. Clearly
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then, the successful attempts in keeping the properties of SMMs when adsorbed on in-
sulating films such as MgO [43,47], pose the question as whether the adsorption on bulk
insulating surfaces represents a valid alternative to preserve the molecular magnetic prop-
erties of SMMs.

Recently, a coordination complex, dimolybdenum tetraacetate Mo2(O2CCH3)4, de-
noted in the following as “MoMo”), was deposited on the bulk insulating calcite (10.4)
surface (CaCO3) [48] and other metallic and insulating surfaces [49]. Despite the well-
known challenges in having stable molecular self-assemblies on insulators, MoMo was
observed to form stable and locally regular arrays at high coverage [48], adopting an ad-
sorption geometry on calcite that allows the molecule to be immobile at room temperature,
as also confirmed by ab initio DFT calculations [48].

Realizing stable and ordered molecular structures that spontaneously assemble on
bulk insulators is an important step forward in the field of molecular electronics [50–53].
The ordered MoMo arrays open up this possibility, with the extra feature of containing
transition metals, regularly spaced by the acetate groups belonging to the molecule [48].
Due to the TM presence, a relevant question is whether these complexes can carry magnetic
moments, resulting from stable or meta-stable electronic configurations. A related issue is
whether MoMo can be assigned SMM features. Di-molybdenum complexes are known to
feature triple or quadruple bonds between the Mo centers (depending on the strength of the
π-donation from their ligands) [54,55] which imply the pairing of the involved electrons
and inhibit the formation of magnetic moments. To the best of our knowledge, however,
the electronic structure of the tetraacetate complex considered in this work was never
directly addressed; it received, instead, a precise structural characterization as reported in
Ref. [56].

Magnetic networks on bulk insulating surfaces are expected to have advantages over
metallic substrates: for example, magnetic moments and hysteresis cycles might not be
affected or quenched by the substrate–molecule (S-M) electronic hybridization [43,47,50,51].
A second advantage is that due the weaker reactivity of insulators as compared to met-
als [50–53], the S-M interaction prevents drastic changes in the structural, and thus elec-
tronic and magnetic properties of the molecule [50,51]. Thus, provided that an S-M anchor-
ing mechanism is established (as certainly is in MoMo [48]), promising SMM features of a
molecule in the gas-phase can be, in principle, easily transferred on insulators.

In this work we perform a computational study of the electronic structure of MoMo
with a particular focus on its magnetic states and properties. Results obtained for the
molecule in gas phase are contrasted with those for the system adsorbed on the calcite
(10.4) insulating surface. In spite of the stability of the expected multiple Mo-Mo bonds, our
goal here is to capture the energy landscape made of (meta-)stable magnetic configurations,
and to evaluate the energy cost to deviate the magnetization of the system in particularly
interesting FM states from its ground-state orientation. This is done here for the isolated
molecule and, for a selection of interesting magnetic states, also for the system adsorbed on
calcite (10.4), using the adsorption geometry determined in Ref. [48]. After modeling the
system with the GGA-PBE functional, in order to improve the description of localized Mo d
electrons, we resort to Hubbard corrected functionals, able to stabilize several meta-stable
magnetic states. The gas phase results are then contrasted with the ones on the calcite
surface. Finally, we evaluate the MAE which gives an indication about the possible SMM
properties of this system. The long-term objectives are to understand whether a magnetic
state can be stabilized in gas phase and on the insulating surface and to assess, through an
evaluation of its MAE, whether it could be considered a viable prospect SMM.

2. Results

The electronic configuration of the Mo atom is [Mo] = [Kr]4d55s1. However, based
on our calculations, the Mo atoms in this molecule retain about 4.5–4.6 electrons on its
d states, four of which are almost fully occupied (according to Refs [57,58], having four
almost occupied d states corresponds to a 2+ oxidation state for the Mo ion). With a
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less-than-half-filled d shell, the maximum magnetization achievable is thus 4.5 µB per Mo
atom; however, this limit is never reached and calculations predict a maximum atomic
magnetization of about 3.4 µB per Mo atom. In molecular systems with multiple TM
centers, the magnetic state also depends on the relative alignment of atomic moments,
and the possible interactions between them and/or with their chemical environment.
The MoMo structure (Figure 1a), precisely characterized in Ref. [56], shows that each
Mo is coordinated with four oxygens, forming an almost planar square centered on the
TM, which sits slightly off plane. The two MoO4 plaquettes are overlayed on top of
each other and linked by the external C–CH3 groups. Importantly, there is no oxygen
directly bridging the two Mo atoms nor charge transfer emerges between them, which
prevents to use the super-exchange theory to draw direct conclusions on the coupling
between their magnetic moments. Similar compounds featuring Mo-Mo central units
are reported to form quadruple bonds between the Mo centers [55,56]. In these systems,
however, the planar plaquettes formed by each Mo center and its four ligands do not
feature external bridges and are only linked together by the Mo-Mo bond. At variance
with these systems, in our system there are four C–CH3 units that externally bridge the
two MoO4 units. The structural stability of these external links allows to promote the
Mo d electrons from bonding to antibonding states, without compromising the structural
integrity of the molecule. This is, in fact, an important feature that allows to avoid the spin
pairing of the Mo d electrons and to consider magnetic configurations.

(a) (b)

Figure 1. The structure of the dimolybdenum tetraacetate (MoMo) (a) in the gas phase and (b) as adsorbed on the three-layers
slab model of the calcite (10.4) surface. The chemical species are indicated at the center of each atomic ball in (a).

In order to study the MoMo magnetic configurations and to investigate whether
(meta)-stable magnetic ground states (GS) can be achieved when the molecule is adsorbed
on the calcite surface, we will first start to characterize the isolated molecule. Structural
optimizations in the gas-phase will be performed for different magnetic configurations
to determine their relative stability. Next, MoMo will be deposited on calcite (10.4) and
re-relaxed for some of the lowest-energy magnetic configurations. Comparing the rela-
tive stability of various MoMo magnetic configurations in gas-phase and on-surface will
indicate the role of the surface in stabilizing these states.

2.1. Magnetic States of MoMo in the Gas-Phase
2.1.1. Generalized-Gradient Approximation (GGA-PBE) Results

In this Section, we present DFT calculations performed with spin-resolved generalized-
gradient approximation (σ-GGA) for the exchange-correlation (xc) functional, with the
PBE prescription [59]. A selection of input and output files are available as Supplementary
Materials.

Using this functional, independent of the starting value of the Mo’s spin polarization,
we always obtain a nonmagnetic (NM) ground state, with vanishing magnetic moments
on each Mo center (i.e., an equal distribution of d electrons in the two spin channels). This
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result is consistent with the formation of a quadruple bond between Mo centers; in fact,
a Löwdin population analysis of their d states reveals that four of them are approximately
half-occupied for each spin in each Mo, which reflects the pairing of the electrons spin on
the bonding states being formed. Consistent with the available literature [55] the d states
involved are: the z2 (σ bond), the xz and yz (π bonds) and the xy (δ bond), where the z
axis is taken along the Mo-Mo axis. However, the well known tendency of approximate
xc functionals to over-delocalize d electrons, might impair the stabilization of magnetic
ground states that could result from the prevalence of the exchange interaction on atomic
orbitals (first Hund’s rule). To further probe the system’s behavior, as an attempt to force
a magnetic configuration, we imposed an imbalance between the two spin populations,
by fixing the occupations of the Kohn–Sham (KS) spin states during the electronic self-
consistent solution. In this way, several magnetic states could be achieved, with different
values of the total magnetization M. During the procedure, we relaxed the atomic positions
for each value of M. Table 1 reports the total energy E (relative to the nonmagnetic GS) for
all the achieved states, along with the total magnetization M, the distance between the Mo
centers and their atomic magnetization (while M is the unbalance between the number of
electrons in the two spin channels and has an integer value in a system with gap, n↑-n↓ are
obtained from projecting KS states on atomic d orbitals, thus yielding fractional numbers.
Note, however, that the sum of the atomic magnetization approaches the value of M).

Table 1. GGA-PBE results for the MoMo molecule in the gas-phase. For each state, we report the total
energy E (relative to the nonmagnetic ground state energy), the total magnetization M, the Mo-Mo
distance dMo−Mo and the magnetization on the d states of each Mo, n↑- n↓. Double entries in n↑- n↓

refer to the Mo atoms, when they present different magnetizations. In the first row, the numbering at
the end of the label refers to the corresponding value of M.

NM FM1 FM2 FM4 FM6 FM8

E (eV) 0 0.90 1.43 3.57 4.08 5.34
M (µB) 0 1 2 4 6 8

dMo−Mo (Å) 2.09 2.12 2.15 2.42 2.67 2.98
n↑- n↓ 0.0 0.45, 0.44 0.88, 0.87 1.82, 1.81 2.74 3.51

As evident from the table, the Mo-Mo distance in the NM GS is in perfect agreement
with the experimental value of 2.09 Å [56]. The table also illustrates that our approach
allowed us to achieve some M > 0 ferromagnetic (FM) states.

As revealed by a Löwdin analysis of d states populations, these FM states, of increasing
energy, are obtained by promoting electrons from the Mo-Mo bonding to the corresponding
anti-bonding states of progressively higher energy. This gradual disruption of the Mo-
Mo bonds implies the corresponding increase of the Mo-Mo distance without, however,
compromising the integrity of the molecule, which is still held together by the external C–
CH3 groups. From a technical standpoint, the FM states were obtained through constraining
the KS occupations and by re-optimizing the molecular structure each time. However,
with the exception of the M = 6 µB state, they are all excited states; in fact they did not result
in stable configurations and a structural relaxation with no constraint on the occupations
evolves the system back to its non-magnetic GS. This suggests that the self-consistent
solution of constrained KS equations did not succeed in creating a self-consistent potential
able to stabilize the corresponding M state. As for the M = 6 µB state, it represents a
meta-stable configuration where the system remains trapped even after constraints on KS
occupations are lifted. The energy of this state, however, is significantly (4.08 eV) higher
than the NM ground state and this thus represents the only stable state for MoMo when
modeled with GGA-PBE functionals.

2.1.2. Results from Hubbard-Corrected Functionals

Standard xc functionals, as the GGA-PBE, are affected by electronic self-interaction and
miss most of the effects of strong correlations. Localized d or f electrons are mostly affected
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by these flaws as they are typically over-delocalized, especially in presence of degeneracy.
Among the consequences, one of the most typical is the suppression of magnetism. In
order to ascertain whether some results in the previous Section are in fact artifacts of
the GGA-PBE functional (in particular, the stable Mo-Mo multiple bond) and whether a
magnetic GS can actually be stabilized by alleviating the self-interaction of Mo d states, we
performed calculations with the Hubbard corrected DFT + U method [60–64]. A selection
of input and output files are available as Supplementary Materials. Specifically we use
two different formulations: the traditional DFT + U with only on-site interactions (U),
and a generalized corrective functional based on the extended Hubbard model containing
both on-site (U) and inter-site (V) interactions, known as DFT + U + V [64,65]. While
mostly employed for crystals, these corrective functionals have also been used to study
molecular systems containing TM magnetic centers, for example to assess the equilibrium
geometry and dissociation energies [66–68]; the relative stability of various magnetic
configurations and their implications on chemistry [69]; the potential energy surface along
relevant reaction pathways [70,71]; the energetics of low-lying excited states using a Slater-
1/2 approach [72]. In many cases the results compare favorably with those of more
sophisticated quantum chemical approaches. Here the Hubbard U is applied to the Mo
d states, while the inter-site V operates between the Mo d and O p states and between
Mo d states. In general, the extended DFT + U + V scheme improves the description of
electronic localization, especially in presence of significant hybridization between neighbor
sites. Therefore, this method should be quite suitable for the system considered here. Quite
surprisingly, we found that the two Hubbard corrections give almost equivalent results
and will be collectively indicated as “DFT+Hubbard”.

DFT+Hubbard calculations were conducted following a similar scheme as for the
GGA-PBE functional. Table 2 reports the Hubbard parameters obtained for the considered
states of the system; these quantities were calculated using a self-consistent procedure
which involves the re-optimization of both the electronic structure and molecular geometry
(see the Materials and Methods section). The Table only shows results for the molecule in
gas phase. For the DFT+U + V calculation on the calcite surface we used the same value
obtained in the gas phase.

Table 2. The Hubbard parameters (in eV) computed self-consistently for various states of MoMo.

NM AFM FM2 AFiM2 FM4 FiM4 FM6 FM8

DFT + U UMo1 3.84 3.58 3.54 4.09 3.61 3.58 3.60 3.23
UMo2 3.85 3.58 3.55 4.06 3.58 3.62 3.61 3.24

DFT + U + V

UMo1 4.53 4.20 4.06 4.09 4.20 4.34 4.16 3.80
UMo2 4.54 4.20 4.07 4.17 4.24 4.23 4.17 3.81

VMo1−Mo2 0.40 0.07 0.14 0.01 0.01 0.07 −0.18 0.18
VMo1−O 1.31 1.20 1.16 1.16 1.19 1.27 1.16 1.08
VMo2−O 1.31 1.20 1.16 1.19 1.21 1.22 1.17 1.08

The Hubbard parameters reflect the substantial structural equivalence of the two Mo
atoms, except for those magnetic configurations (AFiM2 and FiM4) where they assume
quite different magnetic moments. In any case, the dependence of the Hubbard couplings
on the magnetic configuration turns out to be relatively small (a negative value is obtained
for the FM6 state) with a more pronounced decrease only for the FM8 state. Note also that
the V between the two Mo centers is always much smaller than the one between each Mo
and the O atoms in its ligands shell. This result is what makes it easy for d electrons on
each Mo to align their spin and give rise to spin-polarized ground states (see the discussion
below Table 3).

The main results of Hubbard corrected calculations are summarized in Table 3, which
illustrates the relative stability of all the meta-stable magnetic states obtained with DFT +
U and DFT + U + V for MoMo in the gas phase and with the molecule adsorbed on calcite
(denoted DFT + U + Vads).
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Table 3. DFT+Hubbard results for the MoMo molecule in the gas-phase and as adsorbed on calcite (10.4). DFT + U + Vads
indicates calculations for MoMo adsorbed on calcite, performed only on lowest-energy magnetic configurations.

NM AFM FM2 AFiM2 FM4 FiM4 FM6 FM8

DFT + U

E (eV) 2.43 0.0 1.72 1.51 1.59 1.78 1.22 0.99
M (µB) 0 0 2 2 4 4 6 8

dMo−Mo (Å) 2.09 2.54 2.14 2.57 2.70 2.70 2.66 2.99
n↑- n↓ 0.0 3.28, −3.28 0.94 3.38, −1.5 0.53, 3.36 3.36, 0.53 2.88 3.72

DFT + U + V

E (eV) 2.45 0.0 2.05 1.02 2.65 1.54 1.26 0.99
M (µB) 0 0 2 2 4 4 6 8

dMo−Mo (Å) 2.10 2.58 2.15 2.57 2.42 2.72 2.66 2.98
n↑- n↓ 0.0 3.32, −3.32 0.93 3.32, −1.47 1.87, 1.93 3.36, 0.49 2.86 3.69

DFT + U + Vads

E (eV) 3.48 0.0 0.94 1.29
M (µB) 0 0 2 8

dMo−Mo (Å) 2.12 2.53 2.51 2.93
n↑- n↓ 0.0 3.18, −3.20 3.10, −1.27 3.67, 3.71

The scenario that emerges from DFT+Hubbard calculations is radically different
from that of GGA-PBE. First of all, the nonmagnetic solution is not the GS state of the
system (in fact, it is one of the highest in energy). While still characterized by a zero total
magnetization, the GS shows instead an AFM order, with the magnetic moments of the
two Mo atoms pointing in opposite directions. This is a first indication that, due to a more
pronounced localization of their d states, the Mo’s retain much of their atomic identity. It
is important to note that the AFM GS features two almost completely spin-polarized Mo
atoms, essentially as if all eight electrons forming the quadruple bond in the NM state
were now localized on either Mo atom, depending on their spin. This outcome might
seem quite surprising in light of the fact that other AFM could in principle be obtained
by breaking one of the four bonds at a time, and localizing the two electrons of opposite
spin on either Mo atom. Indeed solutions of this type (intermediate between AFM and
NM) could be stabilized using values of VMo−Mo in the 1.5–3.5 eV range, much higher
than the self-consistent values reported in Table 2. Note that the FM2 state is in fact of
this kind, with three remaining Mo-Mo bonds and two electrons (forming the δ bond in
the NM state) segregated on either Mo with parallel spin. This state features a Mo-Mo
distance which is very similar to the experimental value [56]. The stabilization of a NM and
of “intermediate” AFM states is prevented by the low value of the self-consistent VMo−Mo
which is not effective in establishing a strong hybridization between Mo centers. It is
notable anyway that the molecule does not break apart thanks to the external C–CH3 linker
groups. Whether this picture is an artifact of our linear response-based self-consistent
evaluation of the Hubbard parameters, remains to be established.

Compared to the GGA-PBE results shown in Table 1, the Mo-Mo distance is almost
exactly the same for states of corresponding M, indicating that the geometry of the molecule
mostly depends on the number of broken Mo-Mo bonds rather than on the degree of d
states localization.

The Hubbard correction has instead a role in destabilizing odd-valued magnetiza-
tion (OVM) states. In fact, no OVM can be found in Table 3. These solutions could not
be stabilized with DFT+Hubbard by constraining M, not even at the lowest odd-value
(M = 1 µB). A OVM state corresponds to fractional transfers of electrons between the two
spin channels, i.e., to fractional occupations of some Mo d states. Fractional occupations
are made energetically unfavorable by the Hubbard correction, which operates on these
states and favours integer occupations, compatible with the even-valued magnetization
(EVM) states shown in Table 3.

The energy comparison between the NM and AFM solutions indicates that, at variance
with GGA-PBE, the total energy depends not only on the total magnetization (equal to zero
in both AFM and NM) but also, and more significantly, on the relative spin orientation
of the two Mo atoms. By increasing the total magnetization to M = 2 µB and M = 4 µB,
the total energy increases. As evident from the atomic magnetization of each Mo (n↑-
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n↓), for both M = 2 µB and M = 4 µB, we were able to achieve two kinds of states: a
ferromagnetic one (FM2 and FM4), with both atomic moments essentially equal; and a
ferrimagnetic state (AFiM2 and FiM4) with very different moments. In fact, while for both
M values the system was initialized with the two spin in opposite directions, only for
M = 2 µB an “antiferrimagnetic” (AFiM2) ground state was stabilized, while for M = 4 µB
the system preferred a ferrimagnetic (FiM4) configuration. The AFiM2 and FiM4 states are
only possible through a reduction of molecular symmetry, that makes the two Mo atoms
loose their equivalence. Note that, independent of the value of M, the AFiM2 and FiM4
solutions have energies lower than the FM ones (FM2 and FM4) with the same M. This
stems from the fact that when the equivalence of the Mo’s is lost, one of them can reach a
saturation magnetization (3.36 µB), approaching the Hund’s rule limit (highest Sz).

AFiM2 is one of the states whose energy is closest to the GS energy (E ≈ 1 eV).
Importantly, a comparable energy can be obtained even for FM configurations of higher
magnetizations, such as M = 6 and 8 µB (FM6 and FM8). The total energy of FM6
(E ≈ 1.3 eV) is lower than FiM4, while FM8 presents an energy even slightly lower than
AFiM2. Note that for M > 4 µB only FM configurations can be stabilized, a fact related to
the atomic nature of the magnetization, unlike in GGA-PBE. In fact, with ≈4 electrons in
the d shell of Mo2+ ions, an AFiM configuration with M > 4µB would require maximum
magnetization on one Mo and vanishing magnetization on the other or even more exotic
configurations entailing, for example, the spin polarization of O 2p states. The electronic
structure of the single Mo atoms is also probably responsible for the energy decrease of
FM6 and FM8 configurations as compared to FM4. In fact, these magnetizations require
both (equivalent) Mo atoms to assume atomic magnetizations of ≈3 and 4 µB, respectively,
which are within reach and allow to satisfy Hund’s first rule.

Importantly, unlike those achieved with the GGA-PBE functional, all the DFT+Hubbard
magnetic configurations are (meta-)stable, i.e., energy minima with vanishing atomic forces.
This is related to the Mo atomic character and is a consequence of the finite gap appearing
in the molecular spectrum, giving the system enhanced stability. In other words, the finite
energy cost of transferring electrons between states of opposite spin prevents the system to
change M (and the Mo atoms to change their moments), avoiding the evolution towards
the AFM ground state (E = 0 eV).

The DFT + U and DFT + U + V results were presented together, as the two calculational
schemes provide qualitatively similar results, including atomic magnetizations and Mo-Mo
distances. However, there are some differences that are worth pointing out. First, one can
observe a slightly different energy ordering. While AFM and FM8 are in both schemes the
GS and the first excited state (maintaining, remarkably, the exact same energy difference),
the next higher state for DFT + U is the ferromagnetic FM6 configuration, while it is the
AFiM2 for DFT + U + V. A second difference concerns the FM4 state. In spite of its
initialization with equal Mo atomic moments, within DFT + U the FM4 is unstable towards
the saturation of one of the Mo magnetization and an antiferrimagnetic solution practically
identical to FiM4 (except for the inversion of the two Mo atoms), while in DFT + U + V
the two moments are very similar, with an energy significantly higher than FiM4. The
imbalance of about two electrons in the population of the two spin for the FM4 state with
DFT + U + V suggests that there are two residual bonds between Mo, as also confirmed by
the shorter Mo-Mo distance ( 2.4 Å) compared to the one obtained with DFT + U (2.7 Å).
This is analogous to what has been already discussed for the FM2 state, featuring three
residual Mo-Mo bonds. At the same time FM6 corresponds to a configuration with only
one bond is surviving.

2.2. Magnetic States of MoMo Adsorbed on the Calcite (10.4) Surface

We present now calculations for the MoMo molecule adsorbed on the calcite (10.4)
surface (see Figure 1b). The results, shown in Table 3 (DFT + U + Vads), can be directly
compared with the ones for the isolated molecule. Given the significant increase in the
computational cost, on-surface calculations were performed exclusively with DFT + U + V
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and only for a subset of configurations, namely the three lowest-energy configurations,
AFM, AFiM2 and FM8, with the addition of the NM one to ascertain that the MoMo
magnatization is not eroded in presence of the surface. For each magnetic configuration,
a structural relaxation of MoMo on calcite was performed starting from the equilibrium
configuration obtained in the gas-phase. As evident from Table 3, besides the NM con-
figuration being pushed to higher energy than in the gas-phase, the main effect of the
adsorption is the inversion of the energy order of the two lowest excited states, AFiM2
and FM8. While in the gas-phase these are almost degenerate, for the adsorbed molecule
AFiM2 results 0.35 eV lower than FM8. At the same time, for all the considered states,
the Mo-Mo distance slightly decreases with respect to the gas phase, with a concomitant
reduction of the Mo atomic magnetic moments for both the AFM and the AFiM2 states.

In summary, we conclude that the adsorption on the calcite surface favors, for the
MoMo molecule, states with lower magnetization. We point out, however, that the ad-
sorption on a nonmagnetic insulating surface like calcite (10.4) does not alter significantly
the gas-phase magnetic landscape of MoMo. In particular, as the AFM is still the GS of
the system, the presence of the surface does not suppress magnetism, as often observed
with metallic surfaces [11,43]. While a detailed chemical analysis of these results is left for
future investigations, this represents an indication of the importance to use bulk insulating
substrates to preserve the magnetic properties of potential SMMs.

2.3. Magnetic Anisotropy Energy

Considering one of the magnetic metastable state (we chose the lowest energy FM8) we
now evaluate the magnetic anisotropy energy (MAE), i.e., the energy needed to change the
orientation of the total magnetization with respect to the structure of the molecule, from its
ground state position (defining the easy magnetization axis, EMA) up to an orthogonal
direction (see Figure 2). The energy cost is associated with a finite spin–orbit coupling
(SOC), which binds the magnetic moment to the geometrical structure of the molecule.
The SOC was included in the calculations by updating the Mo pseudopotential to a fully-
relativistic version. We define the orientation of M via the polar angle θ, with θ = 0 in
correspondence of the Mo-Mo direction, Figure 2a. Given the substantial σh symmetry of
MoMo (only broken by the extremal H atoms) a symmetric behavior for angles θ > 90◦ is
assumed (magnetic bistability).

Our SOC calculations used a non-collinear magnetic formalism and have been per-
formed with DFT + U for the isolated module. We assumed the lowest-energy FM configu-
ration, FM8, as the reference state. The MAE is then obtained from the dependence of the
total energy on the polar angle θ between the total magnetization and the EMA, which, we
anticipate, our calculations demonstrated to coincide with the Mo-Mo axis. Examples of
input and output files of MAE calculations are available as Supplementary Materials.

(a) (b) (c) (d)

Figure 2. The magnetization of Mo atoms for some of the considered polar angles: θ = 0◦ (a);
θ = 30◦ (b); θ = 60◦ (c); θ = 90◦ (d). The Mo-Mo EMA is defined by the direction of magnetizaion
in (a).

The results are shown in Figure 3, while the technical details of these calculations are
discussed in the Material and Methods Section.



Appl. Sci. 2021, 11, 3806 10 of 17

Figure 3. The total energy of the system as a function of the polar angle θ between the total magnetic
moment and the molecular Mo-Mo axis (the axis of easy magnetization—EMA). The energy is
referred to the ground state with the magnetization aligned along the EAM. The two sets of data refer
to two values of the azimuthal angle φ: 0◦ (direction of one acetate arm–black diamonds), and 45◦

(bisecting direction between neighboring arms–blue solid line).

The plot compares two sets of results, that were obtained for two different values
of the azimuthal angle φ of the magnetization around the EAM. In fact, given the lack
of cylindrical symmetry of the molecule around the Mo-Mo axis, with four acetate arms
protruding along perpendicular directions in the x–y plane (with the EAM taken as z), we
assumed a (light) dependence of the energy on this variable as well. The results shown in
the figure, obtained for two values of φ corresponding to one of the acetate arms (black
diamonds) and with a bisecting direction (solid blue line) show a very minor effect of φ on
the total energy. The energy cost associated to the deviation of the magnetization vector
from its minimum energy direction is thus almost entirely due to the polar angle θ it forms
with the EMA. The figure shows that the energy barrier is about 9.3 meV. This value is
compatible with the one found in the [Mn12] compound (5.2 meV) [1] but lower than the
MAE observed in single lanthanide ion SSMs [7]. However, to the best of our nowledge,
no experimental data exists for the considered system.

It is important to remark that the MAE of the system is entirely due to (and so,
dependent on) the chemical environment of the Mo atoms in the molecule. In fact repeating
the same spin-orbit calculations on the bare Mo dimer resulted in a flat energy profile.

3. Materials and Methods

DFT calculations were performed using the publicly available, plane-wave-
pseudopotential QUANTUM ESPRESSO package [73,74]. The xc functional was constructed
using a generalized gradient approximation (GGA) with the PBE parametrization [59]. In
molecule on-surface calculations, van der Waals interactions were included through the
Grimme D2 scheme [75]. Ultrasoft pseudopotentials, taken from the PSlibrary [76] were
employed for all species. The electronic wavefunctions and charge density were expanded
up to a kinetic energy cut off of 80 and 640 Ry, respectively.

To make the energy comparisons consistent, all calculations were performed using
the simulation cell resulting from the structural optimization of the calcite (10.4) surface.
The cell has an almost perfect orthorhombic symmetry with in-plane lattice parameters
of 15.13 and 16.21 Å (the angle between them being 89.996◦) and a perpendicular axis of
26.0 Å. The Brillouin zone was sampled with the Γ point.

The calcite (10.4) substrate was modeled with a periodically repeated slab of three
layers, allowing a vacuum gap between the adsorbed molecule and the slab replica of 18 Å.
The force threshold for atomic relaxations was set to 10−3 eV/Å. Only the molecule and
the slab top-layer were allowed to relax.



Appl. Sci. 2021, 11, 3806 11 of 17

To capture the Mo d electron localization, both DFT + U [60–64] and the extended
DFT + U + V [64,65] Hubbard corrective functionals were adopted. These schemes have
been successfully used on a broad variety of cases and proved very effective in improving
the structural [77], vibrational [64,78–84], and electrochemical [85] properties as well as
the phase-stability and transitions of d and f electron systems, notably involving mag-
netism [86–89]. Like in many of the works cited above the effective Hubbard interactions
(i.e., the on-site U for Mo d states and inter-site V between Mo d and nearest-neighbor O
p states) were determined from first-principles linear-response theory [77] using a den-
sity functional perturbation theory (DFPT) implementation [90,91]. The calculation of
U and V was done for the molecule in gas phase in a self-consistent way that ensures
the consistency of their values with both the electronic structure and the geometry of the
system [64,85,89,91]. The obtained U and V values were also adopted for the molecule
adsorbed on calcite, assuming negligible changes. Hubbard corrections are based on
orthogonalized atomic orbitals and the same basis is adopted for the forces calculation
(thanks to a recent extension [92]), thus improving the consistency between the molecular
geometry and the electronic ground state.

Most calculations were performed with fixed KS occupations, possibly with an imbal-
ance between the two spin populations to achieve the desired total magnetization.

As mentioned in Section 2.3 the calculation with the SOC required updating the
pseudopotential of Mo to a fully relativistic version. In order to ascertain that this pseu-
dopotential provides an equivalent description as the non relativistic one a preliminary
set of calculations with the SOC was performed with DFT + U for the collinear (magnetic
moments all along the Mo-Mo direction) AFM and FM8 configurations. These calculations
recovered the same results (in particular, the same energy differences) as those shown in
Table 3 for the collinear case.

The calculation of the MAE requires changing the polar angle θ between the total
magnetization M and the easy axis of magnetization (EMA). Unfortunately, from a technical
standpoint, acting directly on the magnetization vector (e.g., through the coupling with an
auxiliary magnetic field pointing to the desired direction) is not straightforward and the
small entity of the SOC with respect to other energy terms makes these calculations even
more difficult to perform and delicate to converge.

In order to circumvent these problems we designed an ad hoc algorithm that uses an
auxiliary system and the Hubbard correction as an effective constraint functional. This
novel procedure is illustrated by the following steps:

1. For each angle θ, perform a non-collinear calculation on an isolated Mo-Mo dimer
(the auxiliary system) without SOC, imposing (from input) the desired direction to M.
Use the same Hubbard U and Mo-Mo distance as in the molecule.

2. Save the d states occupations of the two Mo atoms.
3. Perform a preliminary DFT + U + SOC calculation on the molecule, starting from the

saved d states occupations, which are kept fixed for ≈10 electronic iterations.
4. From the potential achieved at the previous step, proceed with the DFT + U + SOC

calculation, this time letting the occupations free to evolve and the molecule reach its
self-consistent GS, at the given θ.

The calculation on the isolated dimer, point 1, is an expedient to achieve, at any angle
θ, the corresponding atomic occupations. In fact, in absence of SOC, the energy of the
system does not depend on θ and its value can be tuned at will very effectively. In addition,
calculations on the bare dimer are much less intensive than in the molecule and this first
step can be completed very efficiently. At this point the atomic occupations of Hubbard
atoms (the two Mo here responsible for the magnetization) are compatible with a magnetic
moment pointing in the desired direction. The calculation in point 3 is necessary to train
the self-consistent potential until it becomes consistent with the desired deviation θ of the
magnetization from the original direction. This “training” is enforced by the Hubbard
potential (a finite U is of course needed) constructed with the atomic occupations obtained
in point 1. Once the potential is “trained”, the system is set free to converge to the self-
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consistent ground state. The obtained magnetization is typically within 1 degree from the
desired direction. Of course the above procedure has to be repeated for all the directions of
magnetization one desires to explore.

4. Discussion and Conclusions

We perform a detailed computational study of the magnetic states of the dimolybde-
num tetraacetate molecule (MoMo), both in gas-phase and adsorbed on the calcite (10.4)
insulating surface. The long-term goal of our investigation is to assess the possibility to
use MoMo as a single molecule magnet (SMM), which would open up the possibility to
have magnetic molecular networks on a bulk insulating substrate. The work is based
on the recent observations that regular MoMo assemblies hold firmly on calcite (10.4) at
ambient conditions [48]. MoMo seems particularly interesting for the vertical alignment of
the Mo-Mo axis, that favors the symmetry breaking between the two Mo on the surface
(a favorable condition for the onset of magnetic states [93]) and the external C-CH3 linkers
that prevent the molecule dissociation, even when all four Mo-Mo bonds are broken.While
standard GGA-PBE functionals predict a nonmagnetic (NM) state with quadruple Mo-Mo
bond and excited magnetic states at significantly higher energies (growing with the number
of broken bonds and ultimately with the magnetization M), Hubbard corrections stabilize
magnetic configurations (FM or AFM) with Mo atoms near their high-spin configurations
and atomic magnetizations near their Hund’s saturation limit of four. More importantly,
the corrections render many FM states metastable. Although the obtained AFM ground
state does not seem consistent with available literature on similar systems (but notably
missing external linkers between the Mo centers), our calculations show that MoMo might
have magnetic states provided that the system is excited to metastable configurations with
Mo atoms pulled apart from each other.

In the gas-phase, the FM state at the lowest energy (denoted FM8) is about 1 eV
above the ground state. It features parallel spins on the Mo atoms (close to maximum
atomic magnetization), with a total magnetization of M = 8µB. On the surface, the MoMo
second lowest-energy state features an antiferrimagnetic (AFiM) order with the atomic
moments of the two Mo atoms having opposite direction and different length, still resulting
in M = 2 µB. Importantly, we find that the presence of the insulating surface does not
quench the magnetic ordering found in the gas-phase. This is a necessary condition for
having stable and regular SMMs arrays on an insulating substrate at room conditions.
From this point of view, insulators seem an advantage over metallic surfaces, where the
substrate-molecule electronic hybridization could alter or completely quench the magnetic
properties of the isolated molecule.

For the lowest energy ferromagnetic state (FM8) we calculated the magnetic anisotropy
energy (MAE) in the gas-phase, using a noncollinear formalism. We found that the molecule
possesses an easy magnetization axis (EMA) that coincides with the Mo-Mo direction and
we estimated a MAE barrier around 9.3 meV. This value is compatible with the one found in
the [Mn12] compound (5.2 meV) [1] although, to the best of our knowledge, no experimental
magnetic measurements of MAE exist for our system.

The system could also represent a prospect SMM worth of further investigations,
if a state with a non-vanishing total M could be experimentally stabilized on the calcite
surface. In this perspective, a first direction of investigation concerns the calculation of the
MAE for the molecule adsorbed on the surface, to ascertain that a finite magnetic moment
is not too volatile. Other aspects of interest include the assessment of other insulating
surfaces (e.g., fluorite) and the characterization of the behavior of molecular systems on
metallic surfaces, aimed at verifying the survival of finite magnetic moments [49]. It is
also worth extending the present investigation to other TM-based molecules that can
be adsorbed firmly on insulating surfaces. These include systems with non-planar TM
substructures (like MoMo, with the two Mo atoms aligned along a vertical direction) in
which the symmetry breaking upon adsorption may favor the stabilization of magnetic
ground states and other interesting properties.
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From a methodological point of view, a relevant novelty introduced in this work is the
use of the Hubbard corrective functional as a constraint on the magnetization M, to rotate
its direction from the system EMA. The algorithm developed here for this purpose has
proved both reliable and effective and will represent a valuable tool in future calculations
of this type.

Supplementary Materials: A selection of input and output files are available online at https://
www.mdpi.com/article/10.3390/app11093806/s1. The files refer to the following calculations: 1.
GGA NM; 2. DFT + U + V AFM; 3. DFT + U + V FM8; 4. DFT + U + Vads FM8; 5. DFT + U FM8
MAE calculation.
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DFPT Density Functional Perturbation Theory
DFT Density Functional Theory
EMA easy magnetization axis
EVM even-valued magnetization
FiM ferrimagnetic
FM ferromagnetic
GGA Generalized-Gradient Approximation
KS Kohn-Sham
MAE Magnetic anisotropy energy
MoMo dymolybdenum tetraacetate
µB Bohr magneton
OVM odd-valued magnetization
PBE Perdew-Burke-Ernzerhof
SMM single molecule magnet
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