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Abstract: The point-foot biped robot is highly adaptable to and can move rapidly on complex,
non-structural and non-continuous terrain, as demonstrated in many studies. However, few studies
have investigated balance control methods for point-foot sliding on low-friction terrain. This article
presents a control framework based on the dual-objective convergence method and whole-body
control for the point-foot biped robot to stabilize its posture balance in sliding. In this control
framework, a dual-objective convergence equation is used to construct the posture stability criterion
and the corresponding equilibrium control task, which are simultaneously converged. Control tasks
are then carried out through the whole-body control framework, which adopts an optimization
method to calculate the viable joint torque under the physical constraints of dynamics, friction and
contact forces. In addition, this article extends the proposed approach to balance control in standing
recovery. Finally, the capabilities of the proposed controller are verified in simulations in which
a 26.9-kg three-link point-foot biped robot (1) slides over a 10◦ trapezoidal terrain, (2) slides on
terrain with a sinusoidal friction coefficient between 0.05 and 0.25 and (3) stands and recovers from a
center-of-mass offset of 0.02 m.

Keywords: point-foot biped robot; sliding balance; dual-objective convergence equation; quadratic
programming optimization

1. Introduction

Biped robots, with a legged structure similar to that of biped creatures, are naturally
capable of adapting to a variety of environments [1,2]. Biped robots perform better than
wheeled and tracked robots on complex, unstructured and discontinuous ground [3–5].
To take full advantage of the characteristics of the bipedal structure and to improve the
environmental adaptability of biped robots, control algorithms such as those for walking,
running, jumping and balance recovery have been designed and adapted to terrains such
as grass [6] and stepping stones [7]. Furthermore, biped robots are expected to be widely
used in human habitats owing to their human-like shape and in the wild and high-risk
environments owing to their wide terrain adaptability. In these environments, it is possible
for robots to encounter terrains with low-friction coefficients, such as smooth ceramic tiles,
glass floors and hard ice. For such terrains, many robots use an extra device, such as a
pulley, skateboard or wheeled foot, to control sliding [8–10], which not only limits the
robot’s ability to adapt to a wider range of terrain but also increases the robot’s mass and
inertia at the end of the leg and deprives the robot of the fast motion characteristic of the
point-foot structure. On these types of terrain, the high dynamic characteristics of the
point-foot structure make it difficult for the robot to maintain balance by stepping, but the
method of adjusting posture is still effective. Therefore, to expand the adaptive ability of
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the point-foot biped robot, this article investigates a control method of sliding and standing
posture balance on ground with a low-friction coefficient.

In recent years, many control methods have been applied to the balance control of
biped robots. The key to balance control is to establish the control objective indicating
the balance state of the robot. In bipedal control, the center of pressure (CoP) represents
the action point of the contact force on the sole of the robot, which is an efficient control
objective reflecting the plantar balance [11–16]. Macchhietto et al. [14] introduced general-
ized momentum to design the CoP for standing balance. Similarly, Lee and Goswami [15]
defined balance control objectives more intuitively in terms of linear and angular mo-
menta to directly determine the CoP with the ground reaction force and realize balance
control on non-level and non-stationary ground. Momentum plays an important role
in postural balance, and the centroidal moment point (CMP) has thus been proposed
and used to describe the variation in angular momentum [17–20]. Goswami et al. [17]
referred to the CMP as the ZRAM (zero rate of change of angular momentum) point and
presented three strategies (i.e., enlarging the support polygon, moving the center of mass
(CoM), and changing the direction of the ground reaction force ) to recapture balance.
Mayr et al. [19] introduced an excellent CoM–CMP regulator for reference CMP design
with linear and angular momentum priority and used the regulator to construct a balance
controller for the standing and walking on a humanoid robot. A comparison of these two
methods (of Goswami et al. and Mayr et al.) shows that the CMP can be set outside the
supporting polygon to expand the stable region of the robot. Shafiee-Ashtiani et al. [20]
applied a capture point to evaluate the balance recovery capability and presented a push
recovery controller based on a feedback controller by combining the CMP method and
ankle strategy to compensate for the error at the CP. The above methods have been shown
to work well in postural control and recovery. However, the CoP and CMP have mainly
been aimed at the area of contact between the ground and the sole of a foot, and they are
difficult to apply to the point-foot of a robot, which is in point contact with the ground.
Therefore, a method of keeping the point-foot posture balance by constantly adjusting the
foothold has been proposed [21,22]. Nevertheless, adjusting the foothold on ground with a
low-friction coefficient is likely to cause the robot to slip and lose its balance. Peng et al. [23]
took the angular momentum and its derivative as the equilibrium point and proposed
the loss balance degree (LBD) as a stability criterion with which to evaluate the degree to
which a biped robot deviates from the equilibrium point. However, they did not apply
the method to a specific robot model. Inspired by the revelation of the motion principle of
the flywheel inverted-pendulum model using the CMP, in the present study, we combine
the flywheel inverted-pendulum model with the Coulomb friction model to reconstruct
a sliding model of the robot into a dual-objective convergent form including the posture
stability criterion and the equilibrium control target, which not only is suitable for the
sliding process but also can be extended to the case of standing balance.

In adjusting the balance of the whole body, most of the joints of the robot are expected
to be controlled while maintaining sliding balance. Control methods for sliding biped
robots with fewer degrees of freedom (DoFs), such as the wheeled inverted-pendulum
robot, have been developed over a period of decades. Many traditional controllers, such as
the state-space controller [24], sliding-mode controller [25], and fuzzy controller [26], have
been extensively used to control wheeled inverted-pendulum systems. Although these con-
trol methods perform well, they are difficult to adapt to more complex bipedal structures.
Jeong and Takahashi [27] adopted the linear quadratic regulator (LQR) method to linearize
the control model of the robot and realized stable mobile motions for the i-Pentar robot,
which comprises a body with a waist and an arm. To use the LQR method, the robot’s
model needs to be linearized, which reduces the stability region in the state-space. Mean-
while, it is difficult to use this method to solve control problems under the constraints of
friction, contact forces and joint acceleration. Khatib [28] first used inverse dynamics to
convert the task space problem to the joint space problem. Adopting the inverse dynamics
control method, multi-task motion control can be nonlinearly mapped to joint motion con-
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trol. Hutter et al. [29] treated the inverse dynamics problem as a quadratic programming
(QP) problem and provided an optimization method to solve inverse dynamics problems
with constraints. Zafar et al. [30] applied QP whole-body dynamics control to the wheeled
humanoid robot with an arm and realized low-level centroid tracking control under the
constraint of the joint torque. Klemm et al. [31] extended the wheeled-foot sliding equi-
librium capability under non-minimum phase dynamics by considering LQR control as a
constraint condition of the QP problem. However, whole-body control is mainly applied to
the active movement of a robot with feet and rarely applied to the passive sliding of the
point-foot robot. Nevertheless, the control objects of the above algorithms have end-effector
devices that can control their speed or angle with the ground, and it is thus difficult to fit
with the Coulomb friction characteristics of the ground in point-foot sliding. In this article,
we establish the constraint conditions, relaxation factors and cost function for the point-foot
robot conforming to sliding conditions using the QP-based whole-body control method.

This article proposes a control framework based on whole-body dynamics control and
dual-objective convergence for point-foot bipedal balance control, including sliding and
standing balance recoveries, on low-friction terrain. In the control framework, the posture
balance controller is a trajectory task generator that includes an equilibrium target generator,
torso recovery equilibrium offset generator, and knee trajectory generator, while the whole-
body controller is a trajectory-task-to-torque converter that adopts proportional–derivative
(PD) control, physical constraints, and the optimization of whole-body dynamics (as shown
in Figure 1). First, the robot model based on floating-base coordinates and its corresponding
flywheel inverted-pendulum model are analyzed to establish the posture stability criterion
and equilibrium control variable, and we use the dual-objective relation between the
equilibrium variable and the posture stability criterion to generate the trajectory of the
equilibrium target. Second, we build a torso recovery control strategy to generate the
equilibrium offset and adjust the posture of the torso. In addition, the posture balance
controller generates the knee trajectory. Third, all the trajectory tasks are transformed into
corresponding acceleration tasks by a PD controller, and a QP optimizer is applied to map
the acceleration tasks to the joint torques under the constraints of dynamics, friction and
contact forces. Finally, to verify the proposed method, we set up a multibody physical
simulation environment, including sliding balance on uneven terrain, sliding balance
on terrain with a variable friction coefficient and standing recovery on terrain with a
low-friction coefficient.

Figure 1. Block diagram of the balance control framework. τ∗ is the optimized joint torque.
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The main contributions of this study are (1) the introduction of a dual-objective
convergent control method to realize the sliding and standing balance control of an under-
actuated point-foot bipedal structure, (2) the adoption of a torso recovery strategy based
on coefficient regulation and torso state feedback control to adjust the torso posture while
maintaining the stability of the whole body, and (3) the adoption of a QP-based whole-body
control framework to realize efficient task tracking under physical constraints.

2. Dual-Objective Convergence Equation for the Biped Robot
2.1. Model Configuration

In studying the balance problem, the robot model is considered to be a three-link
rigid body comprising a torso, thigh and calf in the sagittal plane (as shown in Figure 2).
Floating-base coordinates, qb = [xb, yb]

T , are used to describe the distance between the hip
and ground. The robot’s posture is described by the posture coordinates qp = [θ, q1, q2]

T .
The coordinates of the whole model are denoted q = [xb, yb, θ, q1, q2]

T .

�

�

�
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�

�

� 	 


� 	 
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Figure 2. Coordinates and structural configuration. Xb and Yb are the x and y floating-base coor-
dinates. θ is the angle between the y-axis of the world frame and the torso. q1 and q2 are the joint
coordinates of the hip and knee. m, I and l are the mass, inertia and length of a rigid body.

2.2. Dual-Objective Convergence Equation

To maintain a stable posture during sliding or standing, the derivative of the posture
coordinate q̇p =

[
θ̇, q̇1, q̇2

]T should converge to zero. However, with one degree of under-
actuation, the point-foot model, which has only two actuating joints at the hip and knee, is
unable to drive these variables to zero directly. To control more variables with fewer DoFs,
we design a virtual generalized velocity variable E = JE

(
qp
)
q̇p as the posture stability

criterion. We then use the variable to construct the dual-objective convergence equation:

Ė = JE q̈p + J̇E q̇p = U
(
qp
)
· P
(
qp, q̇p, q̈p

)
, (1)

where JE
(
qp
)
∈ R1×3 is the matrix of the mapping from the derivative of the posture

coordinate q̇p to the posture stability criterion E, U
(
qp
)
∈ R is a generalized coordinate that

represents the equilibrium variable, and P
(
qp, q̇p, q̈p

)
∈ R is an instantaneous constraint,
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the value of which can be controlled directly using q̈p. We treat U as the controlled variable.
If U can track E according to

U
(
qp
)
= Ure f = −εE (2)

with
P
(
qp, q̇p, q̈p

)
> 0, (3)

then the posture stability criterion E can converge to zero over time. Here, ε ∈ R is the
dual-objective proportional constant and Ure f is regarded as a reference equilibrium target
for U

(
qp
)
. Furthermore, in the case that E ≡ 0 and P > 0, U can be quantificationally

calculated using (1), we have
U
(
qp
)
≡ 0. (4)

Therefore, the first derivative of U is written as

U̇ = JU q̇p = 0, (5)

where JU
(
qp
)
∈ R1×3 is the Jacobian matrix of U

(
qp
)
. Therefore, through the dual-objective

convergence equation, the stabilization of E and U̇ can be realized simultaneously while
controlling only one variable, U. This approach can thus stabilize more variables than the
number of DoFs of the robot. The method of formulating the dual-objective convergence
equation and the QP optimization controller for tracking Ure f are discussed in later sections.

2.3. Convergence Equation for Sliding

Suppose that the robot slides at a high speed on the ground with constant friction
µ. A flywheel inverted-pendulum model is established to mathematically describe the
trajectory of the CoM. As shown in Figure 3, point C = [xcom, ycom]

T denotes the coordinates
of the CoM, m is the total mass of the robot, and Lc is the total angular momentum of all
rigid bodies around the CoM. The magnitude of the gravitational action is mg. Fx and Fy
are the x-axis and y-axis components of the contact force.

Figure 3. Flywheel inverted-pendulum model of the biped robot.

Because the rate of change of the centroidal angular momentum depends on the sum
of torque around the CoM generated by the contact forces, the mathematical expression of
the flywheel inverted-pendulum model is established as

L̇c = ycomFx − xcomFy. (6)



Appl. Sci. 2021, 11, 4016 6 of 20

According to Coulomb’s law of friction, the contact force of the robot during sliding is

Fx = −µFy. (7)

Fy can be expressed as the acceleration of the CoM:

Fy = m(ÿcom + g) = m
(

Jy
(
qp
)
q̈p + J̇y

(
qp, q̇p

)
q̇p + g

)
, (8)

where Jy
(
qp
)
∈ R1×3 is the Jacobian matrix of the y-axis component of the CoM. By substi-

tuting (7) and (8) into (6), the flywheel pendulum model is rewritten as

L̇c = −(µycom + xcom)m
(

Jy q̈p + J̇y q̇p + g
)
. (9)

Comparing the forms between (1) and (9), the dual-objective convergence equation
for the sliding process is constructed as

Esl = Lc, (10)

Usl
(
qp
)
= −(µycom + xcom), (11)

Psl
(
qp, q̇p, q̈p

)
= m

(
Jy q̈p + J̇y q̇p + g

)
, (12)

where Esl is the posture stability criterion in sliding, Usl
(
qp
)

describes the relation between
the equilibrium variable and the CoM, and Psl

(
qp, q̇p, q̈p

)
is the instantaneous constraint,

which equals the y-axis component of the contact force.
Please note that (6) is tenable for any ground situation, while (7) is only suitable for

horizontal ground. We suppose that the ground is flat with a constant friction coefficient
µ0, but at a certain angle θg to the horizontal plane. The relation between Fx and Fy can be
rewritten as

Fx = −µ∗Fy, (13)

where
µ∗ = tan

(
tan−1 (µ) + θg

)
. (14)

During the actual sliding of the robot, θg is difficult to measure. However, µ∗ can be
estimated by measuring the actual contact force F∗x and F∗y at the feet:

µ∗ = − F∗x
F∗y

. (15)

In this way, the convergence method can adapt to uneven ground with the replacement
of µ in (11) with µ∗.

2.4. Convergence Equation for Standing

When the robot stands on ground that provides a sufficient frictional force, the vertical
force acting on the robot satisfies Equation (8) but the horizontal force acting on the robot
is determined by the horizontal acceleration of the robot. When the robot no longer slides
on the ground, Fx can be obtained according to

Fx = mẍcom = m
(

Jx
(
qp
)
q̈p + J̇x

(
qp, q̇p

)
q̇p
)
. (16)

Considering that Fx and Fy can be expressed by Equations (8) and (16), the flywheel
inverted-pendulum Equation (6) can be rewritten as

L̇x + m(xcomÿcom − ycom ẍcom) = −xcommg. (17)
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According to the standard form of the dual-objective convergence equation in Equation (1),
the convergence equation in the standing process is constructed as

Est = Lc + m(xcomẏcom − ycom ẋcom), (18)

Ust
(
qp
)
= −xcom, (19)

Pst = mg > 0, (20)

where Est, Ust
(
qp
)

denotes the standard forms of the dual-objective convergence equa-
tion. Meanwhile, Pst is a positive constant that automatically satisfies the restriction in
Equation (3).

2.5. Torso Recovery Strategy

By controlling the equilibrium variable U to track the equilibrium target Ure f , both
E and U̇ are stabilized. To achieve whole-body control, however, all the controlled DoFs
must be used up. Hence, the generalized coordinate of the joint of knee q2 is expected
to be another controlled variable that is used to drive the angle of the knee to a constant
reference angle qre f

2 . By effectively controlling U and q2, the robot will gradually tend to
balance and eventually stay in some stationary posture, because the convergence of the
triple variable (E, U̇ and q2) can be mapped to the convergence of the three-DoF posture
coordinate qp. However, while this method can stabilize the robot, it is unable to converge
the torso to a desired angle. The following torso recovery strategy is thus adopted to adjust
the angle of the upper body.

• First, reduce the difference (i.e., error) between U and Ure f so that E begins to converge
in the desired way.

• Then, wait for the amplitude of E to gradually decrease to within a permissible range,
which indicates that the robot enters a stable state.

• Finally, add an equilibrium offset ∆U to the desired equilibrium target Ure f according
to the feedback states of the torso. Therefore, the angle of the torso θ gradually
recovers to the reference value.

To put the above strategy into practice, we designed a torso position feedback control
method based on coefficient regulation, which is summarized as

βE = clamp
(

ρE − |En|
∆ρE

, 0, 1
)

, (21)

βU = clamp

ρU −
∣∣∣Ure f

n−1 −Un−1

∣∣∣
∆ρU

, 0, 1

, (22)

∆Uθ = clamp

(
θre f − θ

∆θ
,−1, 1

)
, (23)

∆Uθ̇ = clamp
(

θ̇

∆θ̇

,−1, 1
)

, (24)

∆Un = βE · βU ·
(

βθ · ∆Uθ + βθ̇ · ∆Uθ̇

)
, (25)

clamp(x, a, b) =


x, a < x < b
a, x < a
b, x > b

. (26)

Here, n is the current control period. βE is the coefficient regulator of the posture
balance criterion E, and it increases linearly from 0 to 1 as |En| decreases from ρE to
ρE − ∆ρE. βU is the same regulator as βE, and the product of these two coefficients
βEβU is the torso recovery coefficient. ∆Uθ and ∆Uθ̇ are the proportional and differential
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limiters, ∆θ and ∆θ̇ are the linear ranges of the limiters. βθ and βθ̇ are the proportional
and differential constants of the feedback controller. ∆Un is the equilibrium offset of the
current control period. The parameters in the equation are represented by a constant
vector Kθ =

[
ρE, ∆ρE, ρU , ∆ρU , ∆θ , ∆θ̇ , βθ , βθ̇

]
. After introducing the torso control strategy,

compared with Equation (2), the equilibrium target Ure f is modified as

Ure f
n = −εE− ∆Un. (27)

3. QP Controller with Multiple Constraints
3.1. Qp Process

The QP method is widely used in the multi-task optimization of humanoid robots.
In our control system (as shown in Figure 4), the control process starts with the friction
switch, where the friction coefficient is calculated according to µ = Fx/Fy when the robot
is sliding and is set as a reference value µ0 when the robot is standing. Next, the current
equilibrium variable U and the equilibrium target εE are calculated using the dual-objective
convergence equation, where the equilibrium target is modified by the torso recovery
strategy to obtain Ure f . A PD controller is then applied to calculate the reference input
Üre f and q̈re f

2 according to the control tasks Ure f and qre f
2 . Finally, the QP optimizer is

used to solve optimal torque τ∗ subject to the contact and dynamic constraints. By setting
u =

[
q̈, τ, δU , δq

]T as the optimization variable, the optimization problem for the control
system is described as

u∗ = argmin
u

uT Hu + Fu, (28)

s.t.



AD
X u = bD

X (dynamic Constrain)
Ac

Xu < bc
X (contact Constrain)

Ü = Üre f + δU

q̈2 = q̈re f
2 + δq

(control Constrain)

umin < u < umax (variable limit)

. (29)

Standing

QP ROBOT
PD 

controller

�∗

�� ��

����

�
���

	

	 
� 
� Friction switch

Δ� �
���

���� −�� − Δ�

Torso recovery 

strategy

Dual-objective

convergence equation ��

�




Sliding

Figure 4. Robot control system.

In the optimization problem, both the dynamic equation and contact inequation
are strict constraints. For the solvability of QP, δU and δq are introduced into the control
constraints as relaxation factors using a method similar to that adopted in [32]. Considering
the minimization of |δU | and

∣∣δq
∣∣, we introduce two positive weight coefficients, ρU and ρq,

to establish the cost function:
min

u
ρUδ2

U + ρqδ2
q . (30)

The matrix H and vector F of the cost function in the QP problem are thus set as

H = diag
[
01×7, ρU , ρq

]
, (31)
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F = 09×1, (32)

and the standard form of the control constrain is constructed as

Aiu = bi, (33)

where

Ai =

[
01×2

01×4
JU
1

02×2

02×2
−1 0
0 −1

]
, (34)

bi =

[
Üre f − J̇U q̇p

q̈re f
2

]
. (35)

3.2. PD Controller

The QP method can handle the conflict between the constraints and reference inputs
to calculate a possible solution of the control variables. However, the control variables Ü
and q̈2 solved by QP should not only be able to track Ure f and qre f

2 effectively but also have
appropriate amplitudes. Therefore, a double-loop PD controller is adopted to generate the
reference input:

Ẋre f = Kp1 · clamp

(
Xre f − X

∆X
,−1, 1

)
− Kd1 · clamp

(
kcẊ,−1, 1

)
, (36)

Ẍre f = Kp2 · clamp

(
Ẋre f − Ẋ

∆Ẋ
,−1, 1

)
, (37)

where X stands for Usl , Ust and q2. Thus, the first and second derivatives of the control
variables U and q2 are limited to a certain amplitude through Kp1, Kd1 and Kp2. Additionally,
the sensitivity of the controller can be adjusted by ∆X and ∆Ẋ. The PD parameters are
represented by the constant vector KX =

[
Kp1, ∆X , Kd1, kc, Kp2, ∆Ẋ

]
.

3.3. Dynamic Constraints

The dynamics of the model with the configuration described in Section 2.1 are ex-
pressed by the Euler–Lagrange equation:

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bτ + J(q)T F, (38)

where D(q) ∈ R5×5 is the inertia matrix, C(q, q̇) ∈ R5×5 is the matrix of Coriolis and
centrifugal terms, G(q) ∈ R5 is the gravity vector, τ ∈ R2 is the torque of joints, and B ∈
R5×2 is the generalized force mapping matrix. For a point-foot model, F =

[
Fx, Fy

]
is a

vector comprising the x-axis and y-axis components of the contact force, and J(q) ∈ R5×2

is the Jacobian of coordinates of the contact point.
During the process of high-speed sliding, the contact force needs to satisfy (7) and (8)

so that the dynamics Equation (38) can be rewritten as

Dsl q̈ + Csl q̇ + Gsl = Bτ, (39)

where

Dsl = D(q)−mJ(q)T
[

02×2 −µJy
Jy

]
, (40)

Csl = C(q, q̇)−mJ(q)T
[

02×2 −µ J̇y
J̇y

]
, (41)

Gsl = G(q)−mJ(q)T
[
−µg

g

]
. (42)
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Similarly, according to Equations (8) and (16), the dynamic equation for standing is
rewritten as

Dst q̈ + Cst q̇ + Gst = Bτ, (43)

where

Dst = D(q)−mJ(q)T
[

02×2 Jx
Jy

]
, (44)

Cst = C(q, q̇)−mJ(q)T
[

02×2 J̇x
J̇y

]
, (45)

Gst = G(q)−mJ(q)T
[

0
g

]
. (46)

Using X to represent sl and st, the dynamic Equations (39) and (43) are rewritten in
the standard form of dynamic constraints in QP:[

DX −B 01×2]u = −CX q̇− GX . (47)

3.4. Contact Constraints

The QP controller should be subject to (3) so that the validity of the dual-objective
convergence equation is maintained. However, Pst in Equation (20) is a positive constant
and Psl in Equation (12) is equal to the vertical contact force Fy. Therefore, the constraint in
(3) can be included in the contact constraints.

3.4.1. Contact Constraint in Sliding

During the sliding process, in addition to satisfying the constraint in (12), Fy also
needs to be limited within a certain range, which not only ensures that the robot’s sole
is in full contact with the ground but also avoids an excessive contact force. Therefore,
the constraint inequation Φsl is established:

Φsl : αminmg < Fy < αmaxmg, (48)

where αmin and αmax are the max and min proportions of the vertical contact force. By di-
viding both sides of this inequality Φsl by the robot’s total mass m, the contact constraint is
expressed as [

02×2 −Jy
Jy

02×4
]

u <

[
J̇y q̇p + g− αming
− J̇y q̇p − g + αmaxg

]
. (49)

3.4.2. Contact Constraint in Standing

Standing on the ground without slipping requires the contact force to be inside the
friction cone. Considering the same conditions as for Φsl , the constraint equation Φst can
be derived as

Φst :


αminmg < Fy < αmaxmg

−µFy < Fx < µFy

. (50)

Similar to inequation (49), Φst can be converted to a contact constraint inequation:04×2

−Jy
Jy

−µJy − Jx
−µJy + Jx

04×4

u <


J̇y q̇p + g− αming
− J̇y q̇p − g + αmaxg
J̇x q̇p + µ J̇y q̇p + µg
− J̇x q̇p + µ J̇y q̇p + µg

. (51)
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4. Results

We use Simscape Multibody software to verify the control methods mentioned above.
Simscape Multibody is a Simulink toolbox for physical multibody modeling that provides
a simulation environment for three-dimensional mechanical systems. To verify the appli-
cability of the above balance control method, we design the bipedal rigid body structure
by linking the trunk, thigh and calf through revolute joint blocks. The input to a joint is a
torque while the output of a joint is an angle and angular velocity. The floating coordinates
of the robot comprise a two-DoF prismatic joint and one-DoF revolute joint and are fixed
connection with the torso. For contact, we use the sphere-to-plane contact block in the
Simscape Multibody Contact Forces Library [33] to build the contact model of the end of the
calf and the ground. The control system runs at a frequency of 1 kHz, and the optimization
problem is solved using the quadprog solver in the Optimization Toolbox for Matlab.

The simulation comprises three parts. The first part verifies the sliding capability
on uneven ground with a low-friction coefficient. The second part verifies the sliding
balance ability on ground with a variable friction coefficient. The third part verifies the
standing balance recovery for a low-friction coefficient. The total mass of the model is
26.9 kg, with the mass of the torso being 15.6 kg and the mass of the leg being 11.3 kg.
The mechanical parameters used in the simulation are presented in Table 1.

Table 1. Mechanical parameters used in the simulation.

Description Symbol Value Unit

torso mass m0 15.6 Kg
thigh mass m1 6.8 Kg
calf mass m2 4.5 Kg

torso inertia I0 0.49 Kg ·m2

thigh inertia I1 0.11 Kg ·m2

calf inertia I2 0.09 Kg ·m2

torso length l0 0.40 m
thigh length l1 0.33 m
calf length l2 0.33 m

4.1. Balance in Sliding on Uneven Terrain

To verify the sliding capability on uneven terrain, a terrain including both uphill
and downhill is modeled in the simulation scene. The robot is initially set to slide across
the horizontal plane at an initial speed of 5 m/s and then slide into a trapezoidal terrain
comprising an uphill, flat-top and downhill. The lengths of the uphill, flat-top and downhill
sections are 2 m, the friction coefficient is 0.15, and the slope is 10 degrees. The robot is
released from a balanced posture with the torso upright and the knees bent at 90 degrees.
The parameters of the control system are given in Table 2 and the friction coefficient of
the control system is estimated according to Equation (15) during the sliding. Figure 5
shows snapshots of the sliding simulation when the slope changes and the sliding stops.
The sliding slope changes at 0.23, 0.75, 1.73 and 2.97s, after which the robot adjusts its
attitude and recovers to the torso recovery state. The simulated motion is shown in the
supplemental video.
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t = 0.23

(a)

t = 0.75

(b)

t = 1.73

(c)

t = 2.97

(d)

t = 4.12

(e)

Figure 5. Snapshots of sliding on uneven terrain: (a) sliding from the bottom to the uphill, (b) sliding from the uphill to the
flat-top, (c) sliding from the flat-top to the downhill, (d) sliding from the downhill to the bottom, (e) sliding having stopped.

Table 2. Control parameters in sliding.

Description Symbol Value

dual-objective proportion ε 0.025
torso control parameter Kθ [0.50, 0.25, 0.04, 0.02, 10π/180, 500π/180, 0.0125, 0.0156]

equilibrium variable PD parameter KUsl [2.5, 0.02, 3.0, 0.5, 50.0, 1.0]
knee PD parameter Kq2 [π, 10π/180, 1.5π, 0.5, 20π, 200π/180]

equilibrium variable relaxations weight in QP ρUsl 1000
knee relaxations weight in QP ρq2 1

max Vertical contact force proportion αmax 2.5
min Vertical contact force proportion αmin 0.5

Figure 6 shows the results of the friction coefficient estimation. The estimated friction
coefficient changes as the robot slides onto a new slope. On the uphill and downhill,
the estimated friction coefficient finally stabilizes at 0.338 and −0.025, which correspond
to ground angles of 10.1 and −10.0 degrees estimated using Equation (14). Therefore,
the friction coefficient estimated by the contact force effectively compensates for the ground
slope angle.
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Figure 6. Trajectory of the estimated friction coefficient when the robot slides on uneven terrain.

Figure 7 shows the tracking result for the equilibrium variable. Abrupt changes in
the estimated friction coefficient led to mutations in the equilibrium variable. There are a
total of four mutations in the simulation, and the time from mutation to a reduction in the
tracking error to less than ρU − ∆ρU (the maximum allowable error in Equation (22) for
fully activating the equilibrium buffer) is 0.14, 0.12, 0.12 and 0.18 s. This result indicates
that the dynamics-based control system can quickly converge from an unbalanced state to
a stable torso recovery state.



Appl. Sci. 2021, 11, 4016 13 of 20

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

-0.20

-0.15

-0.10

-0.05

 0.00

 0.05

 0.10

 0.15

 0.20

E
q
u

il
ib

ri
u
m

 v
ar

ia
b
le

 (
m

)

U
sl

ref

U
sl

Figure 7. Trajectory of the equilibrium variable when the robot slides on uneven terrain.

Figure 8 shows the trajectory of the postural stability criterion. The tracking error of
Usl will increase when the slope angle changes. Therefore, the control state of the system
will deviate from the dual-objective convergence state and the posture stability criterion
will diverge. The maximum deviation amplitude of the postural stability criterion in the
sliding process is 2.1 Kg · m2/s. At t = 2.2 to 2.9 s and at t = 3.6 s to the moment of that
the robot stops, Esl maintains an offset of −0.38 kg · m2/s and 0.27 kg · m2/s, respectively.
This is because the robot is in the torso recovery state, where the robot recovers its torso
posture while maintaining the equilibrium position.
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Figure 8. Trajectory of the postural stability criterion when the robot slides on uneven terrain.

The trajectory of the torso recovery coefficient is shown in Figure 9. In the sliding
process, the maximum time interval between the robot sliding to a new sliding angle and
the torso recovery coefficient rising to 1 is 0.43 s. When the robot is in the torso recovery
stage, the torso control strategy proposed in this article can adjust the ratio of the torso
recovery coefficient to ensure that the amplitude of Esl will not diverge during the sliding
process. Figure 10 shows the simulation result for the torso angle. During the sliding
process, the torso angle is effectively controlled within 60 degrees.
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Figure 9. Trajectory of the torso recovery coefficient when the robot slides on uneven terrain.
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Figure 10. Trajectory of the torso angle when the robot slides on uneven terrain.

When the robot is sliding rapidly and especially when the torso is swinging rapidly,
a large Coriolis force will act on the robot’s leg. Through the contact constraint proposed
in this article, the vertical contact force is limited to between 132 and 659 N as shown in
Figure 11. This simulation demonstrates that the robot can quickly stabilize its posture and
gradually adjust its torso angle on terrain with a variable sliding angle.

Figure 11. Vertical contact force when the robot slides on uneven terrain.

4.2. Balance Recovery on Terrain with a Variable Coefficient of Friction

The proposed control method has good adaptability on the ground with a variable
friction coefficient. We use the same control parameters adopted in the previous experiment,
and the friction coefficient of the ground is again estimated by measuring the contact force.
In the simulation, the robot is released from the equilibrium position at a speed of 5 m/s.
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The friction coefficient of the ground is set as a sinusoidal function of the ground length
with a magnitude range of 0.05 to 0.25. The equation for the friction coefficient is

µground = 0.15 + 0.1× sin
(

2π × ground length
2

)
.

Figure 12 shows the trajectories of the estimated friction coefficient and the actual
friction coefficient. With the deceleration of the robot’s sliding, the fluctuating frequency
of the friction coefficient gradually decreases, and the robot finally stops sliding after
3.6 s. Figure 13 shows the tracking result for the equilibrium variable. The tracking error
gradually decreases as the sliding decelerates. The tracking error during the sliding has
a maximum value of 0.024 m and decreases to 0.005 m at 1.48 s before the sliding stops.
Figure 14 shows the trajectory of the robot’s torso angle. Throughout the sliding process,
the robot’s torso angle remains within 20 degrees. The simulation results show that the
control method proposed in this article can maintain the balance of the robot on terrain
that has a continuous change in the friction coefficient.
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Figure 12. Trajectory of the estimated friction coefficient when the robot slides on terrain with a
variable friction coefficient.
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Figure 13. Trajectory of the equilibrium variable when the robot slides on terrain with a variable
friction coefficient.
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Figure 14. Trajectory of the torso angle when the robot slides on terrain with a variable friction coefficient.

4.3. Balance Recovery in Standing

We use the proposed method to realize self-balancing when the robot stands on ground
with a low-friction coefficient consistent with the first case of simulation. The control
parameters of the robot are given in Table 3. Meanwhile, to verify the control performance,
we set an x-axis offset of the CoM of 0.02 m and release the robot in a static posture.
Figure 15 shows snapshots of the simulation video. On the horizontal ground, the robot
stably recovers its torso without slipping and finally restores its torso to a vertical posture
after 6.0 s.

t = 0.0 t = 1.0 t = 2.0 t = 3.0 t = 4.0 t = 5.0 t = 6.0

Figure 15. Snapshots of the posture recovery when the robot stands on ground with a low-friction coefficient.

Table 3. Control parameters in standing.

Description Symbol Value

dual-objective proportion ε 0.01
torso control parameter Kθ [1.0, 0.5, 0.02, 0.01, 10π/180, 1000π/180, 0.002, 0.003]

equilibrium variable PD parameter KUst [1.0, 0.02, 1.5, 1.5, 9.8, 0.2]
knee PD parameter Kq2 [π, 10π/180, 1.5π, 0.5, 20π, 200π/180]

equilibrium variable relaxations weight in QP ρUst 1
knee relaxations weight in QP ρq2 1

max Vertical contact force proportion αmax 2.5
min Vertical contact force proportion αmin 0.5

Figure 16 shows the tracking results for the equilibrium variable when the robot is
standing. The equilibrium variable reaches a maximum positive deviation of 0.012 m at
t = 0.33 s and converges to within 0.001 m at t = 0.66 s. Figure 17 shows the torso angle
trajectory. At t = 0.5 s, the torso angle reaches a maximum deflection angle of 78 degrees,
and the torso angle is then in a stable convergence state. For the underactuated robot in
the standing state, the CoM adjustment needs to be realized by rotating the torso, and the
proposed control method provides an efficient stability criterion, so that the torso enters
the convergence state after a major overshoot, thus avoiding the reciprocating swing of the
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torso. Figure 18 shows the expected force, actual force and friction limit of the model in the
horizontal direction. In the case of standing on low-friction terrain, the horizontal friction
falls to 85 N and is limited to the allowable range by the friction constraint in this article.
The simulation demonstrates that the method proposed in this article can effectively solve
the problem of a foot slipping as a result of an adjustment of the CoM when a robot stands
on terrain with a low-friction coefficient, and that it can control the horizontal contact force
within the limit of friction.
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Figure 16. Trajectory of the equilibrium variable when the robot is sliding.
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Figure 17. Trajectory of the torso angle when the robot is sliding.

Figure 18. Horizontal contact force when the robot is sliding on terrain with a variable
friction coefficient.

5. Discussion

In this article, we introduced a novel dual-objective convergence method for construct-
ing the balance controller in sliding and standing states. Simulation demonstrated that the
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controller has good performance in both states. The dual-objective convergence equation
was constructed using the flywheel inverted-pendulum model, and the balance criterion of
the point-foot sliding model is the central angular momentum, which is similar to the CMP
criterion used for balance in the standing and walking of a humanoid. However, the CMP
method emphasizes the active control of the position relationship between the CMP and
CoM through ankle and hip strategies. In the case of the robot sliding on terrain with a
constant friction coefficient, as in the first simulation in this article, the CMP maintains
a certain angle with the CoM owing to the constant friction angle of the contact surface,
which makes it difficult to change the positional relationship. In contrast, the dual-objective
convergence method proposed in this article focuses on the adaptive adjustment of the
equilibrium position by changing the robot’s posture to adapt to the change in angular
momentum, which is suitable for sliding friction conditions. In addition, the dual-objective
convergence equation can be established using the robot’s dynamics model or other mod-
els, while the physical meaning of the dual-objective convergence equation established
using a flywheel inverted pendulum is more explicit and more convenient for tuning the
control parameters.

For task tracking, on the one hand, the QP optimization method proposed in this article
can effectively handle the limitation of the contact force, which is an important balance
requirement for the robot when changing posture rapidly. In addition, the QP framework
can easily extend constraints to meet further requirements for constraints on more complex
terrain. However, the QP method is an instantaneous optimization, and owing to the lack
of feed-forward information, a certain delay will occur during task tracking. It is predicted
that adopting differential dynamic programming or nonlinear model predictive control
will achieve a better tracking effect, but this will increase the computational occupancy of
the control algorithm, which is problematic for a high-frequency real-time control system.
In addition to our research, the underactuated point-foot structure requires a sufficient and
appropriate mass and inertia configuration to achieve effective task control. The larger
mass and inertia of the torso allow for a faster posture balance with a smaller torso rotation.
In contrast, the excessively small mass and inertia of the torso may result in multiple turns
of torso rotation during the posture balance control, and even lead to the failure of the
control algorithm.

6. Conclusions

This article presented a control framework based on the dual-objective convergence
method and quadratic programming optimization to realize the sliding balance of a point-
foot bipedal model. It was demonstrated that the point-foot model can cover a 10◦ trape-
zoidal terrain and maintain balance on flat ground with a sinusoidal friction coefficient
between 0.05 and 0.25 (whereas a robot sliding on ice has a friction coefficient of around
0.1). The main contribution of this article is that we designed a dual-objective convergence
equation for the balance control of an underactuated point-foot system. First, through
the double-convergence equation, we provided a control system with an equilibrium tar-
get that can control several degrees of freedom of the robot system that is greater than
the number of its own dimensions. Second, we used a torso recovery strategy based on
coefficient regulation and torso state feedback control to adjust the equilibrium target,
which allowed the torso to eventually return to its upright posture instead of remaining
in any other position. Finally, the quadratic programming optimization was adopted to
realize efficient task tracking under constraints of dynamics, friction and contact forces.
Furthermore, by switching to the standing model to rebuild the convergence equation and
additional standing constraints, the dual-objective convergence method could be extended
to standing balance, where the simulation results show that the control model can recover
from an unstable state with a center of mass offset of 0.02 m to a stable posture with an
upright torso. The method will have good scalability when the research scope is extended
to more point-foot motion scenes and other balance control platforms, which is conducive
to building stability criteria, generating balance tasks, and adapting to environmental
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constraints. In future work, first, we will introduce reinforcement learning to investigate
the adaptive equilibrium position adjustment method under unexpected and undefined
loads. Second, we will use machine vision to estimate the robot’s sliding speed and thus
establish the switching control of the process from sliding to standing. Third, we will
conduct experiments with a physical robot platform, which will face practical challenges
such as state estimation, execution error and mechanism limits. Finally, we expect to extend
the application of our method to bipedal jumping and running control.
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