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Abstract: Cost management of microgrids represents a real challenge since the power generation of
microgrids is usually composed of different renewable and non-renewable sources. Additionally, it
is always desired to make a connection between the microgrid and national grid to secure the load
demand and to fit the regulations of liberated energy markets. Because of all these reasons, it is
essential to develop a smart energy management unit to control different energy resources within the
microgrid to achieve minimum operation costs. This paper presents a proposal for a smart unit for
the cost management and operation of multi-source based microgrids. The proposed unit utilizes
the Harris hawk optimization (HHO) algorithm which is used to optimize the cost of operation
based on current load demand, energy prices and generation capacities. The proposed unit is tested
on a microgrid with different energy resources using MATLAB while applying different operation
scenarios. All simulation results show that the proposed unit succeeds in operating the microgrid at
minimum cost. Obtained results are compared with other optimization algorithms and the proposed
Harris hawk algorithm gives superior performance.

Keywords: energy management; microgrids; optimization; metaheuristic

1. Introduction

The demand for renewable energy as a resource for electrical power is being increased
rapidly. This is because of several reasons, including that they don’t have negative impacts
on environment and have low operation costs when compared to classical power generation
methods. However, there are a lot of limitations and challenges that must be surmounted
to harness the energy from renewable resources effectively [1]. One of these challenges of
renewable energy resources is that they must be installed in limited locations. Moreover,
their output power depends on the current environmental and weather conditions, which
means that they may not be able to supply the demand at certain times. All these limitations
have directed researchers to a new concept of electric distribution, which is the microgrid
(MG) [2,3]. A microgrid is a distribution network that supplies certain loads from different
distributed energy resources (DERs), such as photovoltaic (PV), wind turbines (WT), diesel
engine generators (DEGs), fuel cells (FC) and battery storage [4]. Additionally, a microgrid
usually has a connection with the unified grid. This connection is established to enable
the power exchange between the grids to maximize the load security. Furthermore, the
microgrid can sell excess power to unified grids [5].

To get the maximum benefits of microgrids, it is important to have an energy manage-
ment system (EMS) to be responsible for the operation and control of different DERs and
power exchange between the microgrid [6,7] and the grid as shown in Figure 1.
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Figure 1. Example of a microgrid with an energy management system (EMS) based on Harris hawk
optimization (HHO) proposed in this paper.

The main role of the EMS is to decide the amount of energy that needs to be supplied
by the DERs within the microgrid and to organize the power exchange between the unified
grid and the microgrids. The decisions of the EMS are based on the ability of DERs and the
current prices of energy. This means that the EMS must take accurate decisions to balance
between increasing local production and maximizing economic revenue. Consequently,
energy management of microgrids forms a highly constrained optimization problem and
this optimization problem is usually considered an offline one [8].

From the above-mentioned explanation, it is clear that the EMS’s objective function
depends on providing various types of data. Some of these data can be easily determined,
such as the generation capacities of the grid and microturbines. However, most of them
depend on forecasts and estimations such as loading limits, wind speed, solar irradiance,
energy prices, etc. As a result, the researchers have followed two techniques in optimizing
the EMS’s objective function [9,10].

The first is the deterministic approach: in this approach, all forecasted data are taken
into consideration as they are assuming that they have very high accuracy. The other
approach is the probabilistic approach in which all forecasted data are put in the form of
variables. Each variable has a probability that resembles the accuracy of the forecast.

Researchers have applied many optimization algorithms to solve the EMS problem.
One of the famous techniques is linear programming (LP) which considers the power
balance and generation limits of the distributed generation units. However, this method
suffers from one main disadvantage, which is a high computational burden [11–13].

One of the popular optimization techniques that have been incorporated in solving
the EMS problem is dynamic programming (DP). The main advantage of this method is
its ability to divide the EMS into smaller sub-problems. This means that the optimization



Appl. Sci. 2021, 11, 4085 3 of 15

technique will solve sequential problems instead of solving one sophisticated problem,
which helps in reaching the optimum solution with quick and accurate performance.
However, the operation of this algorithm is considered difficult since it includes a high
number of recursive functions [14].

In [15], a genetic algorithm is used in optimizing the EMS’s objective function. This
method has better computational burden when compared to LP. However, still the compu-
tational complexity exists.

Multi agent (MA) optimization has gained great researchers attraction in solving the
EMS optimization problem. Although this method has relatively high accuracy considering
many constrains, it suffers also from high computational complexity and time [16–19].

Particle swarm optimization (PSO) has attracted many researchers as well to use it
in the optimization of the EMS problem. This method showed better results compared to
previously mentioned methods in terms of accuracy and computational burden [15,20].

In [21], authors proposed the artificial bee colony (ABC) to solve the EMS problem. Al-
though this method is considered quite simple and has robust performance, the formulation
of the EMS problem to adapt between it and the algorithm is considered complex as this
technique is suitable for objective functions that do not have high number of parameters.

This technique has directed many researchers to use various meta-heuristic opti-
mization algorithms such as grey wolf optimization (GWO) [22], evolutionary algorithms
(EA), etc.

Another research direction led by many researchers depends on coordinated control.
In [23] a coordinated controller for a microgrid based on a predictive model and voltage
control is presented. The main advantage of this method is that it needs less effort in the
tuning of the controller. Authors of [24] also proposed a multi-layer coordinated control
technique for the energy management of microgrids based on forecasting customer loading.
Furthermore, another method of coordinated control is presented in [25]. This method
depends on bi-level stochastic modelling.

Most of papers mentioned in literature have suffered from drawbacks (particularly in the
modelling of the system) that can be summarized in the following points [11,12,15,21,22,26–29]:

• Power losses are not taken into considered in some papers.
• Battery charging and discharging intervals are not considered in some papers.
• High computational complexity in some of the above indicated references.

In this paper, the Harris hawk optimization (HHO) is used in solving the EMS op-
timization problem in a grid connected microgrids. The algorithm is applied to a highly
constrained objective function which takes into consideration many important constraints
such as power balance, generation power capacities, spinning reserve and energy stor-
age limits (including charging and discharging rates). The proposed algorithm shows
an improved performance compared to other algorithms used previously in literature in
terms of speed of convergence and minimization of cost of operation when compared
head-to-head and applied to same test bench. The proposed HHO algorithm may form a
good optimization technique for solving other optimization problems in the power and
energy fields.

The rest of this paper is organized as follows: Section 2 shows the problem formulation
of the EMS optimization problem, while Section 3 explains the HHO algorithm and its ap-
plication to the proposed EMS optimization algorithm. In Section 4 the results of applying
the proposed EMS optimization algorithm to a real microgrid with two different operating
scenarios are presented. In Sections 5 and 6, respectively, the discussion and conclusion are
presented for the evaluation of the effectiveness of the proposed EMS algorithm.

2. EMS Problem Formulation

The EMS problem is defined as minimizing the operational cost of the microgrid by
means of adjusting the generation parameters of different DERs and the utility grid. The
optimization problem also considers open market prices for energy received from the grid
and DERs.
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2.1. Objective Function

As mentioned before, the objective function of the EMS is to minimize the operation
cost of the microgrid as shown in Equation (1):

min
x F = min x

NT

∑
t=1

NG

∑
i=1

[BGi(Pt
Gi) + MPt·Pt

Grid] (1)

where Pt
Gi is the generated active power of the generator i at time t. Pt

Grid is the power
exchanged between the utility grid and the microgrid at time t. BGi is the cost per kW of the
active power generated by the ith DER. MPt is the market price of active power exchanged
between the utility grid and the local microgrid.

NT is the total hours included in the objective function which is usually a 24 h period
and NG is the total number of distributed generation units including storage units.

2.2. Constraints of the Objective Function

To simulate the real response of a microgrid against the decisions of the EMS, it is
essential to put many constraints that are mandatory for smooth operation of the microgrid.

The first constraint is that all active power generated by all DERs and the grid must
equal the load active power as per Equation (2).

NG

∑
i=1

Pt
Gi + Pt

Grid =
ND

∑
D=1

[Pt
LD

] (2)

where Pt
LD

is the value of the load active power at time t, ND is total number of load levels.
Additionally, it is important to include the generation limits for each DER and the

utility grid as illustrated in Equations (3) and (4). These are mandatory to guarantee stable
operation of the microgrid.

Pt
Gi,min ≤ Pt

Gi ≤ Pt
Gi,max (3)

Pt
Grid,min ≤ Pt

Grid ≤ Pt
Grid,max (4)

where Pt
Gi,min and Pt

Gi,max are the generating limits of the generator i at time t while Pt
Grid,min

and Pt
Grid,max are the generating limits of the utility grid at time t.

To keep the system running with high reliability, it is essential to include a portion of
the microgrid generation capacity as spinning reserve, especially if most of the DERs are
from renewable resources that may suffer from output instability. Equation (5) describes
how the criteria of spinning reserves are met.

NG

∑
i=1

Pt
Gi,max + Pt

Grid,max ≥
ND

∑
D=1

[Pt
LD

+ Rt] (5)

where Rt is the scheduled spinning reserve at time t.
One of the important constraints for energy storage elements is the limitation of charge

and discharge cycles, especially the time interval needed for each cycle. The amount of
energy stored in the battery is calculated based on the following rule:

Wess,t = Wess,t−1 + ηchargePcharge∆t− 1
ηdischarge

Pdischarge∆t (6)

{
Wess,min ≤Wess,t ≤Wess,max

Pcharge,t ≤ Pcharge,max; Pdischarge,t ≤ Pdischarge,max
(7)

where Wess is the amount of energy stored in the battery. Pcharge is the allowed rate of
charge while Pdischarge is the allowed rate of discharge. ∆t is a predefined time period in
which the rate of charge or discharge is allowed.
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2.3. Calculation of Energy Cost and Bids for the Microgrid Elements

According to the EMS objective function mentioned in Equation (1), the main role of
the EMS is to reduce the energy cost of the microgrid. Because of this, it is very important
to calculate the energy cost of each source used in the microgrid and the energy price of
the utility grid.

Regarding the fuel cell and the microturbine, the bid price is calculated according to (8):

BG = C f uel ·
PG
ηG

+ Cinv (8)

where BG is the bid price in €/h and C f uel is the price of fuel in €/kW h. PG is the electrical
output power in kW. ηG is the efficiency of the generation unit. Cinv is the payback amount
of the cost of investment of the generation unit which can be get from (9) as follows:

Cinv = AC
PGnom

AP
(9)

where PGnom is the nominal generation power of the generation unit. AP is the annual
energy production in kW h/kW. AC is the annual investment cost which is based on the
following rule:

AC =
i(1 + i)n

(1 + i)n − 1
+ IC (10)

where i is the interest rate, n is the depreciation period and IC is the installation cost.

3. Proposed HHO-Based EMS

Harris hawk optimization is a metaheuristic optimization which was proposed in [30],
and its mathematical model is inspired from the cooperative behavior of Harris hawks in
hunting, chasing and besieging their victims. The HHO is based on population optimization
without having any gradients which gives it competitive edge over other techniques in
terms of speed of conversion.

The HHO consists of two main phases: exploration and exploitation. Additionally,
there is a transition phase though which the algorithm is switched from exploration
to exploitation.

In the exploration phase, Harris hawks start to search randomly for victims as per the
following equation:

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)|q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB))q < 0.5

(11)

where X(t + 1) is the location of the hawks in the iteration (t + 1), Xrabbit(t) is the location
of the rabbit (the victim), r1 to r4 and q are random numbers that can vary between 0 and 1,
Xrand(t) represents a hawk which is chosen randomly and Xm is the average location of
the current population of hawks which can be calculated from Equation (12):

Xm(t) =
1
N

N

∑
i=1

Xi(t) (12)

where Xi(t) indicates the position of each hawk at iteration t while N represents the total
number of hawks.

As mentioned above, after finishing the exploration stage, there is a transient stage
before moving to the exploitation stage. At this transient stage, it is necessary to model the
energy of the rabbit as per Equation (13):

E = 2E0

(
1− t

T

)
(13)
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where E is the escaping energy of the rabbit, T is the maximum number of iterations and E0
is the initial state of the rabbit energy. The value of E0 is varying between −1 and 1 based
on the physical fitness of the victim. When E0 goes towards −1, this means that the victim
is losing its energy and vice versa.

According to the behavior of rabbits, the relation between the rabbit energy and the
time is inversely proportional. This means that as long as t increases, the E is decreased.
Based on E, Harris hawks also decide to either search different areas to detect the location
of the rabbit when |E| ≥ 1 or move forward to the exploitation phase.

In the exploitation phase, there are two behaviors that need to be modelled. The
first is the soft besiege in which the rabbit energy is still high and can run fast; in this
condition Harris hawks try to softly follow and put it under surveillance until it starts to
get exhausted. The second behavior is the hard besiege; the prey in this behavior is tired
and has no sufficient energy to escape. As a result, the Harris hawks in this mode form
closed circles to make a sudden attack. Figure 2 shows Harris hawk attack patterns.
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To mathematically model the two behaviors, let r be the percentage of the successful
escape of the rabbit. If |E| ≥ 0.5 and r ≥ 0.5, this means that the rabbit has relatively high
escaping energy and at the same time the chance of successful escape is higher than 50%.
This means that the Harris hawks will perform a soft besiege and will update their location
according to Equation (14):

X(t + 1) = ∆X(t)− E|J Xrabbit(t)− X(t)| (14)

where ∆X(t) is the position difference between the rabbit and the hawks. This value can
be calculated as follows:

∆X(t) = Xrabbit(t)− X(t) (15)

where J is a random number that represents the jump strength that can be met from
Equation (16) as follows:

J = 2(1− r5) (16)

where r5 is a random number that varies between 0 and 1.
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If |E| ≥ 0.5 and r < 0.5, this means that the rabbit has high energy. However, the
chance of successfully escaping is not big. In this case, the Harris hawks will perform a soft
besiege but with progressive and rapid dives. The next movement of the hawks will be
updated according to:

Y = Xrabbit(t)− E|J Xrabbit(t)− X(t)| (17)

The hawks then will compare the current position with the previous dive to evaluate
which is better. If the previous dive is better, the hawks will use it. If not, the hawks will
then apply new dive using the levy flight (LF) equation:

Z = Y + S·LF(D) (18)

where D is the problem dimension and S is a random vector with size of 1 × D. The LF
function can be calculated according to (19) as noted in [31]:

LF = 0.01

 u·σ

|v|
1
β

 (19)

where u and v are random numbers that vary between 0 and 1. β is a constant value of 1.5.
σ is calculated using:

σ =

 (1 + β) sin
(

πβ
2

)
(1+β)

2 ·β·2
β−1

2


1
β

(20)

The Harris hawks will then evaluate the positions Y and Z and then select the best
position based on (21):

X(t + 1) =
{

Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(21)

where only the better location of either Y or Z will be used to update the hawk’s position.
If |E| < 0.5 and r ≥ 0.5, this means that the rabbit has relatively low energy but it has

a moderate chance of a successful escape. In this condition, the hawks will perform a hard
besiege and will update their equation based on Equation (22):

X(t + 1) = Xrabbit(t)− E|∆X(t)| (22)

If |E| < 0.5 and r < 0.5, this means that the victim has low energy and also has a
low chance to escape. In this situation, the hawks will also perform a hard besiege but
with progressive rapid dives at which the next position of the hawks will be updated
using Equation (21). Z will be calculated from Equation (18) and Y will be calculated using
Equation (23) as follows:

Y = Xrabbit(t)− E|J Xrabbit(t)− Xm(t)| (23)

The proposed EMS uses the HHO in evaluating the optimum values for generated
powers from different DGs within the microgrid. The HHO in this optimization problem
will consider the DG-generated powers as the location of the Harris hawks and the prey
will represent the energy cost. Figure 3 shows a flowchart of the proposed HHO algorithm
while Figure 4 shows a flowchart for the proposed EMS algorithm.
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4. Simulation Results

To validate the effectiveness of the proposed algorithm, a microgrid is simulated using
MATLAB. The output power of its DG units and grid is set by the proposed EMS. The
simulated microgrid consists of PV, WT, DEG, FC, battery storage and a connection to the
utility grid. This benchmark has been used by previous research [31] and has been chosen
to be simulated in this paper in order to be able to compare obtained results with previous
research results available in literature. Table 1 shows the minimum and maximum output
power of each element of the microgrid as well as coefficients of bid functions, where the
negative sign indicates direction of power flow. Table 2 presents sample forecast values
for the load demand and DG units’ powers along with market price. Two case studies
are simulated to evaluate the effectiveness of the proposed HHO-based EMS on different
operating conditions. Cost is expressed in units of euro cents (€ ct).

Table 1. Power limits and coefficients of bid functions of the installed distributed generation (DG) units.

ID DG Minimum Power (kW) Maximum Power (kW) ai (€ct/kw h2) bi (€ct/kw h) ci (€ct/h)

1 PV 0 25 0 2.584 0
2 WT 0 15 0 1.073 0
3 MT 6 30 0 0.457 0
4 FC 3 30 0 0.294 0
5 Battery −30 30 0 0.38 0
6 Utility −30 30 0 - 0
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Table 2. The forecast values of load demand, market price, wind and photovoltaic (PV)
power production.

Time (h) Load (KW) MP (cent/KW h) WT (KW) PV (KW)

1 52 0.23 1.785 0
2 50 0.19 1.785 0
3 50 0.14 1.785 0
4 51 0.12 1.785 0
5 56 0.12 1.785 0
6 63 0.2 0.915 0
7 70 0.23 1.785 0
8 75 0.38 1.305 0.2
9 76 1.5 1.785 3.75

10 80 4 3.09 7.525
11 78 4 8.775 10.45
12 74 4 10.41 11.95
13 72 1.5 3.915 23.9
14 72 4 2.37 21.05
15 76 2 1.785 7.875
16 80 1.95 1.305 4.225
17 85 0.6 1.785 0.55
18 88 0.41 1.785 0
19 90 0.35 1.302 0
20 87 0.43 1.785 0
21 78 1.17 1.3005 0
22 71 0.54 1.3005 0
23 65 0.3 0.915 0
24 56 0.26 0.615 0

4.1. Case Study 1

In this case, the PV and WT will supply their maximum available generating power
according to the hourly forecast. The proposed EMS controls and sets the output power of
the other DG units to decrease the generating cost and according to their corresponding
power limits and constraints.

The results of the proposed algorithm are tabulated in Table 3. When observing the
behavior of the proposed EMS during the first and last eight hours of the day, results
show that during these periods the proposed EMS depends on the FC and the utility grid
for generating the largest portion of output power. This occurs because the energy price
during these periods is low which means that generating electricity from the utility grid is
cheaper than the DEGs. This is not the case at midday, when the EMS mainly depends on
the PV, WT and DEG units as the energy price of the utility grid is expensive.

4.2. Case Study 2

In this case, the output power of all DG units including PV and WT are controlled
by the EMS within their constrains and power limits. The results of this case, which are
shown in Table 4, show a huge reduction in the total cost of energy compared to that of
case 1. The reason for this is that the EMS fully controls DG units aiming to reduce the total
cost. This leads to higher dependency on the utility grid during low energy bids.

Results of both cases show the HHO algorithm functions properly during different
modes of operation for the EMS. Figure 5, which indicates the conversion curve sample
of the HHO algorithm, clearly shows the effectiveness of the proposed method as the
conversion rate is fast during both cases.
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Table 3. Results of Case Study 1.

Time (h)
Power (KW)

Cost (€ ct/h)
PV WT DEG FC Battery Utility

1 0 1.785 6 29.9998 −15.7848 30 14.379
2 0 1.785 6 30 −17.785 30 12.419
3 0 1.785 6.0004 29.9992 −17.7845 30 10.919
4 0 1.785 6 30 −16.785 30 10.699
5 0 1.785 6.0036 29.9966 −11.7853 30 12.5996
6 0 0.915 6 30 −3.915 30 17.0561
7 0 1.785 6 30 2.215 30 21.219
8 0.2 1.305 6 30 16.2095 21.2855 27.7272
9 3.75 1.785 30 30 30 −19.535 16.2328

10 7.525 3.09 30 30 30 −20.615 −25.7698
11 10.45 8.775 29.4079 29.4837 29.8834 −30 −50.1183
12 11.59 10.41 22 30 30 −30 −48.6075
13 23.9 3.915 14.185 30 30 −30 47.6609
14 21.05 2.37 26.7396 21.9189 29.9215 −30 −33.0295
15 7.875 1.785 30 30 30 −23.66 8.8743
16 4.25 1.305 30 30 30 −15.53 15.9642
17 0.55 1.785 30 30 30 −7.335 32.8655
18 0 1.785 6 30 30 20.2094 33.1655
19 0 1.302 6 30 22.698 30 32.0843
20 0 1.785 6 30 30 19.2127 33.1398
21 0 1.3005 30 30 30 −13.3005 19.7639
22 0 1.3005 30 30 30 −20.3005 24.3632
23 0 0.915 6 30 −1.91499 30 20.8161
24 0 0.615 6 29.9816 −10.5966 30 15.9898

Total cost (€ct) 270.413

Table 4. The best solutions obtained for solving EOM problem for Case Study 2.

Time (h)
Power (KW)

Cost (€ ct/h)
PV WT DEG FC Battery Utility

1 0 0 6 29.9956 −13.9956 30 13.1424
2 0 0 6 27.7428 −13.7428 30 11.3761
3 0 8.395 6 5.605 8.395 30 11.7681
4 0 0.203 6 24.0398 −9.0398 30 9.9746
5 0 0.9594 6.1085 3 17.1042 28.8279 13.684
6 0 0 6 29.9911 −2.9911 30 16.4228
7 0 0 6 29.9957 4.00428 30 19.9824
8 0 0 6 29.9814 26.3168 12.7019 26.382
9 0 15 30 30 30 −29 6.525
10 5.7592 15 30 30 29.2408 −30 −55.3818
11 3 15 30 30 30 −30 −62.223
12 2.4681 11.8479 29.9361 29.8615 29.8725 −29.9861 −67.0539
13 0 12.9193 29.0709 30 29.9981 −29.9883 2.3731
14 2.0125 9.9875 30 30 30 −30 −70.1531
15 0 15 30 30 30 −29 −7.975
16 0 15 30 30 30 −25 1.275
17 0 0 30 30 30 −5 30.93
18 0 0 6 30 30 22 31.982
19 0 0 6.0004 30 24.0017 29.9978 31.182
20 0 0 6 30 30 21 31.992
21 0 14.9999 29.9998 29.9998 29.9998 −26.9992 18.435
22 0 0 30 30 30 −19 23.67
23 0 0 6 29.9999 −0.9999 30 20.182
24 0 0 6.0008 10.1657 9.8369 29.9966 17.2679

Total cost (€ct) 75.7596
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5. Discussion and Analysis

In order to validate the obtained results confidently, it is important to compare the
results of HHO algorithm in both cases with earlier research results that used the ex-
act microgrid simulation model but with different optimization algorithms, such as fast
surrogate-assisted particle swarm optimization (FSAPSO) and several modified PSO algo-
rithms [31]. Table 5 shows the obtained results of the HHO algorithm along with results
of other previously proposed algorithms in literature. Number of objective function eval-
uations (OFE) carried out till best solution is reached is indicated where it is equal to 1×
number of agents × iterations. Additionally, the number of algorithm iterations needed till
best solution is reached is indicated in the table along the trials number. Although there is
a lack in information in [31], it can be noted that the proposed HHO algorithm successfully
reaches lower operating costs with lower iterations. It is suggested as future work to
take into consideration other constraints such as PV lifetime and power degradation, and
battery state of health and power degradation, where some modifications can be made to
power constraints, mentioned earlier in Table 1, accordingly, to give more realistic results
especially for long term simulations.

Table 5. Comparison of the obtained simulation results for the MG—Case 1 & 2 [31].

Case Method Number of
Agents

Best Solution
Obtained OFE’s Needed Iterations to

Converge
Trials

Carried Out

Case 1

PSO [31] - 277.3237 Up to 16,000 - 20
FSAPSO [31] - 276.7867 Up to 16,000 - 20
CPSO-T [31] - 275.0455 Up to 16,000 - 20
CPSO-L [31] - 274.7438 Up to 16,000 - 20

AMPSO-T [31] - 274.5507 Up to 16,000 - 20
AMPSO-L [31] - 274.4317 Up to 16,000 - 20

Proposed
HHO 50 270.413 Up to 7500 150 20

Case 2

GA [31] - 162.9469 Up to 16,000 - 20
PSO [31] - 162.0083 Up to 16,000 1000 20

FSAPSO [31] - 161.5561 Up to 16,000 750 20
CPSO-T [31] - 161.0580 Up to 16,000 - 20
CPSO-L [31] - 160.7708 Up to 16,000 - 20

AMPSO-T [31] - 159.9244 Up to 16,000 - 20
AMPSO-L [31] - 159.3628 Up to 16,000 - 20

Proposed
HHO 50 75.7596 Up to 8000 160 20
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6. Conclusions

Power generation cost optimization is considered one of the main problems facing
modern microgrids having different energy resources and interconnections. In this paper,
the generation cost optimization problem with all its constraints is explained in detail.
A new optimization technique, Harris hawk optimization, is presented thoroughly as
a proposed solution to the energy management optimization problem. The proposed
algorithm is tested using MATLAB simulation on a benchmark microgrid and results are
compared with previous research. The Harris hawk algorithm succeeded in achieving
much-improved results as it produced the lowest generation cost in comparison with
other widely used optimization algorithms. Obtained results indicate that the Harris hawk
algorithm should be tested further on other applications in the field of power and energy
management as it may form a strong and reliable computation algorithm.
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Nomenclature
The following symbols are used in this manuscript:
min
x F minimum operation cost
BGi cost per kW of active power generated by i
Pt

Gi generated active power of i
t time
Pt

Grid power exchange between utility grid and microgrid
MPt market price of active power exchanged
NT total hours
NG total number of distributed generations
ND total number of load levels
MG Microgrid
Pt

LD
load active power at time t

Pt
Gi,min minimum generation limit of generator i at time t

Pt
Gi,max maximum generation limit of generator i at time t

Pt
Grid,min minimum generation limit of utility grid at time t

Pt
Grid,max maximum generation limit of utility grid at time t

Rt cheduled spinning reserve at time t
Wess,t energy stored in battery
Wess,min minimum energy to be stored in battery
Wess,max maximum energy to be stored in battery
Pcharge rate of charge
Pdischarge rate of discharge
Pcharge,max max charge
Pdischarge,max max discharge
∆t predefined time for charge or discharge
ηcharge charge efficiency
ηdischarge discharge efficiency
BG bid price
C f uel price of fuel
PG output power
ηG generation unit efficiency
Cinv payback amount
PGnom nominal power generation
BG bid price
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AP annual energy production
AC annual investment cost
IC installation cost
X(t + 1) location of hawk at iteration t+1
Xrabbit(t) location of rabbit
Xrand(t) random choice of hawk
Xm average location of current population of hawks
Xi(t) position of hawk i at iteration t
N total number of hawks
E escaping energy of rabbit
E0 initial energy of rabbit
T maximum number if iterations
r percentage of successful rabbit escape
∆X(t) position difference between rabbit and hawks
J jump strength
r1 to r5, q random numbers between 0 and 1
LF levy flight
Y, Z next movement update
D problem dimension
S random vector with size 1 × D
u, v levy flight random value between 0 and 1
β constant of value 1.5
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