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Abstract: Scaffolding serves as one construction trade with high importance. However, scaffolding
suffers from low productivity and high cost in Australia. Activity Analysis is a continuous procedure
of assessing and improving the amount of time that craft workers spend on one single construction
trade, which is a functional method for monitoring onsite operation and analyzing conditions causing
delays or productivity decline. Workface assessment is an initial step for activity analysis to manually
record the time that workers spend on each activity category. This paper proposes a method of
automatic scaffolding workface assessment using a 2D video camera to capture scaffolding activities
and the model of key joints and skeleton extraction, as well as machine learning classifiers, were used
for activity classification. Additionally, a case study was conducted and showed that the proposed
method is a feasible and practical way for automatic scaffolding workface assessment.

Keywords: scaffolding; activity analysis; workface assessment; video camera; machine learning;
skeleton extraction

1. Introduction

With the rising competition in the construction industry nowadays, construction cor-
porations’ profits have largely reduced, however, project owners’ demands are increasing
both in quality and efficiency aspects [1]. The construction’s progress is an essential part
of the construction technologies improvement [2–4]. Once project delay or rework occurs
due to unsound construction management, it may result in profit decrease or even direct
financial and credibility loss. In the oil and gas industry, there is a huge demand for
scaffolding work during the construction and maintenance stage of a liquefied natural
gas (LNG) plant. In order to keep the LNG plants running smoothly and safely, regular
scaffolding erection and dismantlement are conducted for periodical inspections and part
replacement [5,6]. Currently, scaffolding work is often designed as a preliminary step
before the start of main construction tasks and also it has strong connections with other
onsite construction trades [7]. However, scaffolding suffers from low productivity and
high cost in Australia. One interview conducted with 56 construction contractors shows
that scaffolding represents one of the 16 types of most wasteful components of indirect
construction cost and its expense accounts for about 12–15% of the overall project cost [7,8].
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Thus, timely and successful delivery of scaffolding work becomes a vital starting point of an
entire construction project and it is also a crucial aspect for progress and cost management.

Project monitoring and controlling (PMC) is a management process that monitors and
controls an as-built project by periodically following and inspecting the project’s indices
such as progress, cost, workload, productivity and so on [9–12]. PMC is regarded as a
fundamental and key aspect in construction operations [13]. Continuous and effective
monitoring and assessment on productivity, progress and quality are core tasks in PMC,
which significantly impacts on the project’s ultimate success. The PMC provides an
opportunity to be aware of the ongoing as-built status and to identify as-built progress
delays and assists in launching amendments [1,14]. Flawless PMC can ensure that projects
are in accord with the budget and schedule [15]. However, the process of PMC has not been
fully automated and there is a lack of widely accepted industry benchmarks for accuracy
measurement [16]. In the last decade, there has been a huge demand for accurate and fast
automated monitoring methods in the industry of Architectural Engineering Construction
(AEC) [17–19].

Activity analysis is proved to be a feasible and practical approach for monitoring
onsite operations and analyzing the conditions causing delays or productivity decline [20].
Activity Analysis is defined as a continuous procedure of assessing and improving the
amount of time that craft workers spend on one specific construction trade. This amount of
time is referred to as direct work time. Direct work activity is the activity that construction
workers directly place physical effort towards. In 2010, the Construction Industry Institute
(CII) proposed a detailed guideline for activity analysis. According to CII, a workface
assessment is described as the first and fundamental step for the execution of activity
analysis [21]. Figure 1 shows an example of a workface assessment, which indicates the
distribution of activity categories where a period is spent. A workface assessment aims
to reflect on construction productivity before the release of cost and progress reports. It is
a practical procedure of measuring the activity rates of construction workers throughout
a long period of time, which relies on a professional onsite supervisor as an observer to
determine and classify the activities executed by construction workers. However, the
current approach to workface assessment remains manual inspection and faces many
challenges: first, manual data collection takes extra labor to observe, record and analyze the
operation, which is not cost-effective due to high rising labor costs; second, close manual
observation may result in an abnormal reflection of workers’ performance caused by the
Hawthorne Effect that the workers adjust their behaviors or productivity as a result of
the awareness of being observed; third, the manual interpretation takes repetitive and
random observations and requires a long period of time, and the results heavily rely on the
supervisor’s own experience [20,22].
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Current workface assessments require time-consuming and labor-intensive manual
observation. To address these limitations, efforts including different machine learning algo-
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rithms to automize this process have been made by scholars in the past few years [23–25].
Cheng et al. utilized both location information and the worker’s body posture for auto-
mated activity analysis of the task level. Their method combines the data obtained from
UWB for location tracking and the body posture data from a wearable 3-axial accelerom-
eter [26]. However, this approach merely used one single location and body posture as
the training sample to infer each activity category. The activity recognition between two
activities including intra-class variation and inter-class similarity at the same location
would be challenging. Khosrowpour, Niebles and Golparvar-Fard proposed a method
based on depth cameras for activity recognition and applied a bag of poses histogram
and Hidden Markov Model algorithm to distinguish each activity [22]. However, depth
cameras are sensitive to sunlight and a large body of construction activities are located
outdoor. Thus, their method is feasible for interior construction operations but it may not
be applicable to the external construction environment, such as scaffolding.

To automate the workface assessment process, human activity recognition (HAR)
performs a core and fundamental procedure in this research. Human activity recogni-
tion employs machines to comprehend and categorize a series of human activities from
different data sources. Based on the type of data source, HAR can be divided into a sensor-
based approach and a vision-based approach. The former exploits data from wearable
sensors and other sensors. The sensor is attached to human limbs and other body parts
or the surroundings close to the human activity to collect the target’s activity continu-
ously. Sensor-based HAR produces one-dimensional data, such as a time-series signal.
Accelerometer, gyroscope and magnetometer are three common wearable sensors which
detect and recognize the user’s activities by analyzing the signal deviation when different
activities are performed. Other sensors such as Radio Frequency Identification (RFID),
Global Positioning System (GPS) and Ultra Wideband (UWB) also can be integrated into
smartphones, wristbands, helmets or safety vests and provides a user’s trajectory, absolute
or relative locations to infer the user’s activity. However, sensor-based HAR suffers from
either high cost or sensitivity to the external environment [27–29]. For instance, a gyro-
scope is relatively expensive and needs to be attached to at least two key joints for HAR;
an accelerometer is sensitive to temperature. In addition, most of these sensors need to be
powered by a battery.

The latter, vision-based approach, collects human activities with the help of visual
devices, such as by video surveillance or a camera, and generates multi-dimensional
data including 2D images, 3D images or video frames. Although this approach releases
participants from wearing attached sensors and the image processing technique develops,
it heavily relies on visual data quality [30–32]. Elements, including image resolution and
illumination conditions, to some extent affect the robustness of recognition. On the other
hand, vision-based devices have been widely used in construction and other industries
for safety management purposes and the cost of surveillance cameras is relatively low
compared to other sensors.

This paper presents an approach that utilizes onsite video surveillance to collect
scaffolders’ activities in real time. With the help of machine learning and computer vi-
sion through semantic interpretation of real-time video sequences, this approach enables
managers and inspectors to quickly obtain scaffolders’ work status and conduct workface
assessment, which facilitates onsite scaffolding productivity and progress monitoring. Our
approach is distinct from previous research since we select to use RGB video cameras that
are relatively inexpensive (<USD 50) as well as being extensively available and have been
widely utilized not only in HAR, but also in real time monitoring, accident analysis and
other fields. In addition, RGB cameras are applicable to outdoor environments. Rather than
inferring the activity category from the information of location or trajectory, we propose to
extract 3D body skeletons from RGB video sequences and use machine learning algorithms
for activity recognition from body skeleton sequences.

The literature review of research interests in construction workers’ activities is stated
in Section 2. The methodology in Section 3 illustrates the overall research procedures from
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data collection, data preprocessing and activity definition to the human skeleton and key
points extraction as well as the 3D point lifting and projection. To validate and test the
feasibility of our proposed method, a case study was conducted in Section 4. Subsequently,
Section 5 presents the conclusion and discussion on the research limitations and challenges
as well as future work.

2. Literature Review

The integration of high-resolution cameras, boosting capability of data storage and
the availability of high-speed telecommunication over the past decade, has revealed rich
content on the onsite construction operation. Today, cameras and other electronic sensors
have been broadly applied for contractors and owners to monitor ongoing construction
activities [33]. With the help of algorithms in computer vision, scholars have placed
interest in research areas in construction workers’ activity mainly including ergonomics
posture, safety management and productivity improvement [34,35]. This section reviews
the state-of-the-art techniques for activity recognition and these application domains in the
construction industry in which researchers have made great efforts.

Thanks to the rapid development of sensor technologies in recent years, automatic
HAR has received consistent attention and has been widely explored in many domains. As
introduced in the first section, the technologies for HAR can be generally divided into a
sensor-based approach and a vision-based approach.

The sensor-based approach, based on sensor modality, can be classified into three types:
body-worn sensors, environment sensors and object sensors. Body-worn sensors are often
attached to the human body to detect the movement of the human body by continuously
recording the signal data. Accelerometer, gyroscope and magnetometer are the three most
frequently used body-worn sensors. Their applications focus on the activities of daily
living (ADL) and sports. Environment sensors measure the medium that interacts between
humans and the environment. For instance, pressure sensors, temperature sensors and
sound sensors can measure their corresponding environmental parameters. Environment
sensors can be utilized by monitoring hand movement and user’s daily activities and they
have been used in the field of the smart home. Object sensors are installed on objects which
are close to human movements in order to infer human activity from the detection of object
movement. For example, drinking activity can be detected by installing an accelerometer
on a cup. A GPS or RFID module is attached to a worker’s helmet to monitor the user’s
location to infer the worker’s activity status [36–38].

Ryu et al. proposed to recognize worker’s activities by using wristband Inertial
Measurement Units (IMU) and conducted a case study of masonry work [39]. Bangaru,
Wang and Aghazadeh assessed the reliability of wearable IMU and Electromyography
(EMG) for HAR in construction [40]. Bangaru et al. established an Artificial Neural
Networks (ANN) based model for the classification of scaffolder’s work by using the
data retrieved from IMG and EMG sensors [41]. However, these studies face technical
challenges in that the models were trained with at-rest activities and, as a result, merely
standardized and repeated movements could be effectively identified and recognized and
transitional signals or actions were excluded or could not be correctly distinguished. Our
approach takes an image sequence of each activity as the input data, which includes both
typical actions and transitional actions to address this limitation.

According to the data type, the vision-based approach can be generally divided into
RGB data and RGB-D data. RGB data refers to images consisting of red, green and blue
color bands in the spectrum and RGB data can be collected through an ordinary camera or
video surveillance. RGB-D data is produced by RGB-D cameras which can not only capture
the original RGB data but also collect depth information. Dang et al. [37] pointed out
that RGB data has the advantage that it is extensively available as well as affordable and
contains rich content on the subjects. While compared to RGB data, RGB-D data provides
depth information, which can enhance the performance of HAR. The disadvantages of
RGB-D data include computation complexity as well as high costs [42]. Scholars have
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explored and developed several models for both RGB data and RGB-D data and tested
these models with public or benchmark datasets [36,37].

2.1. Ergonomics Posture

Attentions have been paid to ergonomics issues in construction manual work. Since
manual work in construction usually requires workers to perform repetitive activities with
heavy workloads, working in awkward postures can result in fatigue, injuries or severe
accidents. Researchers have been exploring automatic methods of recognizing ergonomic
posture and many assessment guidelines which focus on work-related musculoskeletal
disorders (WMSDs). For example, the Rapid Upper Limb Assessment (RULA) and Ovako
Working Posture Analyzing System (OWAS) are followed by most researchers for the
definition and classification of manual activities and postures [43,44]. Ray and Teizer
investigated a method of real-time posture analysis for ergonomics training by using a
depth camera [45]. Yan et al. explored the potential of ergonomic posture recognition
via a 2D ordinary camera [46]. Zhang et al. analyzed the joint angles from 3D skeletons
generated by multi-stage convolutional neural networks (CNNs) in order to recognize the
movements of body parts [47]. Wang et al. analyzed scaffolding posture and activities
by following the OWAS and optimized the scaffolding activities [48]. Yan et al. collected
and processed motion data to warn of the hazardous pattern on the head, neck and trunk
with the help of wearable IMUs, a type of physical sensor attached to body limbs or
trunk [49]. Seo et al. combined a depth sensor and own-designed system for biomechanical
analysis [50].

2.2. Safety Management

Additionally, researchers have made efforts to solve the safety concern about worker’s
construction activities. Violation of operational rules about safety management might cause
serious equipment damage or even a fatal personnel accident. Exploring an automatic
system for identifying warnings against unsafe activities is a meaningful direction in
that it relieves the burden of onsite supervision and quickly detects potential hazards.
Yu et al. selected three unsafe behaviors: leaning on handrails, dumping from height,
and ladder climbing, and then measured the skeleton angles generated from a depth
sensor to identify unsafe behaviors in an experimental environment [51,52]. Alwasel et al.
presented a framework to identify productive and safe poses of masons by implementing
video cameras and IMUs attached on two control groups and a kind of machine learning
algorithm to support a vector machine was employed as a classifier [53]. Han et al. focused
on ladder climbing, a specific construction activity with considerable risk, and managed to
map the body joints onto a 3D space by capturing and extracting motion data from a depth
sensor system [54,55].

2.3. Productivity Improvement

A few studies aimed to explore construction workers’ activity analysis for productivity
improvement. Luo et al. integrated an RGB image stream, optical flow stream and
gray image stream and trained them separately with CNNs to achieve workforce activity
recognition [56,57]. Peddi et al. proposed a system for measuring construction worker’s
productivity through analyzing worker poses and classifying worker activity into three
domains: effective, ineffective, and contributory work [58]. Khosrowpour et al. employed
a depth camera for activity analysis and developed a bag of poses activity classifier and
a Hidden Markov Model (HMM) for classification [22]. Calderon et al. synthesized pose
sequences for the vision-based activity analysis of an excavator [59]. Apart from a vision-
based approach, a mechanical approach that basically attaches different mechanical sensors
to the human body to capture the signals of body and limb movement can also be regarded
as a useful tool for motion capture [60]. Passive RFID and IMUs including gyroscopes and
magnetometers were studied as practical tools [61]. Joshua and Varghese studied activity
recognition in construction by using accelerometers [62]. Although magnetic sensors were
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also adopted, they are susceptible to metal surroundings, which is not applicable for
scaffolding work [63]. To increase accuracy, Alwasel et al. combined IMUs with video
cameras to study productive masons [53]. The mechanical method is feasible under lab
environments but it might face difficulties while being widely applied to construction sites
due to the inconvenience for clothes wearing and washing caused by the attachment of
sensors to the body.

To facilitate the procedure of workface assessment, many studies have been devoted
to approaches to automate it. The positioning technologies including Ultra Wideband
(UWB) systems, Global Positioning Systems (GPS) and Radio Frequency Identification
(RFID) only enable researchers to track the locations or positions of construction equipment
and workers [64–67]. Besides, computer vision via video surveillance became another
option for object detection and tracking [68–70]. These approaches remain at the stage
where they infer the pattern of construction equipment and workers by tracking their
positions in certain construction areas, which seems to be applicable to the equipment such
as trucks or earth excavators, but not effective to onsite workers [71]. Without interpreting
the construction activity that construction workers performed, retrieving useful data for
workface assessment is challenging.

3. Research Design

This section illustrates the research design and main procedures. Figure 2 displays
the research framework of this paper. For the data collection, a 2D ordinary camera is
adopted as our video capture device. To recognize scaffolding activities, it is essential to
define these activities in advance. We follow the principle of activity analysis and divide
scaffolding activities into three categories. In the step of feature extraction, key joints of the
human body are used as the feature to be extracted from every video frame. To decrease the
impact of intra-class variation and inter-class similarity, a model for 3D pose estimation is
proposed subsequently. Then discriminative classifiers are trained with our annotated data
to detect and recognize scaffolding activities. The case study and validation is described in
the next section.
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3.1. Using a 2D Ordinary Video Camera for Data Collection

Using an ordinary video camera for human motion capture has many advantages over
the other data capture approaches mentioned above. Video surveillance employs ordinary
video cameras and provides 2D videos to monitor and record activities and it has been
broadly installed for management purposes in a large variety of industries. Compared to
IMUs, an ordinary camera is non-intrusive: there is no requisite of devices attached to a
worker’s body; a depth sensor works properly under indoor conditions, but it is sensitive
to the outdoor environment in that it produces numerous noises when it is exposed to
outdoor radiation [47]. On the other hand, compared to depth sensors, an ordinary video
camera is more cost-efficient and performs steadily on outdoor construction sites [47].
Furthermore, the video contains rich and intuitive information, which can not only be
applied for monitoring, recording and safety management, but also can be broadly used
for teaching purposes and accident analysis. To this end, the ordinary video camera was
employed in this research as the human motion capture device for workface assessment in
construction [72].

Looking deep into human action estimation from video frames captured by a 2D
ordinary camera, scholars have explored several principle approaches such as appearance-
based [73], trajectories-based [74], volume-based [75], and interest-point-based [76]. As
human body joint points contain rich, meaningful information for action estimation, the
approach based on the extraction of key joint points has been widely studied in the field of
computer vision and has become the state-of-the-art method for human activity recognition.
Hence, the extraction of human key joint points and body skeleton estimation are adopted
in our research for workface assessment in construction.

This study proposes a vision-based method using 3D skeleton point estimation and
supervised machine learning for workface assessment from video sequences. For activity
definition, we followed the guidelines for workface assessments and divided the scaffolding
operation into three categories: direct work, essential contributory work, and ineffective
work. For model validation, we collected video data from actual scaffolding operations to
train and test our model.

Intra-Class Variation

Ordinary cameras only provide a 2D video stream without depth information so
that one major challenge in human activity recognition from 2D cameras is view invari-
ance, which includes intra-class variation and inter-class similarity [47,77]. For intra-class
variation, homogeneous activities might be identified as different ones since this class
of activities are recorded and viewed from different directions. For inter-class similarity,
heterogeneous activities may share similarities from certain viewpoints. For instance, in
the Figure 3a,b inter-class similarity happens where the walking posture presents a similar
skeleton appearance in 2D with the transporting posture. In Figure 3b,c intra-class variation
takes place where the same activity of transporting is performed but filming from different
viewpoints makes the variant skeletons. One robust human activity recognition method
should have the capability to not only distinguish activities of different classes but also
tolerate the intra-class variations in one homogeneous activity.

Compared with a 2D model, 3D human skeleton or joint positions can provide depth
data from one more dimension to effectively decrease view variance and assist in the
process of discrimination and classification. More detailed information can be provided
by 3D features, which enables the process of action recognition to be more reliable and
feasible. Thus, to enhance the accuracy and robustness, this study utilizes the extraction of
a 3D human skeleton from 2D video frames captured by an ordinary camera for workface
assessment in construction.
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viewpoints.

3.2. Activity Definition

Scaffolding operation is sophisticated and dynamic and scaffolding involves a series
of activities and various body postures. However, it can be analyzed and simplified into
a repetitive sequence of individual activities in accordance with the process of workface
assessment. For example, Khosrowpour et al. took interior drywall operation as a case
study and divided the operations into seven categories [78]. In line with the principle
of activity analysis, and with the assistance of interviews from onsite scaffolders and
scaffolding supervisors, we analyze the scaffolding operation and categorize it into the
three following sections below:

1. Direct work: the real process of contributing to a unit being constructed [20,79].
Additionally, from the thinking of lean construction, direct work is the process that
adds value to construction work, which employers are willing to pay for [80]. For
scaffolding operations, the part of scaffold erecting conforms to the feature of direct
work;

2. Essential contributory work: the activities not directly set up but necessary to estab-
lish the construction unit. This category involves transporting materials and tools,
receiving instructions, necessary communication between coworkers and so on. One
typical essential contributory work for scaffolding work is scaffold transporting;

3. Ineffective work: the activities that contribute nothing to production probably due to
inefficient material or labor supply and poor communication. These representative
activities include idling or waiting;

From now on, we break down and investigate scaffolding operations with the afore-
mentioned categories shown in Figure 4. and each category contains one representative:
erecting (direct work), transporting (essential contributory work) and waiting or idling
(ineffective work).
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3.3. Key Joints Extraction

This section illustrates the whole structure of 3D key joints extraction and posture
estimation. In order to automatically recognize a scaffolder’s posture under working
conditions, we propose to integrate the OpenPose system and the 3D joint estimation
model to extract 3D skeletons and key joints from 2D video frames. OpenPose is a multi-
stage CNN system and represents state-of-the-art real-time model extracting human body
key points from 2D video frames [81,82].

A human skeleton consisting of 18 joints is extracted by the implementation of the
OpenPose system; a two-branch convolutional neural network (CNN), shown in Figure 5.
Part confidence maps are produced by the first branch throughout Stage 1 and Stage t. Part
Affinity Fields (PAFs) are generated by the second branch for limb association from Stage 1
and Stage t. Then the combination of part confidence maps and PAFs is parsed by the
greedy algorithm to predict the 2D key points of the human body in the image.
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The image is initially processed by a 10-layer convolutional network, where a set of
feature maps F are formed [83,84]. As the input of stage 1, feature maps F are separately
passed through two branches of CNN: branch 1 generates a set of parts confidence maps S1,
which predicts human body parts in the image. Branch 2 forms a set of part affinity fields
L1, which infer the association of body parts. Parts confidence maps S1 and part affinity
fields L1 together with feature maps F are concatenated for the next stage afterwards. At



Appl. Sci. 2021, 11, 4143 10 of 23

each following stage N, the prediction maps, including parts confidence maps S and part
affinity fields L, are transmitted through two branches and concatenated with feature maps
F for refining prediction. To iteratively train the multistage CNN, two loss functions are
added at the end of each stage for each branch. The loss functions are designed to eliminate
the difference between the prediction maps and the ground truth which is labeled manually
and reflects correct body parts and part associations.

At every stage N, for each joint P this convolutional network generates belief maps for
every pixel, indicating the confidence level that a joint point appears in any pixel (u,v) of
one single image. At stage 1, the weights for each existing layer of convolutional networks
are initialized by applying the weights of the Convolutional Pose Machine and those layers
at the rest of stage N (N > 1) are randomly initialized. The architecture is trained through
backpropagation by using the Human 3.6 M dataset, which contains 3.6 million human
poses and corresponding 3D pose information [85,86]. For the conversion from pixel belief
maps into body joint localization, the pixel with the most confidence level is chosen as the
location of each joint.

3.4. 3D Pose Estimation

Under the feature extraction section, we first extract 2D key joints using the OpenPose
model from every image frame and subsequently lift 2D key joints into 3D. Then the raw
coordinates of the 3D joints are converted into relative coordinates by subtracting the x,
y, z values of a central point under raw coordinates. Each joint point is separated into x,
y, z three features and 42 features are used for machine learning classification. As shown
in Figure 6, the 3D pose estimation stands on the basis of 2D human joint prediction.
The belief maps produced by the OpenPose system are used as one of the inputs at each
stage. In each stage the structure of 3D pose estimation merges (1) the belief maps from
a 2D joint predictor (OpenPose system) and (2) projected belief maps generated by a 3D
pose projection as the inputs. The process undergoes six stages. The 3D projection is
designed to lift the 2D coordinates into 3D and project 2D point locations into 3D and
then the fusion layer combines the 2D joint belief maps and 3D projected belief maps and
propagates them into a set of 2D point landmarks in order to iteratively reinforce the 2D
joint prediction as well as 3D projection. At Stage 6, the fused belief map becomes the final
output and is projected to 3D models eventually. The architecture of 3D estimation is using
backpropagation and trains the model end to end [47].
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Inspired both by the approach [87] that represents the space of human poses as a
mixture of Principal Components Analysis (PCA) and the idea that identifies poses as an
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interpolation between pose categories, the probabilistic 3D model consists of a mixture of
probabilistic PCA models with a number of clusters and the PCA models are trained by an
Expectation-Maximization (EM) algorithm.

First, poses are subdivided into several pose categories C and the Euclidean distance
d between pairs are computed. The objective is to look for a set of samples S that keeps
the distance between joint points and their nearest sample minimized. This searching
process is iterative and applies greedy selection that retains the previous S until another
s additionally minimizes the Euclidean distance is found. The process stops when one’s
candidate becomes close enough to the existing candidate within little discrimination and
the aligned points of a certain pose category are assigned to its closest candidate s and then
the EM algorithm is executed and a mixture of probabilistic PCA bases is built accordingly.

argmin
s

∑
p∈P

min
s∈S

d(s, p) (1)

A unimodal Gaussian 3D pose model is implemented to estimate the 3D human pose
of a single frame. This model in practice takes 20 samples and optimizes the 3D pose
reconstruction for every single rotation to achieve rotational invariance on the ground. A
non-linear least squares solver is applied to find the basis coefficients of the best-found
solution and this approach provides results close to the global optima with the same
average accuracy but less computational cost.

Yp = argmax bp[u, v] (2)

Then the generated 3D joint key points are projected onto a new set of 2D surface to
form new 2D belief maps and, at the final layer in each stage, these new 2D belief maps,
together with the belief maps from the 2D convolutional architecture, are fused into a single
according to the equation below and the fused passed to the next stage as one of the input
to refine the 2D joint prediction. For the final estimation of the pose, the 2D belief maps
produced at Stage 6 are lifted into 3D space by the probabilistic 3D model [88].

f p
t = wt × bp

t + (1− wt)× b̂p
t (3)

3.5. Classifier Training

For the annotation, we collect a series of short video sequences with different durations
for each activity category and each video sequence contains one single scaffolder conduct-
ing one type of activity. Additionally, based on our definition of scaffolding activities, we
labeled these sets of video sequences with their activity categories: scaffold erecting (direct
work), transporting (essential contributory work) and idling/waiting (ineffective work).
The dataset details are presented in Table 1.

Table 1. Dataset details.

Activity Category No. of Samples Sum

Class 1: Working 811
1731Class 2: Transporting 779

Class 3: Idling 141

As shown in Figure 7, we directly obtained 18 3D joint positions from the 3D pose
estimation model. These joint points are under absolute 3D coordinates. Since the facial key
points are not relevant and essential for the scaffolding activity recognition, for example,
the locations of eyes and ears do not provide vital information for activity recognition,
we simplify the points of eyes and ears by only keeping the nose location instead. This
simplification can effectively increase accuracy and save the computational cost for classifi-
cation. Since one single point in a 3D space provides x, y and z coordinate information, 14
3D joint points left from the elimination of 4 points of ears and eyes, comprise 42 features.
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To facilitate the computation and make all the data comparable, we convert the absolute
coordinates into relative coordinates by setting the central point as a zero point (0, 0, 0) and
cutting off the same amount of x, y and z values, which are the initial values of the central
point, from each key points respectively. We adopt the pose codebook that each pose of a
kind of activity is viewed as a single histogram containing 42 features or vectors.
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data frame contains 43 features and more than 1700 lines.

To recognizing scaffolding activity from a short video sequence, a discriminative
classifier is trained with the annotated data. The classifier takes the body skeleton features
as the input, which provides sufficient descriptive content for activity classification. At the
training stage, firstly we extract key points of a skeleton from every video sequence for
each activity category and each video sequence is processed into frames which become the
input of our pose estimation model. For every image frame, a set of 42 features generated
by the pose estimator, plus one manually labeled feature indicating the activity category,
constitute the input for supervised classifiers.

Since different supervised classifiers have various performances on one particular
classification task, we introduce major popular multi-class algorithms including Random
Forests (RF), Decision Tree (DT), Artificial Neural Networks (ANN), One-vs.-One Support
Vector Machine (One-vs.-One SVM), One-vs.-All Support Vector Machine and K Nearest
Neighbors (KNN) [89]. These algorithms are capable of multi-class classification as well
as handling data with multiple features [89–91]. To select a classifier with outstanding
performance, each aforementioned algorithm is employed for classification through our
dataset of scaffolding activities and the training and testing process follows the principle
of cross-validation which is a statistical procedure for the evaluation and validation of
machine learning models.

Decision Tree (DT). Just like its name, DT is a kind of algorithm with a tree structure
that a tree leaf denotes an outcome label, and a branch represents a sub-section of an entire
tree or a sub-tree. DT can be used for classification and regression. For classification, a tree
is constructed through the process of binary recursive partitioning, which is a procedure
iteratively splitting the data into partitions. The Divide and Conquer algorithm is used in
this process by breaking down a sophisticated group into two or more subsets with purely
one type of feature, until the subsets become simple enough to be classified directly. DT is
the building block of the random forest models [92].

Random Forest (RF). RF is an ensemble learning approach for classification and
regression where, at the training stage, multiple individual decision trees are created by the
selection of various subsets of training samples which follow the technique of bootstrap
aggregating or bagging. The selection principle allows that the same data sample can be
randomly selected several times while other samples may not be chosen at all [6,93]. At the
prediction stage, every single tree structure independently produces a class prediction, and
the ultimate prediction of the RF model belongs to the one with the majority of votes from
decision trees. One single decision tree is susceptible to bias and variance, for instance, if
one decision tree is too shallow its prediction is easily influenced by bias and if one tree
is too deep, it is probably overfitting with a high variance. Since RF models aggregate a
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multitude of decision trees, the models effectively reduce variance and mitigate volatility
and noise because of data samples, which enhances the robustness of classification [94].

K Nearest Neighbors (KNN). KNN is intuitive, it is designed to search for the K
closest data points to our target to be classified. Generally, KNN contains three steps: (1)
computing the distance between the target point and each point in the training dataset;
(2) according to the K value that the researcher set previously, picking K data points that
remain with the lowest distance with the target; (3) applying a majority vote that the
prediction result is in accordance with the majority of class among K neighbor points.

Support Vector Machine (SVM). SVM is a machine learning algorithm generally
used for data classification. SVM generates a hyperplane or a group of hyperplanes in a
high-dimensional space to distinctly classify the data points. There are many hyperplanes
that are available to select, but SVM aims to look for a plane that is within the maximum
margin which means this plane will keep the maximum distance between data points of
both classes. SVM was initially a binary classification approach while, after the model
extension, SVM can be used for multi-class classification. One-vs.-All (One-vs.-Rest) and
One-vs.-One approaches are two common ways to solve multi-class tasks. Assume an
N-class problem, One-vs.-All approach generates N binary SVM classifiers while each one
splits one class from the rest [95–97]. The ith (i ∈ N) classifier is trained with the whole
training data points of ith class labeled positive, and with all the other classes labeled
negative. One-vs.-One approach is developed based on the idea that a pair of distinct
classes are selected each time and are trained by a binary SVM classifier and an ensemble of
binary SVM classifiers forms One-vs.-One SVM classifier. Assume a problem of N different
classes, N(N−1)

2 binary SVM classifiers are required for separating every two distinct classes.
Compared to One-vs.-All SVM, One-vs.-One SVM is more computationally expensive since
more binary SVM classifiers are created. We will implement both One-vs.-All SVM and
One-vs.-One SVM for model evaluation [98]. Figure 8 demonstrates the SVM classifier that
divides scaffolding activities into erecting, transporting and waiting/idling three classes.
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Artificial Neural Networks (ANN). ANN were inspired by the mechanism and struc-
ture of biological neural networks in a human’s brain in that the signals are received,
transmitted and emitted back and forth through multiple layers of neurons. The basic unit
in ANN is called a neuron or node. Each neuron is responsible for receiving input data,
merging the input with its own parameters or processing the input with activate function.
Activate function plays the role of value conversion that avoiding great output variation
as the input changes. Connections link every neuron with weights. A weight reflects
the contribution percentage of an input to the output of the next layer neuron. Typically,
ANN is initially set up with randomized weights of all the neurons. Generally, neurons
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are organized into numerous layers and every neuron in the layer only connects with the
neurons in the closest neighboring layers. ANN consists of an input layer where input is
received, a hidden layer, and an output layer where the result is produced. The hidden
layer is sandwiched between the input and output layers and can be multiple according to
the complexity of ANN architecture. At the training stage, ANN adopts the algorithms of
forward propagation and backward propagation to train the model. Forward propagation
refers to the procedure that the input data is fed in the forward direction from the input
through the hidden layers to the output layer in the neural networks and the calculations
and the storage of inter parameters are conducted. Backward propagation starts from the
comparison of deviation between the expected (labeled) output and the generated output
and it runs iteratively in order to minimize this deviation to a predetermined level. As
all the weights of neurons are randomly initialized, backward propagation regulates the
contribution of every node to the final output by nudging the weight connecting every
neuron of layers from the output layer to the input layer. As a result, the NN can predict
the desirable output automatically.

For each supervised learning classifier, we optimize the parameters of models and
functions by iteratively comparing internal model performance on the same training
dataset. The optimal classifier is chosen by picking the supervised classifier with the highest
mean accuracy through 10-folds cross-validation, which represents a globally recognized
evaluation method of classification performance, and the presentation of confusion matrix
with reasonable results. Next, the optimal classifier is designed to conduct prediction
of workface assessment from several video sequences comprising various scaffolding
activities in actual working conditions. The predicted workface assessment is compared
with the manual annotation on the same video sequence for validation and discussion.

4. Case Study and Results Analysis

Due to the lack of relevant databases for training and testing visual activities of scaf-
folding construction operations, before validating our approach it is crucial to collect a
corresponding video sequence dataset. As shown in Figures 9 and 10, the target scaffolding
operation comprises 3 activities: scaffold erecting, transporting and idling/waiting. Cam-
eras with 12 megapixels were used to capture video data in a real construction environment
in Western Australia, as well as in the laboratory of the Australasian Joint Research Centre
for Building Information Modelling in Curtin University. Professional volunteers were
recruited to conduct the same activities both under the actual and laboratory construction
condition. Workface assessment requires a supervisor to clearly observe and record entire
scaffolding activities from a certain distance. This observing distance ranges from 5 m to
20 m, which allows the supervisor to identify distinct activities. Thus, in our approach,
portable video cameras were placed 5 m to 20 m away from the scaffolding activities. To
increase the variety of the database, the camera shot angle was set at three height levels:
the first one was located between ground level and kneel level, the second one was lo-
cated between kneel level and eye level and the third one was located over the head level.
Horizontal camera angles ranged from a frontal angle, a three-quarter front angle to a
profile angle (a view from the side). Some 52 clips of video regarding relevant scaffolding
activities were collected and some of these videos are trimmed, in that they last more than
8 s and only include one single activity for training and testing purposes, and the rest of
the videos covering several scaffolding activities are stored for validation. Some 40 clips
were collected in the lab and the remaining 12 clips were collected on-site. The duration
of the clips lasts from 3 to 10 min. The captured video has 25 fps and 1080p resolution.
Every video clip is processed into a stack of image frames and the whole dataset consists
of 1731 frames. Additionally, these frames are annotated with their corresponding activity
category including erecting, transporting and idling/waiting as the input for the purpose
of supervised learning. Every video clip that merely includes one category of scaffolding
activity was processed into image frames. For each image frame, its corresponding activity
category was added as one additional feature among 42 features of body key points.
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To evaluate the performance of our proposed approach for construction activity
analysis, a case study was carried out. The methodology for activity classification was
achieved in a Python-based environment and open-source package Scikit-learn with the
assistance of a DELL workstation with a 1.9 GHz processing unit and 32 GB RAM.

As it is shown in Table 2, the mean accuracy of selected supervised classifiers under
10-folds cross-validation regarding our scaffolding dataset was 96.58% (RF), 94.24% (SVM),
92.08% (DT), 96.13% (KNN), 93.12% (NN) respectively. All the classifiers’ general accu-
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racy achieved over 90%, while RF and KNN outperformed the rest with an accuracy of
around 96%.

Table 2. The performance of the classifiers.

Classifier Accuracy Macroaverage
Recall

Macroaverage
Precision

Average_F1
Score

RF 96.58% 0.9445 0.9405 0.9422

SVM 94.24% 0.9209 0.9349 0.9273

DT 92.08% 0.9040 0.8749 0.8880

KNN 96.13% 0.9492 0.9578 0.9537

NN 93.12% 0.9339 0.9337 0.9337

Since 3D pose classification is a transitional step in our model, every video frame
of scaffolding work can be classified as one of three scaffolding activities. The results of
3D pose estimations include the classification results for every video frame as well as the
visualization of 3D key joints and pose estimation. The classification results of every video
frame were evaluated and validated via 10-fold cross-validation and the performance
metrics including accuracy, precision, recall and F1 score indicated that all the classifiers
achieved good performances. The confusion matrix of the classifiers are presented in
Figure 11.
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To test the capability of the formation of workface assessment, three video clips
containing all activity categories were used for validation. As shown in Table 3, Video Clip
1 lasts for 206 s and Clips 2 and 3 last 116 s and 79 s, respectively. In addition, Clip 1 was
converted into a sequence of image frames by extracting frames at 2 s intervals while Clips
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2 and 3 were converted with 1 s intervals. 1731 frames were used for training and testing
and these frames went through 10-fold cross-validation. Some 314 frames were used for
the validation of the case study. For the shot angle, Clip 1 was collected at kneel level,
while Clips 2 and 3 were collected at chest level and overhead, respectively, to test the
ability of generalization of our model. Since an RF model has the highest mean accuracy
and relatively high score in Recall, Precision and F1 score through our training procedure,
we chose an RF model for the validation of the workface assessment. The sequences of
image frames from three clips were fed into the OpenPose and 3D extraction model and
then 3D pose features were generated and transmitted through our RF classifier for activity
classification. Figure 12 shows an example of 3D key joints and skeleton extraction. Each
frame was annotated with one of our three activity categories by the RF classifier, and we
put these annotations in order of temporal dimension to form the workface assessment.
During the formation, we eliminated the noise of activity status by taking the majority
status among each image frame. The duration of each activity category is determined by
this logic; that we set 5 s as the unit of time period and picked the majority category (among
the categories before and after 2 s) as the activity category that this time point belongs to.
Thus, the boundary of each activity category occurs when two different activity categories
are identified before and after one certain point in time. For example, one central frame
was annotated by the model as the waiting/idling category, while the rest frames next to
it were annotated as scaffolding erecting status and we took the erecting as the activity
category of this period.

Table 3. Details of video clips for validation.

#Clip Length (s) Number of Frames Frame Interval (s) Shot Angle

1 03:26 102 2 Kneel level
2 01:56 118 1 Chest level
3 01:19 79 1 Overhead
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Based on the comparison between the model outputs and the manual observation in
Figure 13, this case study displayed several phenomena. Firstly, our model presented the
feasibility and capability of discrimination between the scaffolding activities of erecting
and transporting, and generated relatively effective intervals between these two activities.
Although there exists a little divergence between the boundary of distinct activities, which
may be caused by the transitional procedure during the conduct of scaffolding activities or
the occlusion of body parts, the model classification is capable of basically reflecting the
activity status.

Secondly, the discrimination between the activities erecting and waiting/idling is
vulnerable when the participant performed either erecting or waiting/idling activities. In
three testing clips, the waiting/idling activity was misclassified as scaffolding erecting.
This poor discrimination may be a result of the complexity of the activity of scaffolding
erecting or the similarity between these two activities.
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5. Discussion and Conclusions

In conclusion, under the background of a rising interest in automation and digitaliza-
tion in the construction industry, a method of automatic scaffolding workface assessment
is proposed and developed in this paper to replace repetitive man-hours for data collection
and supervision. Scaffolding activities can be recorded and visually monitored throughout
onsite video cameras and then classified into three activity categories based on the proce-
dure of workface assessment. One video dataset of scaffolding activities was created for
training and testing. The case study demonstrates the feasibility of our developed model in
realistic conditions. The developed model presents enormous potential to enhance project
monitoring and control.

At the current stage, the proposed model merely takes every video frame as the
input without taking the temporal feature into consideration. As a result, our model
classifies every video frame of scaffolding into an individual activity category without
considering scaffolding postures in one kind of activity as an entity. We simplified and
split scaffolding activity into three categories, however, scaffolding has great complexity in
activity transition as well as activity subdivision.

The core contribution of this paper includes: (1) a video dataset is established for the
research of scaffolding activities; (2) an approach is developed for automatic workface
assessment of scaffolding by using the method of 3D key joint extraction and machine
learning classification; (3) we followed the principle of activity analysis and simplified
scaffolding activities into three activities, erecting, transporting and idling, and then
explored the potential of activity recognition for the field of construction inspection and
productivity improvement. This approach is designed to release on-site managers from
regular inspections with the help of video surveillance.

Future work would be placed on increasing the volume and variety of training data to
increase the robustness of model prediction. Meanwhile, improving the structure of our
prediction model is another area that requires great efforts in the future. In addition, due
to the complex nature of the scaffolding activity itself, the scaffolding activity needs to be
analyzed and divided indepth, which would also be one important direction in our future
research.
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