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Abstract: In bottom-up multi-person pose estimation, grouping joint candidates into the appropri-
ately structured corresponding instance of a person is challenging. In this paper, a new bottom-up
method, the Partitioned CenterPose (PCP) Network, is proposed to better cluster the detected joints.
To achieve this goal, we propose a novel approach called Partition Pose Representation (PPR) which
integrates the instance of a person and its body joints based on joint offset. PPR leverages information
about the center of the human body and the offsets between that center point and the positions of
the body’s joints to encode human poses accurately. To enhance the relationships between body
joints, we divide the human body into five parts, and then, we generate a sub-PPR for each part.
Based on this PPR, the PCP Network can detect people and their body joints simultaneously, then
group all body joints according to joint offset. Moreover, an improved l1 loss is designed to more
accurately measure joint offset. Using the COCO keypoints and CrowdPose datasets for testing, it
was found that the performance of the proposed method is on par with that of existing state-of-the-art
bottom-up methods in terms of accuracy and speed.

Keywords: multi-person pose estimation; partitioned centerpose network; partition pose representa-
tion

1. Introduction

Driven by extensive research efforts, significant progress has been made in human
pose estimation. The goal of human pose estimation is to obtain the posture of a human
body from monocular images or videos. Pose estimation is a fundamental computer
vision task providing vital information for many applications such as action detection and
recognition [1], human tracking [2], and medical assistance among others [3].

With the rapid progress in deep learning technology, human pose estimation per-
formance has improved greatly over recent years. However, finding a balance between
efficiency and accuracy remains challenging. Multi-person pose estimation methods are
generally classified based on their starting point for prediction as either top-down or
bottom-up [4]. Top-down methods [5–11] first identify and localize instances of people
using an existing person detector system and then conduct pose estimation for each person
individually. Generally, top-down methods are effective since these methods profit from
advances in person detectors. However, the computational cost of such methods linearly
increases with the number of people in an image because single-person pose estimation
must be carried out repeatably, in sequence, for each person in the image, as such, such
methods are usually too slow to achieve real-time detection.

In contrast, bottom-up strategies [12–16] first identify all the body joints in the entire
image, then these joints are grouped into corresponding instances of people. Unlike top-
down methods, bottom-up methods avoid higher joint detection and are more robust as
the number of people in an image increase. In many cases, performance when clustering
the joint candidates determines the final accuracy of detection. Cao et al. [12] proposed
the use of Part Affinity Fields (PAFs) to encode the coordinates and angles of limbs to
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assist in grouping joints into different people; this approach ignores the relationship
between each body joint and instance of a person. Newell et al. [13] constructed associative
embedding maps to tag each joint on the corresponding person pose. This method adds
a link between each body joint and the corresponding instance of a person, however,
it neglects information relevant to adjacent body joints. Consequently, it is difficult to
simultaneously maintain relationships between different joints in a single limb and link
each joint from the corresponding instance of a person.

To overcome this issue, we first propose a novel pose representation technique, termed
Partition Pose Representation (PPR), which combines the position information from in-
stances of people and their body joints. Inspired by [17], we first represent each instance
of a person with a single point at the center of their bounding box. Then, the positions of
body joints are encoded by their offset from the center point, as shown in Figure 1b. In this
way, the relationship between adjacent body joints is severed. To maintain some correlation
between adjacent body joints, we further divide the human body into five parts: the head,
left arm, right arm, left leg, and right leg, we then extend PPR to sub-PPR for each part.
The respective center points of each part are the nose, left elbow, right elbow, left knee, and
right knee. With the addition of sub-PPR, human poses generate stable connections with
their instance of a person, as shown in Figure 1c.

Figure 1. Different pose representations captured from image (a). (b) Traditional pose representation,
in which each joint is represented by absolute coordinates. (c) Proposed partition pose representation.

To exploit the advantages of PPR, we introduce a new bottom-up model, the Par-
titioned CenterPose (PCP) Network, to identify the poses of multiple people. The PCP
Network can simultaneously locate the position of an instance of a person and identify all
joint candidates. Meanwhile, a parallel prediction branch in the PCP Network, called the
offset prediction head, builds an associative embedding map to predict the offset for each
body center. Here we introduce an improved l1 loss to obtain more accurate joint offset
values. Supported by PPR, the joint candidates can be assigned to the corresponding body
center using the offset as a guide.

Experiments on the MS COCO and CrowdPose datasets demonstrate the efficiency
and effectiveness of the proposed method. It achieves competitive performance and
superior speed versus state-of-the-art methods. Our work makes three main contributions.

(1) We propose a novel partition pose representation method to construct a relationship
between body joints and the body center, while preserving correlations between
adjacent body joints.

(2) We propose a new bottom-up model with an improved l1 loss to efficiently and
robustly predict and partition body joints to multiple people.

(3) In experiments, our PCP Network is competitive with state-of-the-art methods using
the MS COCO and CrowdPose datasets while achieving a higher inference speed.

2. Related Work
2.1. Multi-Person Pose Estimation

Multi-person pose estimation is a comprehensive task that combines the challenges
of person detection and keypoint estimation. With the incredible advancements over
recent years in object detection and single-person pose estimation methods [4,5,8,18–24],
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the performance of multi-person pose estimation has also improved, getting good results
even on some complex datasets. Based on how calculations for a particular method are
started, multi-person pose estimation methods are often divided into top-down methods
and bottom-up methods.

Top-down methods. Top-down approaches typically first use an object detector to
obtain an instance of a person and then independently estimate the pose for each person
identified. G-RMI [6] produces a heatmap and offset map for each joint before combining
this information using an aggregation procedure. RMPE [11] introduced using a parametric
pose NMS for refining pose candidates. He et al. [5] proposed an extension of the Mask
R-CNN framework that synchronously predicts keypoints and human masks. In these
top-down methods, predicting keypoint heatmaps is made easier by restricting the search
to the detected person’s bounding box. However, the top-down strategy incurs extra
computational costs while initially detecting each person’s bounding box.

Bottom-up methods. Bottom-up approaches first detect body joints and then assign
these joints to individuals. With the increasing demands to carry out image processing tasks
on mobile devices, finding appropriate lightweight methods has become a new research
hotspot. Motivated by bottom-up approaches being faster and more capable of achieving
real-time estimation, our approach is based on previous bottom-up approaches and aims
to obtain better performance while maintaining high computational efficiency.

Existing bottom-up methods mainly focus on how to associate detected keypoints
with the corresponding instance of a person. The PersonLab approach [14] introduced
a greedy decoding scheme together with Hough voting to determine grouping. CMU-
Pose [12] proposed Part Affinity Fields (PAFs) to encode the location and orientation
of limbs, this work was further developed in the PifPaf technique [15]. However, the
computational efficiency of these two-stage methods is limited by the quality of the greedy
algorithm. Newell et al. [13] propose a one-stage method to detect joints and group
them in one pipeline. Based on this one-stage strategy and HRNet [8], Cheng et al. [16]
presented a Scale-Aware High-Resolution Network (HigherHRNet) to solve the scale
variation challenge. However, existing research only focuses on the features of joints (like
in PifPaf), or only uses the connection between joints and an instance of a person to cluster
(like in AssocEmbedding and HigherHRNet). The novelty of our method is to use Partition
Pose Representation (PPR) to combine position information from instances of a person with
structure information about body joints. In PPR, we utilize tailored semantic information
and information on the offset of joints from the body center to replace information from
tags in associative embedding maps. Moreover, we divide the human body into five parts,
define the pivot joint in these parts as the part’s center. Assisted by these part centers, the
relationships between different joints in a single limb become enhanced by the offset of the
body joint to the part center.

2.2. Backbone Network

The backbone networks of multi-person pose estimation methods are designed to
extract keypoint features and instances of people; the accuracy with which they do so
largely determines the quality of the prediction results. To ensure the effectiveness of
the proposed method, three different backbones architectures, Hourglass [4], Deep Layer
Aggregation (DLA) [25], and HRNet [8], are comprehensively considered.

Hourglass: The stacked Hourglass Network [4] consists of overlapping residual
blocks [26], each of which is linked by a skip connection to effectively process and con-
solidate multi-scale features. With an encoder–decoder architecture and an intermediate
supervision process, the Hourglass network shows robust performance in some complex
environments, such as in cases with occlusion or cases where similar parts from nearby
people are present [27]. The size of this network is quite large, which results in graceful
keypoint estimation performance. The structure of an hourglass module is illustrated in
Figure 2a.
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Figure 2. Structures of three state-of-the-art backbone networks for human pose estimation.

DLA: DLA [25] is an image classification network with hierarchical skip connections,
in which aggregation is defined as the combination of different layers throughout a network.
DLA uses iterative deep aggregation to symmetrically increase feature map resolution,
preventing loss of information in dense predictions. Moreover, DLA hierarchically merges
features to create networks with better accuracy and fewer parameters. The structure of a
DLA network is illustrated in Figure 2b.

HRNet: HRNet [8] aims to maintain high-resolution features throughout the entire
network. This network can be divided into parallel multi-resolution convolutions and
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repeated multi-resolution fusions. High- to low-resolution convolution streams generate
multi-scale feature maps in parallel. The goal of the fusion module is to merge informa-
tion across multi-resolution representations. The structure of HRNet with three parallel
branches is illustrated in Figure 2c.

3. Partition Pose Representation

In this section, we describe the proposed PPR in detail. Unlike traditional group-
ing methods, PPR is committed to generating connections between each body joint and
instance of a person while simultaneously strengthening the correlations between dif-
ferent body joints. Let I ∈ RW×H×3 denote an input image of width W and height H
and pk =

{
pk

1, pk
2, . . . , pk

N

}
denote N joint candidates from the kth persons in I.

(
xk

n, yk
n

)
is the spatial coordinate of pk, and

(
xk

lt, yk
lt, xk

rb, yk
rb

)
is the bounding box of the kth in-

stance of a person. Inspired by CenterNet [17], the body center is denoted by
(

x̂k
0, ŷk

0

)
=(

xk
lt + xk

rb, yk
lt + yk

rb

)
/2.

PPR aims to aggregate the instance of a person and body pose with an offset to the
body center. So, the coordinates of the nth joint of person k can be defined as:(

xk
n, yk

n

)
=
(

x̂k
0 + δxk

n, ŷk
0 + δyk

n

)
(1)

where
(

δxk
n, δyk

n

)
is the offset of the nth joint to the body center.

However, Equation (1) only considers unification of an instance of a person and body
pose; it ignores the relationship between adjacent joints. Using additional information from
correlated joints, the offset vector can be more accurately mapped to the position of the
pose by the prediction model. Naturally, PPR divides the human body into five parts: (1)
head, including nose, left eye, right eye, left ear, and right ear; (2) left arm, including left
shoulder, left elbow, and left wrist; (3) right arm, including right shoulder, right elbow,
and right wrist; (4) left leg, including left hip, left knee, and left ankle; and (5) right leg,
including right hip, right knee, and right ankle. Then, we use the same approach as used in
Equation (1) to represent the joints in each part. Here, the center points of each part pk

c are
no longer the body center, but the nose, left elbow, right elbow, left knee, and right knee
are taken as the centers of the five respective body parts. Some complex environments
may mean a part center is not visible; this will affect encoding by PPR. In this situation, we
calculate the center of the remaining joints in this part to replace the part center; we call
this point the illusion center. Thus, the complete PPR can be formulated as:

(
xk

n, yk
n

)
=


(

x̂k
0 + δxk

n, ŷk
0 + δyk

n

)
ifpk

n ∈ pk
c(

x̂k
m + δx̂k

n, ŷk
m + δŷk

n

)
otherwise

(2)

when the part center is visible,
(

x̂k
m, ŷk

m

)
is the coordinates of the center point of the mth

part and
(

δx̂k
n, δŷk

n

)
is the offset of the nth joint from the corresponding part center. When

the part center is not visible,
(

x̂k
m, ŷk

m

)
is the coordinate of the illusion center of the mth

part and
(

δx̂k
n, δŷk

n

)
is the offset of the nth joint from the corresponding illusion center.

Using the offset from the part center to the body center, PPR establishes the connection
between a body pose and the instance of a person. At the same time, PPR retains global
information related to the limbs and generates correlations between body joints in one part
through the offset of other joints to the part center.
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4. Partitioned CenterPose Network

In conjunction with PPR, we propose the box-free bottom-up PCP Network to detect
body joints of multiple people. Motivated by the recent success of keypoint-based object
detection approaches [17,28], we implement the PCP Network with a simple one-stage
model. Below, we will describe the network architecture, training, and inference details of
the PCP Network. The overall pipeline for the proposed network is shown in Figure 3.

Figure 3. The architecture of the Partitioned CenterPose Network. A convolutional backbone network applies three sets of
prediction heads to predict instance location, joint offset, and joint heatmap. The final output is generated by combining
these three prediction results.

4.1. Network Architecture

In the PCP Network, a convolutional backbone network is applied for feature ex-
traction. Then, we use three sets of prediction heads (body center prediction head, offset
prediction head, and body joint prediction head) to process the output features. First, we
will discuss the structure of the offset prediction head. In PPR, the offset vector is the key
to connecting an instance of a person with their body joints; as such, it is very important
to obtain an accurate offset vector. Directly regressing the value of an offset vector is
inefficient as it is a highly non-linear task and difficult to learn the mapping [3]. Inspired
by [13], we use two associative embedding maps to record the vector value of each offset.
As shown in Figure 3, the output of the backbone is passed through two parallel branches.
The output channel of the first branch is twice the number of part centers, which focus
on the 2D vector value of the offset from the body center to the part centers. The second
branch looks at the offset of the remaining joints to the part center. Then, we concatenate
the output of these two branches and pass it through a simple convolutional module to
acquire the final embedding maps. When the coordinates of the body center or part center
are obtained, the feature value of the embedding map at this position can be regarded
as the corresponding offset vector value. In the body center prediction head, follow the
approach used by CenterNet [17], we use a simple convolutional module, which contains
only a separate 3 × 3 convolution, ReLU, and a 1 × 1 convolution, to predict the body
center and the bounding box using two parallel branches. The body joint prediction head
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estimates a heatmap of each body joint
(

xk
n, yk

n

)
using the same structure as used for the

body center prediction head to reduce computational complexity.

4.2. Training and Inference

Training. An improved l1 loss was designed for the PCP Network to better train the
system to identify the offset between the joint and part center. As shown in Figure 4, the
lengths of the offset vectors in the head part are short, but the structures of the offset vectors
in different people are relatively similar. Thus, enhancing the weight of offset length in the
loss function allows the network to understand small differences in head structure more
accurately. Conversely, the offset vectors of the limbs of different people differ more in
terms of angle while the lengths tend to be quite similar. Accordingly, based on the l1 loss,
we designed two different loss functions for the offset vector in the head and in the limbs:

Lhead
o f f =

1
N

N

∑
i

(
||
→
Oi −

→
O′ i||1 + 0.5||

→
Oi −

→
O′ i||2

)
(3)

()()Llimb
o f f =

1
N

N

∑
i

||→Oi −
→
O′ i||1 +

∣∣∣∣∣∣arctan

→
Oi

||
→
Oi||2

− arctan

→
O′ i

||
→
O′ i||2

∣∣∣∣∣∣
 (4)

where
→
O is the predicted offset vector and

→
O′ is the corresponding ground truth. N is the

number of body joints in the body part. |·| is the absolute value, and ||· ||1 and ||· ||2 are
the l1-norm and l2-norm, respectively. In Section 5.4, we discuss an ablation experiment to
demonstrate the effect of the improved l1 loss.

The total loss of the improved l1 loss is shown below:

L = Lbct + αLbsize + Lpct
o f f + Lpj

o f f + Lbj (5)

Lpct
o f f = Llimb

o f f (6)

Lpj
o f f =

(
Lhead

o f f + 4 ∗ Llimb
o f f

)
/5 (7)

where Lbct and Lbj denote the focal losses [29], which are used to train the network to detect
the body center and body joint heatmaps, respectively. The focal loss is defined as:

L f ocal =
−1
N ∑

n

{ (
1− Ĥp

)β log
(

Ĥp
)

if Hp = 1(
1− Hp

)γ(Ĥp
)β log

(
1− Ĥp

)
otherwise

(8)

where β and γ are hyper-parameters used to reduce the imbalance between an easy
example and a hard example. Hp is the ground truth heatmap and Ĥp is the heatmap of
pk. Following [28], β is set to 2 and γ is set to 4. Lbsize is the l1 loss [30] used to regress the
size of the bounding box. Lpct

o f f is the loss function used to train the offset between the part

center and body center, while Lpj
o f f is the loss function used to train the offset between the

joint and part center. α is a constant weight parameter that is set to 0.1.
Inference. Following PPR, we group the detected keypoints by offset vector. Given

a test image of width W and height H, the outputs of the PCP Network include a body
center heatmap Hbc ∈ RW×H×1, bounding box maps Hbb ∈ RW×H×2, offset maps Ho f f ∈
RW×H×34, joint heatmaps Hbj ∈ RW×H×17. We first choose the top Nη high-confidence
instances of people (100 was used in our implementation) and extract their body centers(

x̂k
0, ŷk

0

)
from Hbc. With the coordinates of body centers, the size of the bounding box(

wk, hk
)

and the offset of the part centers to the body center
→
Ok

n can be extracted from

Hbb

(
x̂k

0, ŷk
0

)
and Hn,n+1

o f f

(
x̂k

0, ŷk
0

)
, respectively. For the kth body center, we extract the
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coordinates of part center candidates
(

xk
n, yk

n

)
from the joint heatmaps Hbj, where the

candidates are selected from inside the bounding box of the kth body center. Then, the

offset
→
Oht from the part center candidates to the body center are calculated by:

→
Oht =

(
xk

n − x̂k
0, yk

n − ŷk
0

)
(9)

Figure 4. PPR of the head (magnified area) and PPR of the limbs in different people. (a,b) are two
samples from COCO dataset [31]. The lengths of the offset vectors in the head part are much shorter
than those in the limb parts.

Next, each part center candidate is assigned by argmin i ∈ Nc

( →
Oht −

→
Ok

n

)
to identify

the closest predicted offset vector
→
Ok

n. Here, Nc is the total number of part centers. After
grouping the part centers, we can extract the offset of the remaining joints to the part

center
→

Ok
m from Hm,m+1

o f f

(
xk

n, yk
n

)
. If the part center is not visible,

(
xk

n, yk
n

)
will be replaced

by
(

x̂k
0, ŷk

0

)
+
→
Ok

n. Using the same strategy, we can group the remaining body joints to
corresponding instances of a person. Finally, the complete human skeletons of multiple
people are formed using the default connections between the predicted body joints.

The network structure of the prediction heads is simple and lightweight, the body
centers are obtained directly from keypoint estimation without the need for IoU-based non-
maxima suppression or other greedy algorithms. In the inference post-processing, due to
the constraints of the bounding box, the number of joint candidates can be reduced greatly
to only in the candidates in small areas of the image, this not only improves accuracy it
also reduces computing time. Therefore, in our method, post-processing does not take too
long while the computational efficiency is similar to one-stage methods.

5. Experiments
5.1. Dataset

The experiments were performed using the MS-COCO dataset [31]. This dataset
contains more than 250,000 instances of people with 17 body joints, the dataset is divided
into train, val and test-dev sets with 57 k, 5 k, and 20 k images, respectively. We use the train
set for training and test the results on the test-dev set. The val set is used to perform ablation
studies and visualization experiments.

The MS-COCO dataset uses Object Keypoint Similarity (OKS)-based AP (average
precision) and AR (average recall) metrics to evaluate the performance of a detector. OKS is
inspired by the IoU index in object detection, this calculates the distance between predicted
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body joints and the ground truth, normalized to the scale of the person [32]. OKS can be
defined as:

OKSp =
∑i exp

{
−d2

pi/2S2
pσ2

i

}
δ
(
vpi = 1

)
∑i δ

(
vpi = 1

) (10)

where p denotes the pth person in an image and i is the ith keypoint of this person. dpi is
the Euclidian distance between the ground truth keypoint and predicted keypoint. Sp is
the scale factor of the person, which is equal to the square root of the object segment area.
σi is the normalization factor of the ith keypoint, which reflects the difficulty of labeling
this keypoint. vpi = 1 indicates that the ith keypoint of the pth person is visible.

In this section, we mainly use AP (mean AP score in OKS = 0.5, 0.55, . . . , 0.90, 0.95),
AP0.5, AP0.75, APM, APL, and AR as metrics, where 0.5 and 0.75 are the threshold values for
OKS, M and L represent medium objects (322 < area < 962) and large objects (area > 962),
respectively [33,34].

5.2. Experimental Setup

We experimented on using four backbones in our method: DLA-34 [25], ResNet-
101 [26], Hourglass-104 [4], and HRNet-w32 [8]. All these models were written using
PyTorch software [35]. The resolution of the input image was 512 × 512, leading to
heatmaps with a size of 128× 128. The ground-truth heatmap was constructed by applying
a Gaussian kernel with the same parameters as used in [36] to filter all body joints. Each
sample was augmented by rotating, scaling, and flipping. We utilized Adam [37] as the
optimizer and trained the PCP Network on a RTX2080ti GPU. For the DLA-34 backbone,
we trained with a batch size of 48 and a learning rate of 3 × 10−4 for 300 epochs; the
learning rate was decreased by 0.1 in epochs 250 and 280. For the ResNet-101 backbone, we
trained with a batch size of 48 and a learning rate of 1× 10−3 for 300 epochs; the learning
rate was decreased by 0.1 in epochs 250 and 280. For the Hourglass-104 backbone, we
trained with a batch size of 24 and a learning rate of 2.5× 10−4 for 150 epochs; the learning
rate was decreased by 0.1 in epochs 110 and 130. For the HRNet-w32 backbone, we trained
with a batch size of 32 and a learning rate of 2× 10−4 for 320 epochs; the learning rate
decreased by 0.1 in epochs 270 and 300.

5.3. Experimental Results

To assess the performance of our PCP Network, we compared the results of our method
with those of six current mainstream bottom-up pose estimation methods, including CMU-
Pose [12], Mask-RCNN [5], G-RMI [6], AssocEmbedding [13], PifPaf [15], PersonLab [14],
and HigherHRNet [16]. Table 1 summarizes the experimental results on the test-dev dataset.
The differences between HigherHRNet-1 and HigherHRNet-2 are the backbone and input
size. As shown in Table 1, our method is slightly inferior to PersonLab and HigherHRNet-2,
which both use a more powerful backbone and larger training images. However, when
using the same backbone and same input size, the performance of our method is better
than Mask-RCNN, G-RMI, AssocEmbedding, PifPaf, and HigherHRNet-1. In addition to
performance, we also consider the inference time of each method.

As shown in Table 1, the speed of our PCP Network is outstanding, especially when
DLA is used as the backbone. Even with the HRNet backbone, the inference speed of
our PCP Network was 5× faster than that of PersonLab. These results verify that our
method has superior efficiency due to its excellent inference speed while maintaining very
competitive performance for multi-person pose estimation tasks.
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Table 1. Comparisons of our model to other state-of-the-art models on the MSCOCO test-dev daTable 2080. ti GPU.
Superscripts M, L of AP stand for medium and large objects. The highest values are indicated in bold.

Method Backbone Input
Size AP AP0.5 AP0.75 APM APL AR Time [s]

CMU-Pose [12] - - 0.618 0.849 0.675 0.571 0.682 0.665 0.5
Mask-RCNN [5] ResNet-101 - 0.631 0.873 0.687 0.578 0.714 - 0.2

G-RMI [6] ResNet-101 353 0.649 0.855 0.713 0.623 0.700 0.697 -
AssocEmbedding [13] Hourglass 512 0.655 0.868 0.723 0.606 0.726 0.710 0.19

PifPaf [15] - - 0.667 - - 0.624 0.729 - -
PersonLab [14] ResNet-152 1401 0.687 0.890 0.754 0.641 0.755 0.754 0.381

HigherHRNet-1 [16] HRNet-W32 512 0.664 0.875 0.728 0.612 0.742 - 0.052
HigherHRNet-2 [16] HRNet-W48 640 0.705 0.893 0.772 0.666 0.758 0.749 0.142

Ours (DLA) DLA-34 512 0.634 0.864 0.693 0.575 0.739 0.698 0.039
Ours (ResNet) ResNet-101 512 0.651 0.868 0.703 0.642 0.737 0.721 0.073

Ours (Hourglass) Hourglass 512 0.663 0.881 0.731 0.662 0.747 0.748 0.132
Ours (HRNet) HRNet-W32 512 0.668 0.883 0.740 0.665 0.748 0.751 0.078

To further prove that the performance of the proposed method is satisfactory, we also
show some results from the proposed method that show intuitively that our approach is
able to identify joints on a human skeleton accurately. Figure 5 shows qualitative examples
from the MSCOCO dataset, including the intermediate body joint heatmaps and final
predicted human poses. It is clear that our method performs well even on scenes with
some challenging attributes such as sub-optimal scale, appearance variation, occlusion,
or crowding.

Figure 5. Qualitative results on the MSCOCO dataset. For each pair, we show the predicted human
pose (left) and intermediate heatmap (right). In the predicted human pose, each color corresponds
to a particular human instance.

5.4. Ablation Analysis

We perform several ablation experiments on the COCO val set to better understand
the gain of the proposed PPR and improved l1 loss. Here, HRNet is used as the backbone
of our network.
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First, to demonstrate the effect of the proposed PPR, we trained the PCP Network
with traditional pose representations (Figure 1b). Here, the body center prediction head
was removed. As shown in Table 2, this network achieved an AP of 0.648. Using the pro-
posed PPR, our PCP Network outperformed the above network by +0.12 AP (AP = 0.660).
Table 3 shows the performance results from using the original l1 loss and the improved
l1 loss. When the improved l1 loss was used, the performance of our model increased
from AP = 0.657 to 0.660. These results verify the effectiveness of the proposed PPR and
improved l1 loss. Table 3 also shows that the increase in AP for poses of large people is
significantly higher than for other methods. This indicates that the improved l1 loss works
better on instances of large people.

Table 2. Ablation study results: traditional pose representation (TPR) vs. proposed PPR on the
COCO2017 val dataset. Superscripts M, L of AP stand for medium and large objects. The highest
values are indicated in bold.

Method AP AP0.5 AP0.75 APM APL AR

PCP Network (TPR) 0.648 0.854 0.715 0.603 0.700 0.697
PCP Network (PPR) 0.660 0.869 0.725 0.608 0.742 0.704

Table 3. Ablation study results: original l1 loss vs. improved l1 loss on the COCO2017 val dataset.
Superscripts M, L of AP stand for medium and large objects. The highest values are indicated in
bold.

Method AP AP0.5 AP0.75 APM APL AR

PCP Network
(original loss)

0.657 0.867 0.722 0.607 0.728 0.701

PCP Network
(improved loss)

0.660 0.869 0.725 0.608 0.742 0.704

5.5. CrowdPose

We demonstrated the proposed method has a state-of-the-art human pose estimation
performance on the CrowdPose [38] dataset, which contained crowd scenes to make it
more challenging. The training, validation, and testing subset contained 10K, 2K, and 8K
images, respectively. The CrowdPose dataset also used the AP from the COCO dataset
as an evaluation metric and split it into three crowding levels: easy, medium, hard. In
this section, for metrics, we mainly use AP, AP0.5, AP0.75, APE (for easy images), APM (for
medium images), and APH (for hard images). We trained the models on the training and
validation subsets and reported the results achieved on the testing subset. The experimental
setup follows that of COCO exactly.

The experimental results are shown in Table 4. Our method outperforms traditional
top-down methods (Mask-RCNN and AlphaPose) and bottom-up method (CMU-Pose)
by a large margin in terms of AP. SPPE is an efficient crowded scene pose estimation
method which is a global refinement of AlphaPose; the performance of our method is
comparable to AlphaPose without additional optimization. Multi-scale testing can improve
the precision of predictions for small people, especially in crowd scenes. After multi-scale
testing, HigherHRNet achieves the best performance on the CrowdPose dataset. While,
without the optimization of multi-scale testing, the performance of our method is on par
with HigherHRNet even the latter significant advantages in terms of the backbone used
and the input size. The experimental results in Table 4 show the great potential of our
method in complex environments and challenging scenes.
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Table 4. Comparisons of our model to other state-of-the-art models on the CrowdPose test dataset. Superscripts E, M, H of
AP stand for easy, medium and hard. * indicates multi-scale testing. The highest values are indicated in bold.

Method Backbone Input
Size AP AP0.5 AP0.75 APE APM APH

Top-down methods

Mask-RCNN [5] ResNet-101 - 0.572 0.835 0.603 0.694 0.579 0.458
AlphaPose [11] - - 0.610 0.813 0.660 0.712 0.614 0.511

SPPE [38] ResNet-101 - 0.660 0.842 0.715 0.755 0.663 0.574

Bottom-up methods

CMU-Pose [12] - - - - - 0.627 0.487 0.323
HigherHRNet [16] HRNet-W48 640 0.659 0.864 0.706 0.733 0.665 0.579

HigherHRNet * [16] HRNet-W48 640 0.676 0.874 0.726 0.758 0.681 0.589
Ours (HRNet) HRNet-W32 512 0.657 0.855 0.705 0.742 0.668 0.574

6. Conclusions

In this paper, we proposed a new bottom-up multi-person pose estimation method
which strikes a balance between efficiency and accuracy. The grouping of candidate joints
into a corresponding pose in a limited amount of time is the main challenge in bottom-up
multi-person pose estimation. To solve this problem, we first introduced Partition Pose
Representation (PPR) for multi-person pose estimation. PPR builds relationships between
each joint and the corresponding instance of a person using the offset between the joint
and the body center. Moreover, PPR further divides the human body into five constituent
parts and utilizes another offset to the center of these parts to rebuild relationships between
adjacent joints. With PPR, it is possible to group candidate joints simply and quickly
without the need for any additional complex algorithms.

To leverage the advantages of PPR, we proposed the Partitioned CenterPose (PCP)
Network to estimate instances of people and their body joints, PCP then groups all body
joints by joint offset. By considering the different characteristics of the offsets of joints
on different parts of the human body, we proposed an improved l1 loss to enhance the
accuracy of the predicted joint offsets. Extensive experiments and subjective evaluation of
predictions on the COCO and CrowdPose datasets demonstrate that our method performs
well both in terms of efficiency and prediction accuracy. A future study that extends PPR
to 3D human pose estimation is planned. Considering the complexity of human poses in
3D space, we must reconsider how we define the center of the human body and design
different loss functions to obtain more accurate offsets.
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