
applied
sciences

Article

Achieving Sender Anonymity in Tor against the Global
Passive Adversary

Francesco Buccafurri *,† , Vincenzo De Angelis † , Maria Francesca Idone †, Cecilia Labrini † and Sara Lazzaro †

����������
�������

Citation: Buccafurri, F.; De Angelis,

V.; Idone, M.F.; Labrini, C.; Lazzaro, S.

Achieving Sender Anonymity in Tor

against the Global Passive Adversary.

Appl. Sci. 2022, 12, 137. https://

doi.org/10.3390/app12010137

Academic Editors: David Megías and

Eui-Nam Huh

Received: 14 October 2021

Accepted: 17 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department DIIES, University of Reggio Calabria, Via Università 25, 89122 Reggio Calabria, Italy;
vincenzo.deangelis@unirc.it (V.D.A.); mariafrancesca.idone@unirc.it (M.F.I.); cecilia.labrini@unirc.it (C.L.);
saralazzaro20@gmail.com (S.L.)
* Correspondence: bucca@unirc.it
† These authors contributed equally to this work.

Abstract: Tor is the de facto standard used for anonymous communication over the Internet. Despite
its wide usage, Tor does not guarantee sender anonymity, even in a threat model in which the attacker
passively observes the traffic at the first Tor router. In a more severe threat model, in which the
adversary can perform traffic analysis on the first and last Tor routers, relationship anonymity is also
broken. In this paper, we propose a new protocol extending Tor to achieve sender anonymity (and
then relationship anonymity) in the most severe threat model, allowing a global passive adversary
to monitor all of the traffic in the network. We compare our proposal with Tor through the lens of
security in an incremental threat model. The experimental validation shows that the price we have to
pay in terms of network performance is tolerable.

Keywords: anonymous communication systems; Tor; Onion; censorship resistance

1. Introduction

The Tor overlay network [1] is the most popular anonymous communication protocol
used for low-latency network applications. Tor is based on the Onion protocol [2]. This
protocol is based on two concepts: rely nodes (also called Tor routers) and layered encryption.
Relay nodes act as proxies in an Onion route. Each relay node receives its message from
the preceding one and forwards it to the next, until the destination is reached. Differently
from random walk [3], the route is deterministic and chosen by the sender. Moreover, the
message is wrapped through layered encryption, which the sender can apply by knowing
the cryptographic keys of all the relay nodes of the route. This way, each node is able to
drop an encryption layer, and can see the address of the next relay node to which the still
encrypted message should be forwarded. Eventually, the message with only one layer of
encryption reaches the destination. According to this scheme, each node in the route only
knows the address of the preceding node and the address of the next node. Therefore, by
design, the first relay node knows the address of the sender. Sender anonymity is then not
supported if we allow the adversary to control the first relay node. The practical impact
of this weakness is that sole collaboration with an Internet service provider allows the
adversary to detect that a user is utilizing the Tor system. Sender anonymity is obviously
broken in a severe threat model with a global passive adversary, able to monitor all the
traffic in the network. Anyway, breaking sender anonymity is not enough to nullify the
final goal of the protocol, which is relationship anonymity. Indeed, the aim of Tor, as in
general happens for an anonymous communication network, is to prevent the adversary
from detecting that a given sender is communicating with a given recipient. Consider
that, despite the fact that anonymity services are often used for criminal purposes, there
are a lot of ethical applications of anonymous routing, including censorship resistance.
However, relationship anonymity can be broken in Tor in a global passive adversary model.

Appl. Sci. 2022, 12, 137. https://doi.org/10.3390/app12010137 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0448-8464
https://orcid.org/0000-0001-9731-3641
https://doi.org/10.3390/app12010137
https://doi.org/10.3390/app12010137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app12010137
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010137?type=check_update&version=2

Appl. Sci. 2022, 12, 137 2 of 24

As a matter of fact, Tor is vulnerable to many passive attacks [4,5], allowing traffic de-
anonymization. It can be easily recognized that if the adversary can monitor the traffic at
the bounds of the Tor circuit (i.e., the first and the last router), traffic analysis attacks break
relationship anonymity [6,7], thereby fully de-anonymizing the communication.

In this paper, our aim is to overcome the above drawbacks of Tor, by achieving sender
anonymity (in the sense of communication k-anonymity [8]) in the most severe threat model,
in which a global passive adversary is allowed, which monitors all the traffic in the network.
Recall that sender anonymity is enough to guarantee relationship anonymity, as stated
in [7]. Therefore, we obtain effective protection of users’ privacy.

The approach we use to obtain sender anonymity in Tor is to hide the sender within
an anonymity set of nodes built as a ring of potential senders. To prevent the adversary
from detecting the initiator of the communication, we equip the ring with cover traffic
that the senders can opportunistically use to send their messages, by filling one or more
of the circulating tokens. Thanks to probabilistic encryption, empty and filled tokens are
indistinguishable for the adversary. The route Tor is then built from a proxy node of the
ring to the destination. The adversary can see that a node of the ring is working as a proxy
node, but it is not able to understand which node the sender is among the nodes of the ring.
Traffic analysis attacks are not possible due to the cover-traffic mechanism.

Our approach can be related to buses[9,10], as we also consider a pre-determined route
that is opportunistically used by the sender. However, there is a crucial difference. In
buses, the fixed route is a Eulerian path passing through all the nodes, including thus all
the possible pairs of sender–receiver. This is an impractical solution resulting in intolerable
communication latency in a large network (such as the Internet).

Instead, our approach allows us to modulate the size of the anonymity set to a value
that fulfills reasonable anonymity requirements, without introducing intolerable latency
times, and importantly, relying on the existing Tor system. The feasibility of our approach
was tested through careful experimental analysis conducted by simulations. Therefore, this
research involved both theoretical and experimental analysis.

To the best of our knowledge, there is no proposal in the literature aimed at equipping
the Tor protocol with sender anonymity against a global passive adversary. A proposal
with some similarities to our paper (as both papers take inspiration from the original
idea of buses [10], as discussed above) is given in [11]. However, their method [11], as
clearly stated in the paper, does not provide protection against a global passive adversary,
because the observation of the initiator of the ring construction breaks sender anonymity.
On the contrary, sender anonymity against a global passive adversary in all the (even
preliminary) phases of the communication is the objective achieved by our approach,
which purposefully advances the state of the art. Moreover, our paper treats and solves
the problem for the case of complete bi-directional communication, i.e., a request from the
sender to the recipient and a response from the recipient to the sender. Observe that, in
general, this is not trivial when anonymity should be maintained. Indeed, the response
cannot be simply implemented as a different forward tunnel directed from the recipient to
the sender; otherwise, simple intersection attacks would break anonymity. The method
in [11] does not facilitate a response. This makes it applicable only for unidirectional
communications, which is a very strong limitation.

The structure of the paper is the following. In Section 2, we review the related
literature. We provide some basic notions needed to understand the proposed protocol in
Section 3. The protocol is presented in Section 4. The introduction of a certain degree of
fault tolerance is described in Section 5. The computational complexity of our solution is
discussed in Section 6. The security of the protocol is analyzed in Section 7. In Section 8,
we report the results of an experimental validation of our approach. Finally, in Section 9,
we draw our conclusions.

2. Related Work

The issues most relevant to this paper are the vulnerabilities which Tor suffers from.

Appl. Sci. 2022, 12, 137 3 of 24

As stated by the creators themselves [1], the Tor overlay network, based on Onion
routing [2], does not provide anonymous guarantees in the severe threat model of a global
passive adversary [4], which is able to observe the entire traffic of the network.

Anyway, even if we relax the powers of the adversary, many attacks are still ef-
fective [5,12,13]. The most famous class of attacks is represented by the traffic analysis
attacks [14–16] in which the adversary analyzes the traffic to find correlations. Among the
traffic analysis attacks there are the timing attacks [17–19], in which the adversary observes
the timing of the messages arriving at and leaving from the nodes to find correlations.Other
interesting subclasses of traffic analysis attacks are traffic confirmation attacks [20], in
which the adversary controls and observes two possible end-relays of a Tor circuit to
conclude that they really belong to the same circuit, and watermarking attacks [21], in
which the adversary manipulates the traffic stream by introducing an identifiable pattern.
Another category of attacks target the router selection used to build the Tor circuit. Indeed,
the standard selection is based on network and CPU performance reported by the nodes
themselves. This enables self-promotion attacks [22]. A countermeasure can be found
in [23].

The performance of Tor was investigated in [24–26]. Performance analysis in relation
to de-anonymization attacks was performed in [27].

In our approach, we extend Tor achieving sender anonymity (and then relationship
anonymity) [7] in the sense of communication k-anonymity [8], against a global passive
adversary. This goal can be reached only with the introduction of cover traffic [28] (as
required by our approach).

Among the approaches supporting cover traffic, the most significant are mixnets,
originally proposed in [29], and buses [9,10,30].

In the literature, several proposals include cover traffic in mixnets [31–34]. The
introduction of cover traffic makes traffic analysis more difficult. For example, a possible
approach is to introduce cover traffic to maintain a constant transmission rate. A very recent
mixnet-based approach designed for the network layer was presented in [35]. However, it
does not provide sender anonymity against a global adversary. Another relevant approach
in this category, even if dated (but still very solid), is Tarzan [32]. As discussed in [36],
mixnets, in general, require a suitable amount of cover traffic.

More related to our work are buses, as we also consider a pre-determined route that is
used by the sender. However, buses are unrealistic in a large network (such as the Internet),
since the fixed route is a Eulerian path passing through all the nodes, including thus all the
possible pairs of sender–receiver.

Similar considerations can be made for DC-Nets [37], based on a secure multi-party
cryptographic protocol, in which it is required that all participants are involved in every
run of the protocol and initially share a pairwise key.

This paper considerably extends a work-in-progress paper [38]. Reference [38] just
presented the rough idea underlying the protocol. Specifically, in that paper, the approach
is only sketched out, and it refers to the original Onion approach, with no fault tolerance, no
real-life contextualization in the Tor system. Moreover, no detailed security and complexity
analyses were performed, and no experimental evaluation was included.

3. Background and Notation
3.1. Anonymity

We recall some background notion taken from [7]. An anonymous communication
network may offer:

1. Sender anonymity: the adversary cannot sufficiently identify the sender in a set of
potential senders, called the sender anonymity set;

2. Recipient anonymity: the adversary cannot sufficiently identify the recipient in a set of
potential recipients, called the recipient anonymity set;

Appl. Sci. 2022, 12, 137 4 of 24

3. Relationship anonymity: the adversary cannot sufficiently identify that a sender (in a
set of potential senders) and a recipient (in a set of potential recipients) are communi-
cating. According to [7], sender anonymity implies relationship anonymity.

Observe that the definition of anonymity given in [7], with the use of the term suffi-
ciently, means “both that there is a possibility to quantify anonymity and that for some
applications, there might be a need to define a threshold where anonymity begins”.

3.2. The Tor Network

The Tor network is an overlay network, based on TCP/TLS connections, consisting
of multiple relay routers called Onion routers (OR). Each client runs locally an Onion proxy
(OP) which establishes a virtual circuit of ORs to communicate anonymously with the
destination. To build a circuit, the OP contacts periodically a trusted server called Directory
Server (DS) that keeps information about the state of the network and provides the OP
with router descriptors of the ORs. These router descriptors contain the IP addresses and
the public keys of the ORs, along with their network information, such as the bandwidth.
Then, the OP selects, according to some strategies, a number n of OR relays that form the
virtual circuit. By default, n = 3. The first OR is called the entry router, the second the
middle router and the last the exit router. Once the three ORs have been selected, the OP
starts a set-up phase to build the virtual circuit. This phase is performed in such a way
that each OR only knows the previous and the next node of the path. Moreover, in this
phase, the OP exchanges some messages with the ORs, which include some Diffie–Hellman
(DH) parameters, to share a secret key. These messages are encapsulated into control cells
of a fixed size of 512 bytes. Since the OP has to be sure about the authenticity of the ORs,
the DH parameters are encrypted by using the public keys of the ORs. At the end of this
set-up phase, the OP shares a secret key with each OR. These keys are used by the OP to
encrypt (symmetrically) in Onion fashion the messages intended for the destination. Once
the circuit is established, the OP sends the messages to the destination encapsulated into
relay cells of size of 512 bytes. These relay cells include a header of 3 bytes in plaintext plus
11 bytes encrypted for the exit router. Therefore, the effective payload is 498 bytes.

Through this paper, for both symmetric and public-key encryption, we denote by
Ek(M) the encryption of a message M with key k. Similarly, we denote by Dk(C) the
decryption of the ciphertext C with (symmetric or public) key k. Even though we do not
explicitly highlight this aspect, the encryption we consider in this paper is only probabilistic,
in such a way that, for an eavesdropper, two different encryptions of the same message
are unlinkable.

4. The Proposed Protocol

In this section, we describe our protocol, called Ring2Tor, which achieves sender
anonymity even in the most severe threat model including a global passive adversary. We
denote by (client) nodes the nodes that collaborate in the protocol without playing the role
of Tor routers. Senders are among the client nodes. Moreover, we have in the network nd
destination hosts, which are distinct from client nodes and Tor routers.

The description of the protocol is given in three main steps. The first step is describing
the ring manager and the token-based mechanism. Some management functions are
illustrated, along with the basic mechanism for implementing anonymity for the sender.
The second step is describing the set-up phase. This is the phase in which keys are exchanged,
the setting of further parameters is executed and cover traffic is established. This is a
preliminary step to make possible the anonymous communication, which is explained in
the last step of the description, denoted as communication phase.

4.1. Ring Manager and Token-Based Mechanism

In this section, we describe the basic mechanism of our approach that allows us to
provide the sender with anonymity against a global passive adversary.

Appl. Sci. 2022, 12, 137 5 of 24

We assume the presence of a ring manager (RM) that partitions the nodes of the network
in several rings.

The ring manager selects the nodes forming a ring in such a way that the background
knowledge does not allow a possible adversary to have more information than the uniform
distribution of senders. In other words, given a ring, any node of the ring is potentially
a sender (with no probability bias). This is achieved by selecting, for a given ring, hosts
belonging to the same, even large, geographical region.

A ring is a sequence of k nodes such that each node has exactly a preceding (prec, for
short) and a next node. In our setting, each node only knows its prec and its next node.
Several messages, called tokens, move through the ring. There are two kinds of tokens.
The first type is used in the set-up phase. The second type is used in the succeeding
communication phase. The detail will be discussed next. Tokens are filled by senders to
deliver their messages to a proxy node, which, once a Tor circuit is established, sends them
to the destination host. To obtain that any eavesdropper is unable to distinguish an empty
token from a filled token, each node encrypts the token with a symmetric key shared with
its next node.

RM maintains, along with the next node, the public keys and the network addresses
of each node of the network. For each ring, each belonging node receives from RM the set
of the public keys of the other nodes of the ring, and among these keys, the information
about which is the public key associated with the next node in the ring. In this paper, we
assume that RM is a centralized entity.

4.2. Set-Up Phase

The first purpose of this phase is to exchange a set of symmetric keys between the
nodes of a ring. These keys will be used to encrypt the messages without requiring the
complexity of public-key encryption.

We first introduce some notation. Given a ring, we denote by r1, . . . rk the k nodes
forming the ring, in order. Given a node ri, we denote by next(ri) the next element in
the ring, that is, r(i%k+1), where % is the operator mod. We denote by PKri the public key
associated with the node ri and by addr(ri) its network address.

Now, we can describe how key exchange is executed. This is done in detail next.
We have two kinds of key exchange. The first is aimed at providing each node with a
symmetric key shared with the next node. These keys are used to implement hop-by-hop
encryption when messages turn in the ring. This key exchange is called forward key exchange,
and it is described in detail next, in Section 4.2.1.

The second kind of key exchange is aimed at obtaining key sharing between the sender
and the proxy node. However, since both roles of sender and proxy can be played by all the
nodes in the ring, the key exchange mechanism involves every pair of nodes. Synthetically,
each node of the ring exchanges a symmetric key with the other k − 1 nodes. Observe
that, even though a key is exchanged between two nodes A and B, a different key will be
exchanged between B and A. Indeed, the two keys will be used for different purposes
depending on whether the node plays the role of sender or proxy. Therefore, the two keys
are called the sender key and proxy key, respectively. A requirement of this phase is that, if A
exchanges a key with B, B learns nothing about the network address of A. The detail of this
mechanism, called sender and proxy key generation, is provided next, in Section 4.2.3. Since
the above keys will be included into special tokens, before describing the key generation
mechanism, we describe, in Section 4.2.2, how such tokens are arranged.

4.2.1. Forward Key Exchange

Each node ri receives from RM the set Q of the public keys of the nodes of the
ring it belongs to, addr(next(ri)), and among Q, the information about which public key is
associated with next(ri) (the associations of the other keys with the proper network address
remain unknown to ri). The address of the next node will be used to forward tokens.

Appl. Sci. 2022, 12, 137 6 of 24

Initially, each node ri exchanges a symmetric key called forward key with its next node.
This key is used only to encrypt the token hop-by-hop. In detail, as the exchange of keys
occurs between the OP and the first OR in Tor (see Section 3), each node ri generates a public
DH parameter yi and encrypts it with the public key PKnext(ri)

, obtaining C = EPKnext(ri)
(yi).

C is sent to next(ri) (we recall that ri knows add(next(ri)). The latter decrypts yi, generates
the forward key kri and replies to ri with its public DH parameter ȳnext(ri)

along with the
hashed value H(kri) (in plaintext). In summary, each node ri shares a forward key kri with
its next node, and the tokens can be properly encrypted hop-by-hop.

4.2.2. Token Generation

After exchanging the forward keys, at a given time t0, each node ri generates k− 1
empty tokens and sends them to its next. In turn, next(ri) forwards the tokens to its next,
and so on. Each token is encrypted by ri with kri ; then it is sent to next(ri), which decrypts
it with kri , processes the token, re-encrypts it with knext(ri)

and forwards it to next(next(ri)).
The structure of these tokens is the following: 〈F, PDH, R, H〉 where F is a flag denot-

ing whether the token is empty (F = 0) or filled (F = 1), PDH is a field containing a public
Diffie–Hellman parameter (possibly encrypted), R is a random playing the role of identifier
and H is a hashed value (the exact meaning of these fields will be clear in the following).
Observe that PDH, R and H are meaningful only if F = 1. The tokens are born with
F = 0. Therefore, at the beginning, there are k(k− 1) empty tokens turning in the ring.

Starting from a time t1 > t0, each node ri waits a random time δi, and then fills the
first available empty token, as explained in the following.

4.2.3. Sender and Proxy Key Generation

First, F is set to 1. Then, ri selects a random public key PKrj from Q \ {PKri}. ri selects
its public DH parameter yij and encrypts it with PKrj , thus obtaining Cij = EPKrj

(yij).
Then, PDH is set to Cij. R is set to a random value used by rj to reply with its public DH
parameter, which is needed by ri. This DH parameter is used in the construction of the key
that ri will use to send a message by using rj as a proxy. This key kij is called the sender key
for ri (with respect to rj), and the proxy key for rj (with respect to ri). Finally, H is filled with
random bits.

The token T is encrypted by ri with ki, by obtaining CT = Eki
(T). Then, CT is sent to

next(ri).
When CT reaches next(ri), it decrypts CT , by obtaining T, and since F = 1, it tries to

read the field PDH = Cij of T. If next(ri) 6= rj, next(ri) is not able to decrypt such a field,
and then it re-encrypts the token with the forward key knext(ri)

shared with next(next(ri))
and forwards the token. The token moves through the ring until it reaches rj. At this point,
rj decrypts Cij and obtains yij, with which it generates the key kij which is shared with ri.
The token is filled as follows. F remains set to 1. PDH is set to ȳji. ȳji represents the public
DH parameter of rj that will be used by ri to generates the key kij. R remains unaltered,
and finally, H is set to the hashed value H(kij). This new token moves through the ring
until ri. Observe that all the nodes between rj and ri, after decrypting the token with their
forward keys, understand that the token is used to reply to a node, but are unaware of the
sender and the recipient of this token.

When ri receives the token, it identifies the token as a reply of rj thanks to the random
R. Then, ri can generate the key kij as rj. This token is then disposed by ri. Finally, ri drops
from the set Q the node rj. Note that any external observer only knows that a key was
exchanged by a given node ri, but does not know with which node.

The entire process (which started at time t1) is repeated k − 2 times, until all kiy
are exchanged.

When all the k(k− 1) tokens are disposed of, each node ri owns (in addition to the
forward key) two symmetric keys kij and k ji shared with each other node rj of the ring. The
key kij represents a sender key for ri, since it used by ri when has to send a message by

Appl. Sci. 2022, 12, 137 7 of 24

selecting rj as a proxy node (see next section). On the other hand, kij represents a proxy
key for rj, since it is used by rj when plays the role of proxy node.

In Figure 1, the sequence diagram of the set-up phase is depicted.

Figure 1. Set-up phase.

4.3. Communication Phase

In this section, we describe the core of our protocol, which is the communication
between a sender and recipient. We remark that the communication is bi-directional, in the
sense that we address both the request and the response. We split the description of the
communication phase into three parts. The first part is the structure of tokens in which mes-
sages are encapsulated. Observe that these tokens are different from those used in the set-up
phase, which we described in Section 4.3.1. After describing the structure of the tokens, we
show how tokens are generated (see Section 4.3.2. Finally, in Sections 4.3.3 and 4.3.4, we
describe how anonymous communication is established between a sender and a recipient.

4.3.1. Structure of the Token

As in the set-up phase, in the communication phase, a token-based mechanism is
enabled. We assume that a given number of tokens move through the ring encrypted,
hop-by-hop, from one node to the next, with the forward key exchanged in the set-up phase.

Appl. Sci. 2022, 12, 137 8 of 24

These tokens are managed (generated and disposed) by some nodes of the ring
according to the network requirements (throughput, bandwidth, etc.). The specifications of
these requirements are discussed in Section 8.

The structure of a communication-phase token is the following: 〈F, HID, CI, DA, P〉.
In Figure 2, an expanded description of this structure is reported.

+-----------------------------------+
| FLAG F (1) | ////////////// |
+-----------------------------------+
| HASHED IDENTIFIER (HID) (32) |
+-----------------------------------+
| COMMUNICATION IDENTIFIER (CI) (4) |
+-----------------------------------+
| DESTINATION ADDRESS (DA) (4) |
+-----------------------------------+
| PAYLOAD (P) (498) |
+-----------------------------------+

Figure 2. Structure of the token.

As the communication phase is the core of Ring2Tor, we describe in detail how the
token is organized. Its size is 539 bytes, of which 41 are reserved for the header, and 498 for
the payload. The size of the payload is set to the same value as the size of the payload of
the relay Tor cells.

First, we describe the meaning of the field F. It is composed of two bits (even though
we reserve 1 byte for this field), with following possible meanings: 00 means empty token;
01 means token reserved for a given communication identifier; and 10 means that it is used
for a message. A token in the state 01 (reserved) or 10 (used) is said to be filled.

During the description of the protocol, which we provide next, the meanings of the
remaining fields are clarified.

4.3.2. Token Generation

Consider now the process of token generation. When a token is generated by a node
rg, the fields are set as follows. F is set to used (i.e., 10). rg picks randomly from the set
Q (where Q is the set of all the public keys of the ring) a public key, say PKrp , associated
with the node rp. The field HID is set to H(PKrp). It is used as an identifier to allow rp to
recognize that this token is intended for it. Finally, the field DA includes the encryption S̄
with the sender key (of rg) kgp of a fixed string S different from any other network address.
This string allows rp to identify the fact that this token, if even used, does not contain any
message to forward outside the ring (see below), but it has to be emptied by rp. The reason
why the token is not directly generated empty derives from security aspects. The security
analysis is provided in Section 7. The other fields (CI,P) are filled with random bits.

The entire token is then encrypted with the forward key krg and sent to next(rg). This
node decrypts the token, and with the state of the token being filled, through the field HID,
it checks whether this token is intended for it. In this case (i.e., rp = next(rg)), it processes
the token. Otherwise, the token is encrypted, as usual, by next(rg) with the forward key
knext(rg) and sent to next(next(rg)). The token moves through the ring until it reaches rp.

At this point, rp verifies that it has been selected as recipient of the token, even though
it does not know that the token was generated by rg. Therefore, rp tries to decrypt the fields
CI, DA, P with all its k− 1 proxy keys until it finds the correct key kgp. Since Dkgp(DA) = S,
rp knows that it has to empty the token. Thus, rp sets F to 00 and HID = H(PKnext(rp)). In
this case, we say that next(rp) will play the role of proxy node (with respect to a potential
sender for a communication identifier not established yet). The other fields are set to
random bits.

rp encrypts the token with the forward key krp (shared with its next) and forwards it
to next(rp). The empty token crosses the ring encrypted hop-by-hop, as usual.

Appl. Sci. 2022, 12, 137 9 of 24

The process of generation of the tokens is represented in the sequence diagram in
Figure 3.

Figure 3. Process of generation of the tokens.

4.3.3. Transmission of a Message

Consider a node ri that wants to send a message M to a destination D (outside the
ring). Suppose M is already encrypted for D. First, ri splits M into blocks M1, . . . , Mq
(q ≥ 1) with size 498 bytes (i.e., the size of the payload P of a token). ri waits for the first
empty token (with F = 00). Let be HID = H(PKrj) (this means that rj will play the role of
proxy node for a communication session started by ri, as we will see next). Through HID,
ri identifies the public key PKrj and the corresponding sender key kij.

The token is filled as follows. F is set to 10 (used). HID = H(PKrj) is unaltered. CI
is set to Ekij

(R) where R is a random value identifying the current communication session
associated with the sender key kij (note that for a given communication session, a Tor
circuit will be established outside the ring). The field DA includes the encryption with key
kij of the network address of the destination D. Observe that the size of this field is 4 bytes,
and thus is compliant only with IPv4. Obviously, for IPv6, the size should be increased.
Moreover, the TCP port is not included in this field for privacy reasons. It will be included
in the payload encrypted at application layer. Finally, P is set to Ekij

(M1) (possibly padded,
if q = 1). The token moves through the ring (encrypted hop-by-hop) until it reaches rj.

Regarding the other messages Mt (with 2 ≤ t ≤ q), ri waits for either (1) an empty
token with HID = H(PKrj) or (2) a reserved token (F = 01) with HID = H(R), meaning
that the token is reserved for the communication session started by ri identified by R.

In both cases, the token is filled as follows. F is set to 10, HID is set to H(R) in case
(2) (indeed, in case (1) it is already set with this value), CI = Ekij

(R), DA includes the
encryption with key kij of the network address of the destination D and P = Ekij

(Mt).
Additionally, these tokens move through the ring until they reach rj. Eventually, all the
blocks of the message M reach the same proxy node rj, which will use the same Tor circuit.

We now see how such Tor circuit is established by rj. When rj receives the (used)
token containing M1, rj identifies this token through HID = H(PKrj). Anyway, it does not
know the sender ri. Therefore, rj tries to decrypt the fields CI, DA, P with all its k− 1 proxy
keys until it finds the correct key kij. Since Dkij

(DA) 6= S (we recall that S is a fixed string
denoting that the token does not contain a message), rj has to send the message outside the
ring to the destination D through the Tor system.

Before doing this, rj sets the flag F = 01 (reserved) and the field HID = H(R) where
R = Dkij

(CI). This means that this token is associated with the communication session
identified by R. R is also stored by rj and associated with kij in such a way that further
tokens can be associated with this communication session. The random R is also used by ri
to detect further reserved tokens for this communication session. The other fields are filled
with random bits and the token is then forwarded into the ring.

Appl. Sci. 2022, 12, 137 10 of 24

At this point, rj can send the message M1 = Dkij
(P) to the destination D. To do this, it

builds a Tor circuit with destination Dkij
(DA) and sends the message M1 to D through this

circuit. The construction of the Tor circuit is performed in the standard way, by contacting
the Directory Server (DS) and by selecting the entry, middle and exit nodes as illustrated in
Section 3.

When rj receives a (used) token containing a message Mt with 2 ≤ t ≤ q, rj identifies
such token through HID and forwards Mt to D through the Tor circuit. The token is set to
reserved (F = 01) and HID remains unaltered to the value H(R). The other fields are set
to random bits, and the token is then forwarded into the ring.

The transmission of the message M is represented in the sequence diagram in Figure 4.

Figure 4. Transmission of the message M.

4.3.4. Transmission of the Response

When rj receives the response M′ (already encrypted by D) through the Tor circuit,
rj injects the response into the ring. Specifically, let P′1, . . . P′l be the Tor cells including the
response M′, and let denote by Pk the payload of the cell P′k (1 ≤ k ≤ l). For each Pk, rj
waits for either (1) an empty token or (2) a reserved token with HID = H(R). The token is

Appl. Sci. 2022, 12, 137 11 of 24

filled as follows. F is set to 10. Only in the case of an empty token is the field HID set to
H(R), and the communication identifier CI, is derivable by the random R associated with
the current communication session; and then, with this Tor circuit stored by rj when the
Tor circuit has been established, the field is set properly. That is, CI = Ekij

(R). The field
DA is filled with random bits. Finally, P is set to Ekij

(Pk).
At this point, the token moves through the ring and is identified by ri through HID.

When ri receives all the tokens containing the block Pk, it retrieves the entire response M′.
For each of these tokens, ri changes the state from used to reserved and forwards the token.
Specifically, F is set to 01, HID = H(R) is unaltered and the other fields are filled with
random bits. These reserved tokens (along with other possible empty tokens) are used
by ri and rj to exchange the other requests/responses associated with the communication
session identified by R.

The transmission of the response M′ is represented in the sequence diagram in Figure 5.

Figure 5. Transmission of the response M′.

When the communication session ends, ri and rj perform some actions aimed at
emptying the tokens reserved for this session and destroying the Tor circuit. Specifically,
for each reserved token with HID = H(R), ri fills the token in such a way that rj recognizes
that they have to be emptied. To do this, F is set to 10, HID = H(R) remains unaltered, CI
is set to Ekij

(R), DA is set to the encryption with key kij of S and P is filled with random bits.
When rj receives such token, it retrieves the string S and recognizes that the session

deactivation actions have to be performed. If this token is the first including S, rj destroys
the Tor circuit. For this token and the successive ones, including S, rj empties them and
forwards them into the ring. Specifically, F is set to 00 and HID = H(PKnext(rj)

). The other
fields are filled with random bits.

This process of emptying the tokens and destroying the Tor circuit is represented in
the sequence diagram in Figure 6.

To conclude this section, we provide a brief summary, by omitting the technical details
of the communication phase. In Figure 7, we sketched a high level graphical representation
of this phase.

The sender waits for an empty token, selects a proxy node and fills the token with a
message. This token will be injected into the ring, in which it will move until the proxy
node is reached. The path of the ring from the sender to the proxy node is represented
with a red arrow. Once the proxy node receives the message (possibly, encrypted), it
contacts the Directory Server (dashed arrow) to select the entry, middle and exit routers
and builds a Tor circuit through them. At this point, the proxy node forwards the message
through this Tor circuit until the destination. The latter will provide the response (possibly

Appl. Sci. 2022, 12, 137 12 of 24

encrypted) through the same Tor circuit until the proxy node. Both the ongoing path and
the return path are represented by the green arrow in the figure. Finally, when the proxy
node receives the response, it waits for a number of empty or reserved tokens and fills them
with the response. These tokens are injected into the ring until they reach the originator of
the request. The path of the ring from the proxy node to the originator, traversed by the
response, is represented with a blue arrow.

Figure 6. Process of emptying the tokens and destroying the Tor circuit.

Figure 7. Communication phase.

5. Introducing Fault Tolerance into the System

Even though fault tolerance is one of the aspects that is typically missed in anonymous
communication networks, we sketch in this section how a certain degree of fault tolerance
can be easily introduced in a system based on our protocol. To confirm the above claim,
consider the current Tor itself has no fault tolerance at all. Indeed, if a Tor router stops
working during a communication, the communication is lost, and there is no a protocol to
recover the communication on the fly (indeed, to set a backup Tor circuit is not enough to
obtain this goal). As we focus on the part of the proposal that plays the role of add-on, with
respect to the existing Tor system, we do not consider in this section the Tor communication
occurring outside the system, between the proxy node and the destination. Apart from the
fact that the fault tolerance of Tor can be considered as an orthogonal problem, it is also
true that Tor routers can be considered more stable than standard client nodes involved in
the rings.

The basic change we have to introduce to obtain fault tolerance is the notion of a
ring layer. The ring manager, instead of building simply rings of k nodes, builds rings of
k layers, each composed of j nodes. We can figure out that the value of j, for good fault

Appl. Sci. 2022, 12, 137 13 of 24

tolerance, should be very low (for example, 2 or 3), if we are in a network with a high level
of activity. Anyway, higher values of j do not result in infeasible computation, as we will
see next. The nodes of each layer know each other in the sense that they are aware of the
reciprocal addresses. With the notation r1, . . . rk, used earlier for the rings, now we indicate
a sequence of layers, such that ri = {xi

1, . . . xi
j} is a set of j nodes. Besides the individual

public keys of the nodes, there is also a public key per layer, called the public layer key. This
impacts both the set-up phase and the communication phase. Concerning the set-up phase,
some changes occur for the key exchange task. Forward keys are exchanged for each pair
xi

p, xi%k+1
q , (1 ≤ p, q ≤ j). Thus, we have j2 forward key exchanges per pair of consecutive

layers. Instead, by leveraging public layer keys, the pair of keys used as sender key and
proxy key kst and kts will be established between layers instead of individual nodes. To
do this, the ring manager selects one representative node alive per layer and informs each
selected node about the other selected nodes (and then about their public keys). Then, the
Diffie–Hellman process described in Section 4 happens among these representative nodes.
At the end of this process, any representative node has a pair of sender key and proxy
key between its layer and any other layer. These keys are exchanged with all the other
nodes in the layer. Indeed, in the pre-set-up phase, the nodes of the same layer exchange a
symmetric key per pair, by enacting the j(j− 1) Diffie–Hellman processes.

Concerning both the circulation of tokens and the communication task, the only
change is that the function next, associating to each node of the ring the next node to
forward a message, becomes non-deterministic. Specifically, a node in layer s which has to
forward a message, just has to choose one alive node in the layer next(s) and forwards the
message to it. For the proxy node, essentially no change is required, because the encryption
is done for the layer, so that any node in the layer is able to decrypt the message and then
initiate the Tor circuit. Similar considerations can be made for the response.

To conclude this section, we evaluate our fault-tolerance mechanism from a proba-
bilistic perspective, to allow the correct setting of the parameter j, once a given reliability
probability is fixed. We denote by p the probability that, at a given instant, a node is alive.
We assume p is the same for each node. Therefore, the probability that, given a layer of j
nodes, at least one node of the layer is alive is p′ = 1− (1− p)j. To guarantee reliability
(i.e., the communication is not lost), at least one node per level (for the k levels) has to be
alive. Therefore, the probability that the communication succeeds is p′′ = (1− (1− p)j)k.
Clearly, it decreases as k increases and increases as j increases. Suppose now we set the

reliability threshold to a given value τ. Then, j must set in such a way that j > log(1−e
log(τ)

k)
log(1−p) .

In Figure 8, we set τ = 0.999 and show how the ratio j
k varies for different values of p

and k.
Observe that the exemplified value chosen for τ refers to a very reliable system.

Indeed, according to the standard IEC 61508, this value falls into the range of probability
of failure on demand (PFD), classifying the system as reliability class SIL 3, which is the
second most-reliable class.

As expected, for high values of p, the number of nodes j (and then the ratio j
k) required

to obtain τ = 0.999 decreases. Regarding k, as k increases the absolute value of j increases
but slower that k. Therefore, the ratio j

k increases with k.
To give a practical example, with k = 100 and p = 0.9, we obtain a ratio j

k = 0.05,
which means that each layer of the ring has to contain only five nodes.

Appl. Sci. 2022, 12, 137 14 of 24

Figure 8. Ratio j
k as k and p vary.

6. Computational Complexity

In this section, we discuss the computational complexity of our protocol. We focus on
the part of the protocol regarding the ring. Indeed, for the rest of the protocol, involving
just a Tor circuit, the reader may refer to the results available in the literature [1].

The communication phase requires, besides the hop-by-hop encryption of the mes-
sages (which is standard in any protocol supporting secure communication), the attempted
decryptions that the intended proxy node has to perform before sending the message
outside the ring. On average, there are k−1

2 decryptions applied only to the first token of a
given communication (recall that the size of a token is about 500 bytes). In the worst case,
there are k− 1 decryptions. This overhead does not appear relevant, as it regards only the
proxy node, and for good privacy levels (e.g., k = 100), the extra time required is small.
Observe that the magnitude of an AES encryption/decryption is 102 Mbytes per second on
standard personal computers.

Now, we consider the set-up phase.
First, consider the protocol without fault tolerance (see Section 4). Similarly to the Tor

set-up phase, we require k key exchanges for the forward keys and k(k− 1) key exchanges
for sender/proxy keys. For values of k guaranteeing a good anonymity level, the cost of
this phase is not prohibitive. When fault tolerance is included, we pay a price in terms of
complexity of the set-up phase. Indeed, we require j(j− 1) key exchanges per layer in the
pre-set-up phase, and then j2 forward key exchanges per pair of adjacent layers (executed
in parallel) plus k(k − 1) exchanges for sender/proxy key exchanges. In summary, we
increase the previous cost by j(j− 1) + j2. Due to the fact that we expect that j is very small,
this computational overhead does not appear as an actual issue for the protocol. Recall that
the set-up phase, differently from Tor, is not done for each communication, but it is done to
set-up the network, so it can be considered an operation with a long-term lifetime.

7. Security Analysis

In this section, we analyze the security of our solution. We start by defining the threat
model we consider. We introduce the following assumption:

Assumption 1 (A1). Rings are formed in such a way that the background knowledge does not
allow the adversary to have more information than sender uniform distribution.

Observe that Assumption A1 is easily satisfied if rings are built among hosts belonging
to the same, even large, geographical region.

Adversary Model (AM). We consider four types of adversaries.

• External (E). In this case, the adversary monitors incoming and outgoing traffic of the
DS. In addition, for Ring2Tor, the adversary monitors traffic coming in and going out
from the RM.

• Weak (W). In this case, the adversary monitors the traffic between a client node and
the entry Tor router. In Tor, the client node corresponds to the OP. To be fair, for

Appl. Sci. 2022, 12, 137 15 of 24

Ring2Tor, we allow the weak adversary to monitor all the traffic between the client
nodes and the traffic between the client node playing as a proxy and the entry Tor
router.

• Strong (S). In this case, the adversary monitors the traffic between a client node and
the entry Tor router and the traffic between the exit Tor router and the destination
host. For Ring2Tor, in addition, the adversary can monitor all the traffic between the
client nodes.

• Global (G). In this case, the adversary monitors all the traffic of the network.

Furthermore, for all the four adversaries, regarding Ring2Tor, we enable another
capability: the adversary knows the entire composition of the rings.

Observe that the capabilities of Global, Strong and Weak adversaries are in order (i.e.,
Global is stronger than Strong and Strong is stronger than Weak). Furthermore, Global is
stronger than External.

Both the External adversary and the Weak adversary model refer to a very feasible
case in which an entity is able to control just an autonomous system. The feasibility of
the External adversary can be contrasted by distributing the DS and the RM. The Strong
adversary is a weak form of the Global adversary, because the autonomous systems of
entry router and exit router can be very far from each other and even be in different
continents [14]. The Global adversary is the standard global passive adversary.

Security properties. We analyze two security properties (see Section 3): (1) Sender
anonymity (SA); (2) Relationship anonymity (RA).

In the following analysis, we discuss how Tor and Ring2Tor behave with respect
to the security properties in the four adversary models. The results of the analysis are
summarized in Table 1. First, we give a preliminary basic result in the following lemma.

Lemma 1. In Ring2Tor, a ring of size k is a sender with an anonymity set of size k against the
Global adversary.

Proof of Lemma 1. Due to the hop-by-hop probabilistic encryption mechanism that is
used to move tokens inside the ring, the only point of the ring from which the adversary
can draw some information more than a random guess to identify a sender is the proxy
node. Indeed, this is the only point of the ring in which the possible state transitions of a
token could be in principle related to the observable incoming or outgoing traffic in/out of
the proxy. Transitions occurring in other points are not identifiable with probability higher
than 1

k . Since reserved and used tokens cannot be filled by other client nodes different from
the sender (associated with the reserved tokens), the only possibility for the adversary to
identify a sender anonymity set of size less than k is to detect an empty token outgoing
from a node and track it until it reaches a proxy node, which sends a message outside the
ring before doing less than k steps. The only event in which the adversary can guess that a
token is emptied is when a proxy node, say rx, dismisses a Tor circuit. Indeed, according
to the protocol, there is no other case in which tokens are emptied. However, rx sets the
field HID to H(PKnext(rx)), and this means that such a token moves around the entire ring
(in which it is, possibly, filled) before reaching next(rx), which possibly builds a Tor circuit
outside the ring. Therefore, we can argue that the sender anonymity set is not always larger
than k, even for the Global passive adversary. The proof is then concluded.

The above lemma is the basis for the fulfillment of the security properties stated above
for Ring2Tor.

This is proven through the following theorems. The first theorem states that Tor does
not guarantee SA against any adversary. This corresponds to the first four fields of the first
row of Table 1.

Theorem 1. In Tor, any adversary breaks SA with probability 1.

Appl. Sci. 2022, 12, 137 16 of 24

Proof of Theorem 1. Consider the External adversary. Since it observes the traffic intended
to the DS, it receives the request of the sender and then the sender is identified. Since the
Global adversary has the same capabilities as the External adversary, SA does not hold
against it. Now, we consider the Weak adversary able to observe the traffic between the
sender and the entry Tor router. Clearly, W identifies the sender. The Strong adversary has
the same capabilities as the Weak adversary. The proof is then concluded.

Now, we prove that Ring2Tor guarantees that a sender can be identified (by any
adversary) with probability 1

k . This corresponds to the first four fields of the second row of
Table 1.

Theorem 2. In Ring2Tor, any adversary breaks SA with probability 1
k .

Proof of Theorem 2. Consider the Global adversary G. By Lemma 1, it can identify the
sender with a probability not higher than 1

k . Since G is stronger than all the other adver-
saries (i.e., S, W, and E), we conclude that for those three adversaries also, SA is broken
with a probability not higher than 1

k .

Table 1. Comparison between Tor (T) and Ring2Tor(R2T). Shown are the probabilities of the adver-
saries breaking the properties SA and RA.

SA RA

AM E W S G E W S G

T 1 1 1 1 1
nd

1
nd

1 1

R2T 1
k

1
k

1
k

1
k

1
nd ·k

1
nd ·k

1
k

1
k

Now, we have to consider the remaining fields of Table 1 regarding relationship
anonymity. These are covered by the following two theorems.

Theorem 3. Let nd be the size of the recipient anonymity set. In Tor, the External and Weak
adversary break RA with probability 1

nd
. Furthermore, the Strong and Global adversary break RA

with probability 1.

Proof of Theorem 3. Consider the External adversary. By Theorem 1, it identifies the
sender SN of a communication with probability 1. Anyway, E has no information about the
recipient R of such a communication. Therefore, E (without further knowledge) identifies
that SN communicates with R only with the smallest probability, i.e., 1

nd
.

Similarly, the Weak adversary identifies the sender with probability 1, but has no
information about the recipient. Therefore, RA is broken with probability 1

nd
.

Consider the Strong adversary S. Since it monitors the outgoing traffic from the exit
Tor router, it can identify the recipient R of a communication with probability 1. Since S
also monitors the traffic between the sender SN and the entry Tor router, it can perform
traffic analysis attacks [14] and identifies that SN communicates with R with probability
1. The Global adversary has the same power as the Strong adversary. The proof is then
concluded.

Theorem 4. Let nd be the size of the recipient anonymity set. In Ring2Tor, the External and Weak
adversary break RA with probability 1

nd ·k . Furthermore, the Strong and Global adversary break RA

with probability 1
k .

Proof of Theorem 4. Since SA implies RA [7], by Theorem 2, it follows that RA can be
broken with a probability not higher than 1

k by any adversary. Consider now the adversaries
E and W. Even though they can identify the sender with a probability not higher than 1

k ,

Appl. Sci. 2022, 12, 137 17 of 24

they do not have any information about the recipient. Therefore, they can only guess the
recipient among all the possible recipients of the network nd. Therefore, for E and W, RA
is broken with a probability not higher than 1

nd ·k . For the other adversaries (i.e., S and G),
the above upper bound of the success probability cannot be decreased, because both S and
G are able to identify the recipient, so that the probability of breaking RA is the same as
the probability of breaking SA. The proof is then concluded.

This ends the security analysis. As is evident by Table 1, the benefit in terms of
security of Ring2Tor can be measured as a multiplicative factor k, increasing the degree of
anonymity provided by Tor both for SA and RA.

8. Experiments

In this section, we provide experimental validation of Ring2Tor. Specifically, our
aim is to show that the network performance is not compromised by the adoption of
our protocol. Our analysis was performed through the network simulator NS3 [39]. We
simulated an overlay network with rings of size k = 50 and with no fault tolerance (clearly,
fault tolerance has no impact on the communication-phase performance, only on the set-up
phase). Tor routers were set as separated network nodes. Regarding the links between the
Tor routers, we set a delay such that the total time to perform a download of 50KB was
about 1.5 s, which represents the actual time (as of October 2021) taken to download a file
of this size in the real-life Tor network [40]. The resulting delay is then 150 ms.

The above considerable delays reflect the fact that, according to the current Tor-router-
selection algorithm, no two routers in the same circuit belong to the same class B network
(/16 subnet) or the same family [41]. Regarding the link between client nodes, we set a
delay of 10 ms, capturing that the purpose of the node-selection algorithm—to form rings
is the opposite of that of Tor router selection—to obtain homogeneity among nodes in a
ring (and thus an effective anonymity set). Therefore, nodes belonging to the same ring are
geographically close to each other.

We used an http traffic generation model that simulates web browsing traffic accord-
ing to the specification suggested by 3GPP2 [42]. We focus our analysis on three metrics:
(communication) latency, (traffic) overhead and throughput. The communication latency is
defined by the application layer, as it measures the time between the instant at which the
sender sends an http request and the instant at which it receives the complete response.
Observe that, to be fair, we did not consider as initial time the instant in which the sender
received an available token, but the instant in which the http client generated the request.
As traffic overhead, we took the average ratio between the number of empty tokens circu-
lating in the ring and the total number of circulating tokens. Finally, the throughput was
defined as per usual—that is, the average exploited data rate per node. The results are
reported in Figures 9–13.

Figure 9. Latency vs. percentage of senders in Ring2Tor.

Appl. Sci. 2022, 12, 137 18 of 24

Figure 10. Overhead vs. percentage of senders in Ring2Tor.

Figure 11. Overhead vs. Number of tokens in Ring2Tor.

Figure 12. Throughput vs. percentage of senders in Ring2Tor.

Figure 13. Throughput vs. numbers of tokens in Ring2Tor.

Appl. Sci. 2022, 12, 137 19 of 24

The plot in Figure 9 shows that our solution introduces an acceptable latency for
different sender percentages. Specifically, when the percentage of senders is less than 50,
the latency ranges from 3.8 s to nearly 7 s, which are values not too far from those found
for Tor [43], considering the results obtained for low-volume http traffic.

For high volumes, the difference between Ring2Tor and Tor increases, because Tor’s
performance improves. However, the absolute values of latency experimented for Ring2Tor
for realistic http traffic can be considered acceptable. As expected, the latency increases
as the sender percentage does, since, in the rings, many filled (reserved and used) tokens
move. On the other hand, the latency decreases as the number of tokens moving in the
ring increases.

The plots in Figures 10 and 11 can be used to set the number of tokens that a generator
needs to maintain in a ring. Indeed, by fixing the maximum percentage of overhead
tolerable and the percentage of senders in the rings, we can find the minimum number of
tokens. For example, if the maximum overhead is set to 27%, even with a high percentage
of senders equal to 70%, we obtain a latency of 6.5 seconds by setting 120 tokens in the ring.

As expected, the overhead decreases as the percentage of senders increases, because
there will be more filled tokens circulating into the ring. Moreover, as the total number
of tokens circulating into the ring increases, with the same percentage of senders, the
overhead increases since a greater number of empty tokens will circulate into the ring.

Finally, Figures 12 and 13 show that also the values of throughput are acceptable. As
expected, regardless the number of tokens, the throughput decreases as the percentage
of senders increases. This happens since a when the percentage of senders increases, the
number of empty (available) tokens decreases and then, each sender has to wait for a longer
time before sending a message. This reduces the throughput of the senders. On the other
hand, as the number of tokens increases, also the number of empty (available) increases
and then, with the same percentage of senders, the throughput experimented by a single
sender increases.

Even though the amount of traffic overhead could appear high, we have to consider
that we are dealing with an inherently difficult task, which is the resistance to a global
passive adversary. It is widely recognized in the literature that a high traffic overhead
is the price we have to pay in any anonymous routing protocol to achieve the above
goal [28]. As a matter of fact, our protocol has a significant advantage with respect to the
standard way of hiding communication against a global passive adversary. The standard
way is indeed to use mixnets [29] with bi-directional cover traffic in any link of the overlay
network. Instead, in our approach, cover traffic is only 1-directional and the circular
overlay network, differently from mixnets, does not produce overhead amplification. To
better understand this point, consider a simplified yet general model of mixnets taken
from [32]. Here, as anticipated earlier, we need to enable bi-directional cover traffic over
any link of the overlay network in such a way that the fan-out mechanism increases the
cardinality of the anonymity set exponentially with the length of the communication path.
Indeed, if we have even a simple mixnet with a degree of mixing of 2 (i.e., the traffic of
two senders is mixed into one receiver at each step), for a communication path of length
l, the anonymity set has cardinality 2l . For minimum degree of nodes (which is 3, to
enable the fan-out mechanism) and k nodes, the cover traffic is 2 · 3 · k (recall that the traffic
must be bi-directional). Instead, in our protocol, the cover traffic involving k nodes in a
ring is just k, according to the topology with no branch of the route and the fact that the
traffic is 1-directional. Therefore, we reduce cover traffic by a multiplicative factor equal
to 6. Observe that, in these approaches, the cover traffic is the total traffic of the network.
However, when the cover traffic does not embed real traffic, it represents an overhead.

To better support the above analysis, we performed a number of experiments by
implementing this simple model of P2P mixnet with 50 nodes, each with degree 3. In
particular, we replicated the same simulation conditions in NS3 as those used for Ring2Tor
(same traffic pattern, same link delay and same number of nodes). Furthermore, we

Appl. Sci. 2022, 12, 137 20 of 24

measured the rate of the circulating tokens in Ring2Tor and used this value to set the rate
of the total traffic for a single link of the mixnet.

In Figure 14, we show that the ratio between the cover traffic of the mixnet and
the cover traffic of Ring2Tor is very close to 6 (the slight difference comes from possible
imprecision of the rate setting).

Figure 14. Ratio between the cover traffic of mixnet and Ring2Tor.

The benefits of our solution in terms of traffic overhead compared with the mixnet
are highlighted in Figure 15. Therein, we consider Ring2Tor with 180 tokens circulating in
each ring. For the mixnet, we obtain a very high value of traffic overhead (approximately
equal to 99%). Observe that it decreases very slightly with the percentage of senders. This
can be explained by considering that, for the bursting http traffic, the high volume of total
cover traffic is always dominant, even when many nodes are senders.

Figure 15. Overhead vs. percentage of senders in mixnet and Ring2Tor.

We expect that the benefits in terms of overhead have a price in terms of latency, as
the communication path is in general much shorter in mixnets than in Ring2Tor. Indeed,
in Ring2Tor, the request and the associated response go through O(k) hops, but in mixnet,
through O(logk) nodes. It is important to understand whether, for a significant privacy
level (i.e., the cardinality of the anonymity set), the above price is tolerable or not. To do
this, we performed an experiment on latency. The results are reported in Figure 16. From
them, we can conclude that the latency of Ring2Tor is higher (as expected), but within a
range of tolerability, for the considered application setting.

In summary, we can conclude that our protocol represents a good trade-off be-
tween latency and traffic overhead, when resistance to a global passive adversary should
be achieved.

Appl. Sci. 2022, 12, 137 21 of 24

Figure 16. Latency vs. percentage of senders in mixnet and Ring2Tor.

9. Conclusions

In this paper, we proposed the protocol Ring2Tor achieving sender anonymity in
Tor, and then relationship anonymity, against a global passive adversary. We conducted a
security analysis, showing that the ring-based approach guarantees a sender an anonymity
set the size of the ring, thereby allowing us to achieve our goal. The protocol includes
also a certain degree of fault tolerance to consider the case in which not all nodes are alive
and collaborative. Moreover, a computational complexity analysis of the solution was also
provided. As typically happens for every k-anonymity-based approach to achieve privacy,
a crucial point is to establish which is the right value of k to effectively cover the adversary
monitoring. Evidently, the higher the value of k, the stronger the protection. However, an
interesting question to pose is that there is a threshold to reach. The answer to this question
can be acquired only from a risk-based point of view. Indeed, to guarantee k-anonymity, as
our approach does, we have to provide the risk analyst with a concrete way to estimate
the probability for the adversary of re-identification of a possible target. This is necessary
to process risk analysis, together with the evaluation of the impact of a similar event.
Therefore, the threshold may directly derive from the requirements in terms of risk we can
set, depending on the application setting. In a key paper [8], some considerations about
this aspect are given. Therein, the authors say that, “k-anonymity is still sufficient for a
variety of applications. For example, in the United States legal system, 2-anonymity would
be enough to cast reasonable doubt, thus invalidating a criminal charge, while 3-anonymity
would be enough to invalidate a civil charge, in the absence of other evidence”.

Once the specific application scenario is fixed, the risk threshold can thus established.
Then, from the evaluation of the impact of a re-identification incident, the maximum
allowed probability of the incident can be derived (also on the basis of the expected
capabilities of the adversary). Therefore, the right privacy level k can be set.

Obviously, the chosen value of k has direct impact on the network’s performance.
The experimental validation highlighted that it is possible to configure the network in
order to obtain acceptable values of overhead, latency or throughput, depending on the
requirements. We can argue that the price in terms of network performance to obtain our
strong anonymity goal is tolerable, when privacy needs are high priority. We traced the
route for further investigation in the direction of more sophisticated setting of the network
configuration (e.g., number of tokens, size of the rings), by enabling suitable adaptivity to
better control network performance in the dynamic case.

Another direction to investigate as future work is represented by a formal validation
analysis of our solution regarding dependability and security requirements. For example,
reference [44] proposes an approach to validating solutions involving dynamic changes.
It appears very suitable for our protocol, since it requires several message exchanges
and sequential steps (generation, filling, and emptying of tokens). Another interesting
framework that could be applied during the security design and development of our
protocol is [45].

Appl. Sci. 2022, 12, 137 22 of 24

Furthermore, in the context of security, the analysis proposed in Section 7, combined
with approach proposed in [46,47], can represent a starting point to derive specific security
patterns applicable to anonymous communication networks, and thus, to our case. These
patterns may involve: (1) the requirement phase, both in terms of analysis process patterns
and model based patterns; (2) the design phase, by considering the design of security
properties, the bridge between security design patterns and security properties and the
proper domain-specific design patterns; (3) the implementation phase of the software
we have to install in the nodes and in the ring manager, through secure programming
guidelines, attack pattern catalog definition and secure refactoring.

Author Contributions: Conceptualization, F.B., V.D.A., M.F.I. and C.L.; methodology, F.B., V.D.A.,
M.F.I. and C.L.; software, S.L.; validation, F.B., V.D.A., M.F.I., C.L. and S.L.; formal analysis, F.B.
and V.D.A.; investigation, F.B., V.D.A., M.F.I. and C.L.; resources, S.L.; data curation, S.L.; writing—
original draft preparation, F.B., V.D.A., M.F.I. and C.L.; writing—review and editing, F.B., V.D.A.,
M.F.I., C.L. and S.L.; visualization, S.L.; supervision, F.B.; project administration, F.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper is partially supported by Project POR FESR/FSE 14/20 Line A
(Action 10.5.6) and Line B (Action 10.5.12).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AM Adversary Model
CI Communication Identifier
DA Destination Address
DH Diffie–Hellman
DS Directory Server
E External Adversary
F Flag
G Global Adversary
H Hash Value
HID Hashed Identifier
OP Onion Proxy
OR Onion Router
P Payload
P2P Peer To Peer
PDH Public Diffie–Hellman
PFD Probability of Failure
R Random
RA Relationship Anonymity
RM Ring Manager
S Strong Adversary
SA Sender Anonymity
W Weak Adversary
SIL Safety Integrity Level
T Tor
R2T Ring2Tor

Appl. Sci. 2022, 12, 137 23 of 24

References
1. Syverson, P.; Dingledine, R.; Mathewson, N. Tor: The Second-Generation Onion Router. In Proceedings of the Usenix Security,

San Diego, CA, USA, 9–13 August 2004; pp. 303–320.
2. Goldschlag, D.M.; Reed, M.G.; Syverson, P.F. Hiding Routing Information. In Proceedings of the International Workshop on

Information Hiding, Cambridge, UK, 30 May–1 June 1996; Springer: Berlin/Heidelberg, Germany, 1996; pp. 137–150.
3. Reiter, M.K.; Rubin, A.D. Crowds: Anonymity for Web Transactions. ACM Trans. Inf. Syst. Secur. (TISSEC) 1998, 1, 66–92.

[CrossRef]
4. O’Gorman, G.; Blott, S. Large Scale Simulation of Tor. In Proceedings of the Annual Asian Computing Science Conference, Doha,

Qatar, 9–11 December 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 48–54.
5. Karunanayake, I.; Ahmed, N.; Malaney, R.; Islam, R.; Jha, S. Anonymity with Tor: A Survey on Tor Attacks. arXiv 2020,

arXiv:2009.13018.
6. Palmieri, F. A Distributed Flow Correlation Attack to Anonymizing Overlay Networks Based on Wavelet Multi-Resolution

Analysis. IEEE Trans. Depend. Secur. Comput. 2019, 18, 2271–2284. [CrossRef]
7. Pfitzmann, A.; Hansen, M. A terminology for talking about privacy by data minimization: Anonymity, Unlinkability, Unde-

tectability, Unobservability, Pseudonymity, and Identity Management. 2010. (Version 0.33 April 2010), Technical Report, TU
Dresden and ULD Kiel. Available online: http://dud.inf.tu-dresden.de/Anon_Terminology.shtml (accessed on 21 May 2021).

8. Von Ahn, L.; Bortz, A.; Hopper, N.J. k-Anonymous Message Transmission. In Proceedings of the 10th ACM Conference on
Computer and Communications Security, Washington, DC, USA, 27–30 October 2003; pp. 122–130.

9. Hirt, A.; Jacobson, M.; Williamson, C. Taxis: Scalable Strong Anonymous Communication. In Proceedings of the 2008 IEEE
International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems, Baltimore, MD, USA, 8–10
September2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 1–10.

10. Beimel, A.; Dolev, S. Buses for Anonymous Message Delivery. J. Cryptol. 2003, 16, 25–39
11. Burnside, M.; Keromytis, A.D. Low Latency Anonymity with Mix Rings. In Proceedings of the International Conference on

Information Security, Samos Island, Greece, 30 August–2 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 32–45.
12. Salo, J. Recent Attacks on Tor; Aalto University: Espoo, Finland 2010.
13. Erdin, E.; Zachor, C.; Gunes, M.H. How to Find Hidden Users: A Survey of Attacks on Anonymity Networks. IEEE Commun.

Surv. Tutor. 2015, 17, 2296–2316. doi:10.1109/COMST.2015.2453434. [CrossRef]
14. Basyoni, L.; Fetais, N.; Erbad, A.; Mohamed, A.; Guizani, M. Traffic Analysis Attacks on Tor: A Survey. In Proceedings of the 2020

IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; IEEE Computer
Society: Washington, DC, USA, 2020; pp. 183–188.

15. Edman, M.; Yener, B. On Anonymity in an Electronic Society: A Survey of Anonymous Communication Systems. ACM Comput.
Surv. (CSUR) 2009, 42, 1–35. [CrossRef]

16. Murdoch, S.J.; Danezis, G. Low-Cost Traffic Analysis of Tor. In Proceedings of the 2005 IEEE Symposium on Security and Privacy
(S&P’05), Oakland, CA, USA, 8–11 May 2005; IEEE Computer Society: Washington, DC, USA, 2005; pp. 183–195.

17. Levine, B.N.; Reiter, M.K.; Wang, C.; Wright, M. Timing Attacks in Low-Latency Mix Systems. In Proceedings of the International
Conference on Financial Cryptography, Key West, FL, USA, 9–12 February 2004; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 251–265.

18. Syverson, P.; Tsudik, G.; Reed, M.; Landwehr, C. Towards an Analysis of Onion Routing Security. In Designing Privacy Enhancing
Technologies; Springer: Berlin/Heidelberg, Germany, 2001; pp. 96–114.

19. Gilad, Y.; Herzberg, A. Spying in the Dark: TCP and Tor Traffic Analysis. In Proceedings of the International Symposium on Privacy
Enhancing Technologies Symposium, Vigo, Spain, 11–13 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 100–119.

20. Rochet, F.; Pereira, O. Dropping on the Edge: Flexibility and Traffic Confirmation in Onion Routing Protocols. Proc. Priv. Enhanc.
Technol. 2018, 2018, 27–46. [CrossRef]

21. Iacovazzi, A.; Elovici, Y. Network Flow Watermarking: A Survey. IEEE Commun. Surv. Tutor. 2016, 19, 512–530. [CrossRef]
22. Snader, R.; Borisov, N. A Tune-up for Tor: Improving Security and Performance in the Tor Network. In Proceedings of the NDSS,

San Diego, CA, USA, 10–13 February 2008; Volume 8, p. 127.
23. Johnson, A.; Jansen, R.; Hopper, N.; Segal, A.; Syverson, P. PeerFlow: Secure Load Balancing in Tor. PoPETs 2017, 2017, 74–94.

[CrossRef]
24. Bauer, K.S.; Sherr, M.; Grunwald, D. ExperimenTor: A Testbed for Safe and Realistic Tor Experimentation. In Proceedings of the

CSET, San Francisco, CA, USA, 8 August 2011.
25. Panchenko, A.; Pimenidis, L.; Renner, J. Performance Analysis of Anonymous Communication Channels Provided by Tor. In

Proceedings of the 2008 Third International Conference on Availability, Reliability and Security, Barcelona, Spain, 4–7 March 2008; IEEE
Computer Society: Washington, DC, USA, 2008; pp. 221–228.

26. Komlo, C.H.; Mathewson, N.; Goldberg, I. Walking Onions: Scaling Anonymity Networks while Protecting Users. In Proceedings
of the 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020; pp. 1003–1020.

27. Cangialosi, F.; Levin, D.; Spring, N. Ting: Measuring and Exploiting Latencies Between All Tor Nodes. In Proceedings of the 2015
Internet Measurement Conference, Tokyo, Japan, 28–30 October 2015; pp. 289–302.

28. Danezis, G.; Diaz, C. A Survey of Anonymous Communication Channels; Technical Report, Technical Report MSR-TR-2008-35;
Microsoft Research: Cambridge, UK 2008.

http://doi.org/10.1145/290163.290168
http://dx.doi.org/10.1109/TDSC.2019.2947666
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
http://dx.doi.org/10.1109/COMST.2015.2453434
http://dx.doi.org/10.1145/1592451.1592456
http://dx.doi.org/10.1515/popets-2018-0011
http://dx.doi.org/10.1109/COMST.2016.2604405
http://dx.doi.org/10.1515/popets-2017-0017

Appl. Sci. 2022, 12, 137 24 of 24

29. Chaum, D.L. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Commun. ACM 1981, 24, 84–90. [CrossRef]
30. Young, A.L.; Yung, M. The drunk motorcyclist protocol for anonymous communication. In Proceedings of the 2014 IEEE Conference

on Communications and Network Security, San Francisco, CA, USA, 29–31 October 2014; IEEE Computer Society: Washington, DC,
USA, 2014; pp. 157–165.

31. Wang, W.; Motani, M.; Srinivasan, V. Dependent link padding algorithms for low latency anonymity systems. In Proceedings of
the 15th ACM Conference on Computer and Communications Security, Tokyo, Japan, 18–20 March 2008; pp. 323–332.

32. Freedman, M.J.; Morris, R. Tarzan: A Peer-to-Peer Anonymizing Network Layer. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 193–206.

33. Le Blond, S.; Choffnes, D.; Zhou, W.; Druschel, P.; Ballani, H.; Francis, P. Towards Efficient Traffic-Analysis Resistant Anonymity
Networks. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 303–314. [CrossRef]

34. Kotzanikolaou, P.; Chatzisofroniou, G.; Burmester, M. Broadcast anonymous routing (BAR): Scalable real-time anonymous
communication. Int. J. Inf. Secur. 2017, 16, 313–326. [CrossRef]

35. Chen, C.; Asoni, D.E.; Perrig, A.; Barrera, D.; Danezis, G.; Troncoso, C. TARANET: Traffic-Analysis Resistant Anonymity at the
Network Layer. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April
2018; IEEE Computer Society: Washington, DC, USA, 2018; pp. 137–152.

36. Buccafurri, F.; De Angelis, V.; Idone, M.F.; Labrini, C. Anonymous Short Communications over Social Networks. In Proceedings
of the EAI SecureComm 2021—17th EAI International Conference on Security and Privacy in Communication Networks, Virtual
Event, 6–9 September 2021; Springer: Berlin/Heidelberg, Germany 2021.

37. Shirazi, F.; Simeonovski, M.; Asghar, M.R.; Backes, M.; Diaz, C. A Survey on Routing in Anonymous Communication Protocols.
ACM Comput. Surv. (CSUR) 2018, 51, 1–39. [CrossRef]

38. Buccafurri, F.; De Angelis, V.; Idone, M.F.; Labrini, C. Wip: An Onion-Based Routing Protocol Strengthening Anonymity.
In Proceedings of the 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), Pisa, Italy, 7–11 June 2021; pp. 231–235.

39. ns-3—Network Simulator 3. 2021. Available online: https://www.nsnam.org/documentation/ (accessed on 21 May 2021).
40. TorPerformance. 2021. Available online: https://metrics.torproject.org/torperf.html (accessed on 21 May 2021).
41. AlSabah, M.; Goldberg, I. Performance and Security Improvements for Tor: A Survey. ACM Comput. Surv. (CSUR) 2016, 49, 1–36.

[CrossRef]
42. 3GPP2-TSGC5. HTTP, FTP and TCP Models for 1xEV-DV Simulations; 3GPP2: Arlington, VA, USA, 2001.
43. Keita, B. Experimental Evaluation of the Impact of Tor Latency on Web Browsing. 2021. Available online: https://witestlab.poly.

edu/blog/latency-tor/ (accessed on 21 May 2021).
44. Muñoz, A.; Maña, A.; Serrano, D. AVISPA in the Validation of Ambient Intelligence Scenarios. In Proceedings of the 2009 Interna-

tional Conference on Availability, Reliability and Security, Fukuoka, Japan, 16–19 March 2009; IEEE Computer Society: Washington, DC,
USA, 2009; pp. 420–426.

45. Serrano, D.; Ruíz, J.F.; Muñoz, A.; Maña, A.; Armenteros, A.; Crespo, B.G.N. Development of Applications Based on Security
Patterns. In Proceedings of the 2009 Second International Conference on Dependability, Athens, Greece, 18–23 June 2009; IEEE Computer
Society: Washington, DC, USA, 2009; pp. 111–116.

46. Yoshioka, N.; Washizaki, H.; Maruyama, K. A survey on security patterns. Prog. Inf. 2008, 5, 35–47. [CrossRef]
47. Schumacher, M.; Fernandez-Buglioni, E.; Hybertson, D.; Buschmann, F.; Sommerlad, P. Security Patterns: Integrating Security and

Systems Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2013.

http://dx.doi.org/10.1145/358549.358563
http://dx.doi.org/10.1145/2534169.2486002
http://dx.doi.org/10.1007/s10207-016-0318-0
http://dx.doi.org/10.1145/3182658
https://www.nsnam.org/documentation/
https://metrics.torproject.org/torperf.html
http://dx.doi.org/10.1145/2946802
https://witestlab.poly.edu/blog/latency-tor/
https://witestlab.poly.edu/blog/latency-tor/
http://dx.doi.org/10.2201/NiiPi.2008.5.5

	Introduction
	Related Work
	Background and Notation
	 Anonymity
	 The Tor Network

	The Proposed Protocol
	Ring Manager and Token-Based Mechanism
	Set-Up Phase
	Forward Key Exchange
	Token Generation
	Sender and Proxy Key Generation

	 Communication Phase
	Structure of the Token
	Token Generation
	Transmission of a Message
	Transmission of the Response

	Introducing Fault Tolerance into the System
	Computational Complexity
	Security Analysis
	Experiments
	Conclusions
	References

