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Abstract: In a recent work, we reported on an Extreme Learning Machine (ELM) implemented in
a photonic system based on frequency multiplexing, where each wavelength of the light encodes a
different neuron state. In the present work, we experimentally demonstrate the parallelization poten-
tialities of this approach. We show that multiple frequency combs centered on different frequencies
can copropagate in the same system, resulting in either multiple independent ELMs executed in par-
allel on the same substrate or a single ELM with an increased number of neurons. We experimentally
tested the performances of both these operation modes on several classification tasks, employing up
to three different light sources, each of which generates an independent frequency comb. We also
numerically evaluated the performances of the system in configurations containing up to 15 different
light sources.

Keywords: Extreme Learning Machine; randomized neural network; photonic neural network;
frequency comb

1. Introduction

Neural networks are usually trained by tuning the weights of each connection, which
requires time and power and expensive algorithms such as gradient descent. Moreover,
a scheme requiring each connection of the network to be modified during training is not
easily implementable on non-conventional computational substrates. Randomized neural
networks are systems in which most of the connections are selected at random and kept
fixed and untrained, while only part of the weights are learned. While a randomized
approach may reduce the network accuracy, it greatly increases both its training speed and
physical implementability [1].

An Extreme Learning Machine (ELM) is a particular kind of randomized feed-forward
neural network composed of a single hidden layer, where only output weights are trained;
this allows for the formulation of the training as a linear problem [2–5]. This network
scheme can be implemented in a generic physical system; the input to the selected system
constitutes the input layer of the network and is processed according to the physical laws
of the system itself, while the output of the physical system is assumed to be the hidden
layer of the network. Hence, the internal laws of the system are analogous to the fixed
random connections between the input and the hidden layer of the ELM. The power of
this approach consists in the fact that the system does not need to to be modified in any
way since it represents the internal, untrained connections of the network, while the output
weights, which have to be trained, can be set by the readout mechanism. However, not
every system is expected to perform well: a "good" system should be able to project the
input layer onto a higher dimensional space through a nonlinear transformation so that the
output can be constructed as a linear combination of hidden neuron values.

Photonics offers strong parallelization capabilities and a plethora of commercial-
grade and potentially integrable tools to manipulate light degrees of freedom; hence, this
platform is considered a good candidate for the implementation of fast non-electronic
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neural networks [6]. Different schemes for photonic implementations of randomized
neural networks have already been explored. ELMs have been implemented in setups
based on free-space propagation along scattering media [7,8], multimode fibers [9], or
time-multiplexed fiber loops [10]. Many of these substrates have also been exploited for
Reservoir Computing (RC), which is a randomized approach to recursive neural networks.
First, photonic implementations of RC exploited a single nonlinear node through time
multiplexing [11–13], following the idea reported in [14]. Since time multiplexing implies
a trade-off between elaboration speed and number of neurons, alternative schemes have
been searched, investigating, for instance, free-space RCs [15,16] or integrated passive
networks [17]. It is attractive to also consider the wavelength degree of freedom for
photonic information processing since it can be exploited via commercially available tools
(e.g., WDM filters); hence, we developed an RC based on frequency multiplexing [18]. Our
first work on frequency multiplexing ELM [19] was indeed derived from our frequency
multiplexing RC scheme. The advantages of using the frequency degree of freedom have
been exploited to realise perceptrons [20] and convolutional engines [21,22] achieving very
high processing speeds.

In our frequency-multiplexing ELM implementation [19], the spectrum of the light
travelling in the system has the shape of a frequency comb, and each comb line amplitude
encodes the state of one neuron. When entering the system, the comb encodes the input
layer; then, comb lines are made to interfere through periodic phase modulation, which
results in a linear mixing of information encoded in the comb. Hence, the new comb
generated by the mixing represents the hidden layer of the network. The hidden neurons
are measured through a photodiode, which records intensities and thus introduces a
quadratic readout nonlinearity (since the information was originally encoded in light
amplitudes). The comb line intensities are read one by one and memorized on a computer,
where optimal output weights are evaluated, and the output of the network is calculated.
The system also allows for the hidden layer to be optically multiplied by output weights,
applying the proper optical attenuation to each comb line.

In our previous work [19], we already mentioned the parallelization potentialities
of our frequency multiplexing ELM. The parallelizability is an interesting feature and is
currently exploited both by software and hardware implementations of neural networks
to address the need for more efficient computations (for example, see [23] about the par-
allelization of software ELMs and [24,25] about the parallelization of photonic RCs). In
the present work, we investigate these parallelization capabilities, presenting a photonic
system in which multiple frequency combs copropagate. We describe two possible oper-
ating modes for such system: either each comb can be employed to perform a different
computation, which corresponds to running multiple ELMs on the same substrate, or the
combs can be interpreted as different parts of the same neuron layer, which corresponds to
executing a single ELM with an increased number of neurons with respect to our previous
implementation.

In Section 2 we describe the experimental setup, provide a description of it in terms of
electric fields, and describe how periodic phase modulation can generate frequency combs
and make comb lines interfere. In Section 3 we describe the two ways in which we operate
the experiment to execute a single ELM algorithm or multiple ELMs in parallel. In Section 4
we present experimental results on the system performances. In Section 5 we report our
conclusions.

2. Experimental System
2.1. Experimental Setup

Our experimental setup is depicted in Figure 1. The light sources are three continuous
wave lasers that are tunable in the C-band; we fix their wavelengths at values of λ1 = 1546.0 nm,
λ2 = 1550.8 nm, and λ3 = 1555.7 nm. These wavelenghts are chosen so that the frequency
combs they generate do not overlap. The three sources are injected into a single optical fiber
through a set of isolators and combiners; the laser output powers are set in such a way as to
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obtain a total optical power of approximately 9 dBm at the output of the coupling system.
PM1 and PM2 are two phase modulators exploited respectively to generate the combs and
mix their lines. Both modulators are driven by the same periodic Radio Frequency (RF)
signal at frequency Ω/2π = 16.96860 GHz. The electrical input of each phase modulator is
processed by an RF amplifier (A1 for PM1 and A2 for PM2). These two amplifiers provide
two different fixed gains, hence PM1 and PM2 are driven by two different RF powers:
20 dBm and 30 dBm respectively. The effect of periodic phase modulation is more easily
described by the dimensionless number m = πV

Vπ
, where V is the amplitude of the electrical

signal and Vπ is the characteristic voltage of the phase modulator. In our setup, m1 ≈ 7.78
and m2 ≈ 2.18. Ω defines the spacing of comb lines and its exact value is not important
as long as it does not drift significantly during the experiment. The settings are such that
PM1 approximately generates a 30-line comb out of each light source (see Figure 2a). The
periodic phase modulation effect is described in detail in Section 2.2, where we provide a
description of the setup in terms of electric fields. For a review on electro-optic frequency
comb generation, see [26]. The programmable spectral filters, SF1 and SF2, are two Finisar
Waveshapers, models 1000 and 4000, respectively. SF1 is employed to inject inputs in the
network by setting the proper attenuation on each comb line, while SF2 is employed to
retrieve outputs, redirecting properly filtered combs on the photodiodes PD1 and PD2.
The nominal bandwidth resolutions of the filters SF1 and SF2 are 20 GHz and 10 GHz,
respectively, which should be enough to resolve a single comb line since the comb spacing
is determined by Ω. Nevertheless, we measured a slight crosstalk effect between two lines
filtered by SF1 (which is, in any case, not expected to influence performances; see [19]).

Figure 1. Scheme of the experimental setup. Red lines represent optical connections, green lines
represent data connection to and from the computer, and blue lines represent RF connections. A1 and
A2 represent two RF amplifiers. The first Phase Modulator, PM1, generates a frequency comb out
of each line in the spectrum of the light source, Esource. The first programmable Spectral Filter, SF1,
encodes input features in these combs, thus generating the input layer Ein (or the set of input layers,
in the case of parallel operations). The filter shape loaded onto SF1, Fin, is calculated according to
the features to be encoded. The second Phase Modulator, PM2, mixes the components of Ein, thus
generating the hidden layer Ehidden (or the set of hidden layers, in the case of parallel operations). The
second programmable Spectral Filter, SF2, is employed for the readout and can apply two different
filter shapes (Fout, 1 and Fout, 2) to its two outputs, generating Eout, 1 and Eout, 2. The photodiodes
PD1 and PD2 measure the total intensities in Eout, 1 and Eout, 2, respectively. A computer drives the
programmable filters (connections not shown) and records the photodiode measurements. To measure
the hidden layer, the combs are scanned one line at a time by programming SF2 with notch filters. The
output can then be computed offline as a linear combination of the intensities of the spectral lines.
The figure shows a possible implementation of optical weighting, as demonstrated in [19], where SF2

applies attenuations proportional to the desired weights.
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(a) (b)
Figure 2. (a) Example of spectral comb recorded at the output of PM1. For this measurement, a
single CW laser source was employed at the wavelength λ = 1554.6 nm. RF modulation was
Ω/2π = 16.99175 GHz, corresponding to a difference in wavelength of approximately 137 pm. The
resulting comb has approximately 30 usable lines, which correspond to a bandwidth of approximately
4 nm. (b) Example of comb line intensities of the hidden layer, as measured by PD1 and PD2. The
task being solved is the mushroom classification in the single operation mode. Three combs are used
at the same time, each one comprising 31 comb lines numbered from 1 to 31.

2.2. Electric Field Description

Here, we describe the experiment in terms of electric fields propagating in the setup.
The description is similar to what was already proposed in our previous work [19], but
now accounts for the presence of multiple light sources.

Periodic phase modulation at frequency Ω acts on a generic radiation E(t) according
to the following formula:

E(t)→ E(t)e−im cos (Ωt) = E(t)
+∞

∑
k=−∞

ik Jk(m)e−ikΩt, (1)

where m is the index describing the phase modulation strength. The series expansion
of the phase modulation term e−im cos (Ωt) is known as the Jacobi–Anger expansion and
shows how periodic phase modulation results in the creation of a frequency comb. Jk(m)
represents the Bessel function of the first kind. Note that the coefficients of the expansion
tend toward zero as |k| increases. We experimentally noticed a slight asymmetry in the
combs, which means that the coefficients in Equation (1) may differ from the real ones;
since this effect happens in PM1, where m is higher, we believe it is due to higher-order
effects on phase modulation (see [19] for details).

We assume to have NS monochromatic input sources characterized by constant ampli-
tudes E0

j with j ∈ [1, NS]. Hence, the input radiation is as follows:

Esource(t) =
NS

∑
j=1

E0
j e−iωjt , (2)

where ωj = c/λj represent the frequency of the j-th monochromatic light source. When
passing through PM1, periodic phase modulation is applied, which results in the creation
of NS frequency combs:

Ecomb(t) =
NS

∑
j=1

∑
k

Ecomb
j, k e−i(ωj+kΩ)t , Ecomb

j, k = E0
j eiφ(1)

j ik Jk(m1) , (3)

where the sum over k should extend to the whole set of integer indexes, as in (1), but in
practice (e.g., in simulations), it can be truncated once the coefficients become small enough.
φ
(1)
j represents the phase accumulated by the radiation at frequency ωj while travelling

from the source to PM1. The programmable spectral filter SF1 encodes input values on the
comb lines, hence generating the input layer of the neural network:
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Ein(t) =
NS

∑
j=1

∑
k

Ein
j, ke−i(ωj+kΩ)t , Ein

j, k = Ecomb
j, k eiφ(2)

j, k
√

Fin
j, k , (4)

where φ
(2)
j, k is the phase accumulated by the k-th line of the j-th comb when travelling

from PM1 to SF1, while Fin
j, k is the attenuation that SF1 applies to the k-th comb line of the

j-th comb. PM2 applies a second phase modulation, whose effect is to mix the comb line
amplitudes in each comb, generating the hidden layer of the network below:

Ehidden(t) =
NS

∑
j=1

∑
k

Ehidden
j, k e−i(ωj+kΩ)t , Ehidden

j, k = ∑
p

Ein
j, peiφ(3)

j, p ik−p Jk−p(m2) , (5)

where φ
(3)
j, p is the phase accumulated by the p-th line of the j-th comb while travelling from

SF1 to PM2. SF2 allows for two different filter shapes to be set, redirecting the two outputs
towards photodiodes PD1 and PD2. We define Fout, i

j, k as the attenuation that the spectral
filter applies to the k-th line of the j-th comb before reaching PDi, i ∈ {1, 2}. Hence, the
electric fields on the photodiodes are as follows:

Eout, 1(t) =
NS

∑
j=1

∑
k

Eout, 1
j, k e−i(ωj+kΩ)t , Eout, 1

j, k = Ehidden
j, k eiφ(4)

j, k
√

Fout, 1
j, k , (6)

Eout, 2(t) =
NS

∑
j=1

∑
k

Eout, 2
j, k e−i(ωj+kΩ)t , Eout, 2

j, k = Ehidden
j, k eiφ(4)

j, k
√

Fout, 2
j, k , (7)

where φ
(4)
j, k is the phase accumulated by the k-th line of the j-th comb while travelling

from PM2 to the photodiodes, assuming that paths towards the two photodiodes have
the same optical length. The photodiodes PD1 and PD2 provide the following intensity
measurements:

Iout, 1 =< |Eout, 1(t)|2 > , (8)

Iout, 2 =< |Eout, 2(t)|2 > , (9)

where < · > represents a time average.

3. Principle of Operation
3.1. Introduction

The working principle of the ELM scheme has been extensively described in our
previous work [19]. Here, we recall the fundamental concepts and introduce the novel
elements connected to the presence of multiple light sources.

In an ELM, the hidden layer is obtained by nonlinearly mixing information contained
in the input layer. In our photonic implementation, the input layer is encoded in the
combs Ein by the attenuations Fin, and the information contained therein are mixed by PM2,
generating the new set of combs Ehidden that represent the hidden layer. This mixing is linear
and consists in an interference of comb lines (Equation (5)). A quadratic nonlinearity is
added in the readout phase (Equations (8) and (9)). The peculiarity of the proposed system
consists in the way in which the information mixing works; as expressed by Equation (5),
when the set of combs representing the input layer passes through PM2, interference only
happens among lines belonging to the same comb. In other words, input neurons encoded
in different combs never get mixed. On the one hand, this may reduce the capability of
the network to project the input data onto a higher dimensional space since the mixing of
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inputs is not complete. On the other hand, this allows for parallel computations that do
not interfere with each other to be performed. In the following section (Section 4.2), we
show that the limited dimensionality enhancement does not hinder performances when
compared to an all-to-all mixing scheme.

3.2. Definitions

We denote by “single operation mode” a configuration in which the NS different
combs are treated as parts of the same neuron layers, hence a single ELM is executed. In
this case, for each data sample supplied to the network, we define by u the set of input
features, by Iout the set of hidden neuron measurements, and by ỹ the target output. The
network output is obtained through the multiplication of hidden neuron measurements
by output weights. We define by W the set of output weights and by yout = W · Iout the
network output. Weights are chosen to minimize the squared error (yout − ỹ)2. u and Iout

are row vectors composed of as many elements as lines in all the NS combs; depending on
the dimension of the output of the specific task, yout and ỹ are scalar or row vectors, while
W is a column vector or a matrix.

We denote by “parallel operations mode” a configuration in which the NS different
combs are treated as independent neuron layers and constitutes NS independent ELMs.
Definitions are similar to the ones presented above, but now account for the presence of
multiple ELMs. Everywhere in this paragraph, j ∈ [1, NS]. We define by uj the set of
input features of the j-th ELM, by Iout, j the set of hidden neuron measurements of the j-th
ELM, and by ỹj the target output of the j-th ELM. The output of the j-th ELM is defined
by yout, j = Wj · Iout, j, where Wj is the the set of optimal output weights for the j-th ELM,
again obtained by minimizing the squared error (yout, j − ỹj)2.

3.3. Dataset Preprocessing

We proved in [19] that when working with a single comb, supplying the same input
feature to multiple neurons may be beneficial for the network, both because it increases
the mixing between input information and because it decreases the possibility that a
feature gets lost by being assigned to a weak comb line. When working in single operation
mode with multiple combs, redundancy is even more important since if two features are
assigned to lines belonging to different combs, they do not mix in the hidden layer. Hence,
when working in single operation mode, we select a random map of correspondence with
repetitions, from the set of available dataset features to the set of available comb lines;
instead, when working in parallel operations mode, following our previous work [19], we
supply the same feature of the dataset to d consecutive comb lines, where d is optimized
for each task.

Once the vector u of input features is built (eventually accounting for repetitions of
features, as described above), its entries are linearly converted into attenuations spanning
the range of [0 dB, 30 dB], constituting the vectors Fin in Equation (4) supplied to the filter
SF1. In the case of the parallel operations mode, the same procedure is applied to each
vector uj (j ∈ [1, NS]).

The features are always encoded in the most central part of the combs, which are
composed of approximately 30 lines. Central lines are preferred because they are the
most powerful and can encode the inputs with the best contrast. The unused comb lines
receive zero attenuation because this allows more power to take part in the mixing, which
is beneficial for the system [19].

3.4. Readout

The readout procedure consists in measuring the optical intensity of each comb line,
which corresponds to the values of hidden neuron states. The programmable filter SF2 is
set in such a way as to implement notch filters, which select only one comb line per time.
Since SF2 provides two different output ports, the readout speed is doubled by reading two
different comb lines per time via the two photodiodes PD1 and PD2. Once the vector of
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hidden layer measurements Iout is recorded on the computer memory, the optimal weights
W are evaluated and the output yout = W · Iout is calculated on the computer. Figure 2b
shows one example measurement of the hidden layer intensities Iout recorded during the
experiment.

In the case of the parallel operations mode, the readout is still executed by selecting one
comb line per time through notch filters; however, now, lines of different combs represent
neurons of different parallel ELMs. Thus, photodiode measurements of the j-th comb
represent the hidden layer of the j-th ELM and are recorded in the vector Iout, j (j ∈ [1, NS]);
for each of the ELMs executed in parallel, the computer evaluates the set of optimal weights
Wj and then calculates the output yout, j = Wj · Iout, j.

The output weights W are estimated using the ridge regression algorithm. The optimal
regularization constant is selected for each task.

In the case of classification tasks, which are the only ones tested in the present work,
the ELM is required to assign a class to each set of input features. If the task provides only
two possible output classes, the ELM output yout is a scalar value, and the prediction of
the system is assumed to be one class or the other depending on whether yout < 0.5 or
yout > 0.5. If the task provides more than two output classes, the ELM output yout is a
vector that has as many elements as the number of classes, and the prediction of the system
is the class corresponding to the index of the maximal element in yout.

Once the optimal weights are known, they could be applied optically, setting the
proper optical attenuations on SF2 in such a way that the photodiode readings represent
the network output yout = W · Iout. This scheme for optical weighting has already been
demonstrated in [19] but is not tested in this work.

3.5. Numerical Simulation

We developed a numerical simulation of the present scheme based on the model
presented in Section 2.2 and on the operation procedures described in Sections 3.3 and 3.4.
Our simulation neglects both the effects of phases accumulated through propagation and
the effects of noise.

In the following, the simulation is both proposed as a comparison for real experiments
and employed to study configurations with more light sources than what is currently
possible in our laboratory.

4. Results
4.1. Parallel Operations Mode

To test the ability of the system to run multiple tasks at the same time, the experi-
ment was executed using only NS = 2 input light sources out of the three available ones
(wavelengths λ1 and λ2). We tested the performances of the system on three classification
tasks: iris classification [27], wine classification [28], and banknote authentication [29]. The
iris classification task consists in selecting the correct class among three different ones,
given a set of four different input features; the wine classification consists in selecting the
correct class among three different ones, given a set of thirteen different input features; the
banknote authentication task consists in selecting the correct class among two different
ones, given a set of five different input features.

In Section 3.3, we discussed the convenience of encoding the same input feature to
d consecutive comb lines. The best performing d values for each task were established
based both on simulations and on our previous experiments [19]. For each of the tasks, we
tested the two best performing d values at the same time, running two tasks in parallel,
each one on a different comb. Note that in so doing, the two parallel ELMs were always
running the same task type (at a given time, both were running either iris classification or
wine classification or banknote authentication): this was performed as such with the sole
purpose of assuring the same execution times for both ELMs; if we ran two different task
types, one of the two executions would have terminated before the other since each task has
a different number of database entries. This was an experimental artifice employed to test
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the system in a situation of full parallelism, but the ELMs are completely independent and
during normal operation they are not required to finish computation at the same time. One
ELM could even start a new computation while another parallel ELM is still executing a
different task. Note that even when the two parallel ELMs were running the same task type,
the input layers injected into the ELMs were different (since the d values were different);
this implies that the hidden layers and the optimal output weights were different as well,
and that the two ELMs were indeed processing different data. The results are reported
in Figure 3 and are compared with a simulation and with performances obtained by our
previous experiment that featured only one light source and no parallelism [19]. Each
datapoint represents the average of the scores obtained by testing 100 different random
repartitions of the training and testing set; the error bars represent the standard deviation
of such distribution of scores.

Results clearly show that parallel operations are possible. We observed a slight
decrease in accuracy when comparing the current performances with that of the previous
single-comb experiment. This is likely due to the fact that the current experiment suffers
from a decreased SNR, caused by power losses in the coupling between different sources,
which then leads to less powerful combs.

d=2
Iris

classification

d=3 d=1
Wine

classification

d=2 d=1
Banknote

authentication

d=2
82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 (%
)

Current experiment
Simulation
Single-comb ELM

Figure 3. Results of parallel operations mode tests. d indicates the number of consecutive comb
lines on which each feature is encoded. The same task types with different d values are executed in
parallel on two different combs. Each result is compared with the numerical simulation and previous
experiments of a single-comb ELM [19]. Error bars represent the standard deviation of the score over
100 random repartitions of training and testing data (more information in Section 4.1).

4.2. Single Operation Mode

To test the capability of the system to employ all the available combs for a single
computation, the experiment was executed using NS = 3 input light sources at wavelengths
λ1, λ2, and λ3. We tested the performances of the system on the mushroom classification
task [30] that consists in selecting the correct class between two possible ones, given a set
of 21 different input features (note that the dataset originally contained 22 features, but
one of them assumes a constant value across all the entries and has thus been discarded).
According to the description in Section 3.3, we encoded nine input features in the most
central part of each of the three input combs. The feature order was selected at random,
making sure that each feature appears at least once, and that six features appears twice, in
two different combs. Results are reported in Figure 4. The accuracy of the classification
is 95.1 ± 0.4%, where the score is the average measured across 100 different random
repartitions of the training and the testing set, and the error is the standard deviation of
such distribution of scores. A software ELM composed of 90 hidden neurons with quadratic
nonlinearity reached an accuracy of 99.2± 0.4%, where the score was evaluated as described
above. A simulation of this multi-comb scheme reached an accuracy of 98.6± 0.6%, where
the score was the average measured across 100 possible redistributions of the 21 features in
the three combs, and the error was the standard deviation of such distribution of scores.
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A photonic ELM exploiting free-space propagation in a scattering medium [8] scored an
accuracy of 95.4% on this same task.

To better investigate this single operation scheme, we conducted a test via numerical
simulation on the MNIST handwritten digit classification task [31], which could not be
implemented on a single-comb system since it required too many neurons. The only
preprocessing of the dataset consisted in a resampling of the input images: we submitted
to the network images composed of 17× 17 pixels, corresponding to 289 input features. We
simulated a system similar to the current one, with the only difference that it contained
NS = 10 light sources, each one generating a comb, resulting in approximately 300 input
neurons and 300 hidden ones. The simulation reached an accuracy of 90.0± 0.2%. When
we simulated the same system with NS = 15, which corresponds to 450 input neurons
and 450 hidden ones, the accuracy increased to 92.1± 0.2%. Note that our present system
with NS = 3 light sources has 31× 3 = 93 comb lines, which is not enough to encode
the 289 input features; however, the scenarios with NS = 10 or NS = 15 light sources are
potentially realisable experimentally (see Section 5). A software ELM reported in [32] was
tested on the same classification task, with no image resampling. When executed with 784
input neurons, 784 hidden neurons, and a tanh nonlinearity, this ELM reached an accuracy
of 92.8% (the accuracy could be increased up to approximately 98%, increasing the number
of hidden neurons by 20 times).
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Figure 4. Results of single operation mode tests. The left panel contains results from the mushroom
classification task. We report experimental results compared with the numerical simulation of our
system, the score obtained by another photonic ELM reported in [8], and a software ELM with a
number of neurons comparable to our experiment. The right panel contains results from the MNIST
classification task. We report the results obtained by a numerical simulation featuring 10 combs
(∼300 neurons), a numerical simulation featuring 15 combs (∼450 neurons), and a software ELM
reported in [32] (∼800 neurons). When present, error bars represent the standard deviation of the
score over 100 random repartitions of training and testing data (more information in Section 4.2).

These results clearly show that merging multiple independent combs in a single ELM
is a viable way of tackling tasks that require a high number of neurons. In particular, the
results of the NMIST numerical simulation show how the way in which the hidden layer is
generated constitutes a good mixing since the performances are comparable with that of
the software ELM, despite the fact that the latter is composed of more neurons.

5. Conclusions

In this work we explored the parallelization capabilities of a photonic ELM based
on frequency multiplexing, which had been hypothesized in our previous work [19]. We
proved that propagating multiple light sources in the same setup allows both for an increase
in the number of available neurons and for the execution of multiple non-interacting tasks.
This parallelized scheme is expected to remain compatible with the optical weightning
scheme proposed in [19], even if no experiment has been run in this sense yet.
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When compared with an identical experiment run with a single light source, the
current scheme displayed a slight decrease in performance. We expected this effect to be
completely avoidable by increasing the SNR of data encoded in the combs, which can be
obtained by increasing the light source power, by introducing optical amplification, or by
reducing the losses at the laser source combiners.

Our ELM performed similarly to a photonic one based on free-space propagation [8]
when both were tested on the same task (mushroom classification). Numerical simulations
also suggest that our scheme would perform similarly to a software ELM on tasks requiring
hundreds of neurons such as MNIST digit classification.

We tested the system with a maximum of NS = 3 sources, but this number could be
significantly increased. The C-band spans 4.4 THz and can hence accommodate approxi-
mately 300 neurons at the current spacing of Ω ≈ 16 GHz, which means approximately
10 different combs similar to the ones employed in the current experiment. Moreover, Ω
could be decreased, which would lead to a more dense frequency multiplexing, provided
that the employed spectral filters have enough resolution.

We also note that the broadness of the comb itself could be increased or decreased,
modifying the RF power driving PM1 and PM2 (hence, acting on the values m1 and m2).
In principle, a lower m1 value would generate smaller combs, allowing for even more
operations in parallel to be executed at the expense of the number of neurons available for
each operation.

The main drawback of the current scheme is the information processing speed, limited
by the programmable spectral filters whose maximum update rate is 2 Hz. Nevertheless,
this speed can, in principle, be increased considerably. For instance, an integrated photonic
version of this scheme may rely on a programmable spectral filter realized by a combination
of WDM filters and electroptical absorption modulators, which should theoretically allow
GHz rates to be reached.

The present work further demonstrates the potential of photonic information process-
ing in the frequency domain, particularly for ELMs.
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