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Abstract: A mispronunciation of Arabic short vowels can change the meaning of a complete sentence.
For this reason, both the students and teachers of Classical Arabic (CA) are required extra practice for
correcting students’ pronunciation of Arabic short vowels. That makes the teaching and learning
task cumbersome for both parties. An intelligent process of students’ evaluation can make learning
and teaching easier for both students and teachers. Given that online learning has become a norm
these days, modern learning requires assessment by virtual teachers. In our case, the task is about
recognizing the exact pronunciation of Arabic alphabets according to the standards. A major challenge
in the recognition of precise pronunciation of Arabic alphabets is the correct identification of a large
number of short vowels, which cannot be dealt with using traditional statistical audio processing
techniques and machine learning models. Therefore, we developed a model that classifies Arabic short
vowels using Deep Neural Networks (DNN). The model is constructed from scratch by: (i) collecting a
new audio dataset, (ii) developing a neural network architecture, and (iii) optimizing and fine-tuning
the developed model through several iterations to achieve high classification accuracy. Given a set of
unseen audio samples of uttered short vowels, our proposed model has reached the testing accuracy
of 95.77%. We can say that our results can be used by the experts and researchers for building better
intelligent learning support systems in Arabic speech processing.

Keywords: deep learning; classical Arabic; short vowels; audio dataset; convolutional neural net-
works; optimization; regularization

1. Introduction

Speech processing technology has received considerable attention recently due to a
variety of applications in the areas of automated speech recognition, information retrieval,
and assisted communication. A lot of diverse research work has been done on speech
processing for different human languages globally. As such, in recent years, deep learning
has increasingly enabled autonomous speech processing including speech recognition and
synthesis. However, the Arabic language has witnessed less research work in this domain
due to its unique challenges.

Arabic is the fifth widely used language in the world and there are around 422 million
speakers of Arabic as their first language on the globe [1]. In the broader term, Arabic
language can be categorized into Classical Arabic (CA) and modern standard Arabic (MSA)
dialects. MSA is a modified version of CA currently used in everyday communication in
Arabic speaking countries. Classical Arabic is the language of the Holy Quran [2] and is
still used largely in religious context and studies despite being more than 1400 years old.
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Millions of Arabic and non-Arabic speakers around the world practice CA in their daily
routine in the form of recitation of the Holy book or studying in a formal educational setting.

1.1. Arabic Phonemes and Their Pronunciation

A phoneme is the smallest unit of sound in human speech [3]. Phonemes include
all the distinct units of sound spoken in a language. The Arabic language consists of
34 phonemes that can be broken down into 28 consonants, three short, and three long
vowels [4] known by their common names of Fatha, Damma, and Khasra. Pronunciation
is a general term that includes several distinct features present in human languages. The
correct pronunciation is hard and challenging to measure because there is no universal
definition for correctness in the context of human languages, but there has been some
research in this domain [5,6].

In the Arabic language, the accurate pronunciation of phonemes is required in learning
the language to void change in the meaning of the sentence. In many countries around
the world, the CA is part of the schools’ syllabus. Correct pronunciation of phonemes as
per defined rules is an essential requirement to preserve the meaning of the words [7,8].
Mispronunciation results in two types of errors; firstly, it changes the meaning of the word
completely. Secondly, it defies the rules of pronunciation, and both errors are forbidden in
CA. Learning the correct pronunciation of Arabic alphabets is challenging, and it requires
each learner to follow an individual teacher, who listens and corrects the mistakes separately
for each learner [9]. These corrections belong to the pronunciation of all the 84 variations of
phonemes. A major distinction of the CA from MSA is the emphasis on the correct use of
vowels. When speaking CA, the speakers tend to produce all the sounds according to the
existing rules for CA pronunciation. CA has precise and explicitly defined rules for correct
pronunciation to conserve the accurate meaning of the words and provides a framework
to facilitate both the natives and non-natives learning the language [10]. These rules are
standardized, widely available, and recognized by the Arabic speaking world [11]. In CA,
alphabets’ articulation points and characteristics and massive practicing of vocals play a
significant role in correct pronunciation. On the contrary, it has been studied previously
that in the case of MSA, the different dialects such as Saudi, Egyptian, and Sudanese have
different qualities of vowel pronunciation [12].

1.2. Motivation for Pronunciation Classification

In a typical CA learning institute, a single teacher may be responsible for listening
to and correcting the mistakes of several dozen learners on a single day. This is quite a
laborious job leading to fatigue and is prone to diminished error correction by the instructor
over time. Moreover, each student has to wait for their turn to speak or read the learned
parts. If this job can be automated by letting the students’ work be evaluated through an
automated mechanism, it will improve the efficiency of the learning process and the overall
productivity of the students and instructors. Moreover, this will open new ways of distant
and home-based learning with little reliance on the presence of an instructor. As learning
can take place anytime and anywhere, it is required to develop automatic approaches that
can detect pronunciation errors and give feedback to the learner.

It is worth mentioning that in the Arabic language, the correct pronunciation is vital
and requires a lot of practice by the learner of the language. Currently, the students
not only rely on in-class participation but also practice using digital technology. In this
regard, we have evidence of the development of many applications supporting the students’
learning process. There is a need for research in developing systems and applications for
improving Arabic reading and speaking knowledge. In various parts of the world when
there is an unavailability of real instructors, such applications play an important role in
supporting the student’s learning process. The improved model can easily be integrated
with existing applications to increase the accuracy of Arabic short vowels classification
in the learning process. The Arabic-speaking countries are a recent place of interest for
many tourists around the world. Therefore, many people are interested to learn this
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language for their survival in this part of the world. Any applications developed using
better speech recognition models will be beneficial for people who want to learn Arabic
using the available online resources.

1.3. Objectives and Contributions

This research aims to develop a classification system for correct and incorrect pro-
nunciation of the Arabic short vowels. It is a novel research idea focusing on the subtle
pronunciation differences in Arabic speech processing. The outcomes of this research
can be useful in developing advanced systems that can autonomously classify words and
sentences to effectively facilitate CA learning with accurate pronunciation. As there are
28 alphabets in the Arabic language and each alphabet has three possible vowel states,
they make a total of 84 unique phonemes. Thus, given audio that utters any of these
84 phonemes, our task is to accurately map the audio to the correct phoneme.

Although there are a few existing datasets related to Arabic pronunciation, there is no
dataset that serves our purpose of containing the different possible vowel pronunciations.
Thus, we created a new dataset of the recordings of the Arabic alphabets through an online
audio recording system. After passing the data through various stages of preprocessing,
we augmented the available audio data by generating synthetic audio to make a sufficiently
bigger audio dataset. We trained a deep convolutional neural network (CNN) over this
data for audio classification. The trained network can classify unseen audio data with a
testing accuracy of 95.77% into one of the 84 classes. Our research is different from the
previous works in terms of the dataset, features engineering, proposed architecture, and
evaluation performance.

The major contributions of this work are:

1. Collection of an audio dataset for the Arabic alphabet focused on the three states of
vowels for each alphabet.

2. Classification of Arabic short vowels by recognizing the correct short vowels from a
recorded phoneme.

3. Constructing a general CNN architecture for phoneme classification. This allows
replicating the architecture for similar tasks or a different number of classes.

4. Sharing our experience of model optimization and fine-tuning with the researchers
and practitioners to aid their knowledge of building better models in the future.

The remainder of the article is organized as follows. Section 2 discusses the related
work. Section 3 describes the materials and methods used in this research. Section 4
explains the development of the CNN model for Arabic short vowel classification and
describes the techniques of data augmentation and fine-tuning applied to improve the
model’s performance. Section 5 reports the results of the classification. Section 6 contains
discussions in view of the related work and implications of our work. Section 7 concludes
this article.

2. Related Work

There are several research studies on using machine learning and deep learning for
speech recognition and pronunciation detection of various types of Arabic datasets. Many of
such techniques used audio features for further audio processing and classification. Several
tools have been designed and developed to support Arabic learning and teaching. In the
following, we report the previous research contributions in the above-mentioned areas.

2.1. Pronunciation Detection

In the direction of pronunciation detection (correct pronunciation and mispronunci-
ation), the previous studies have investigated the machine learning techniques of SVM
(support vector machine), KNN (k-nearest neighbors) and NN (neural network) [13], and
DNN (deep neural network) techniques of CNN (convolutional neural networks) with
transfer learning, AlexNet, BLSTM (bidirectional long short-term memory) [10]. The ma-
chine learning algorithms for pronunciation detection had achieved an accuracy of 74.37%
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for KNN, 83.50% for SVM, and 90% for NN. Similarly, the DNN techniques reported that
CNN, AlexNet, and BLSTM give 95.95%, 98.41%, and 88.32% accuracy for recognizing each
alphabet, respectively. As well as detecting the quality of pronunciation of each alphabet
using CNN, AlexNet, and BLSTM attained the accuracy of 97.88%, 99.14%, and 77.71%,
respectively. In DNNs experiments, the dataset was limited to 29 classes of pronunciation,
excluding the vowels. Therefore, it is required to fill this gap to support teaching and
learning of CA basics. DNN algorithms and models such as CNN consist of multiple
hidden layers capable of efficiently extracting important features from a large set of data.
These features can be transformed from one layer to the next in a series of several layers
with varying weights in the neural network until it results in a set of layers that can be used
to initialize a deep learning algorithm for speech recognition [14]. A proposed method of a
DNN based on articulatory models, with a multi-label learning scheme, shows promising
results in speech error detection [15]. The researchers consider measuring all attributes
responsible for generating the sound related to the movement of the tongue, lips, and
other organs. This experiment observes 74% of accuracy for pronunciation error detection.
We have found significant improvements in pronunciation detection accuracy in DNN
techniques compared to machine learning algorithms from the results.

Besides machine learning and DNN techniques, pronunciation detection was per-
formed using statistical methods. In [16], a system was proposed to detect how badly an
Arabic word was pronounced using different scores of pronunciation measurement. The
system used the GLL (Global Average Log Likelihood) score, the LLL (Local Average Log
Likelihood) score, the RoS (Rate of Speech score), and the RoA (Rate of Articulation) score
to assess the pronunciation quality of the learner quantitatively. The dataset consisted of
three Arabic corpora, spoken by six young Algerian learners. The pronunciation of expert
learners is used as a benchmark to assess the other five learners. Evaluation measurement
was used to decide whether the score calculated by the system could detect mispronuncia-
tion; the researchers used the CA (Correct Acceptance), CR (Correct Rejection), FA (False
Acceptance), and FR (False Rejection). The results showed that the system could detect
mispronunciation, using the GLL score method, with 86.66% of correct rejection, and the
GLL had the higher CA + CR (76.66%) and the lower FA + FR (23.32%).

In the direction of pronunciation detection of non-native speakers, mispronunciation
of Arabic phonemes has been investigated for non-native speakers by analyzing the Arabic
speech of Pakistani and Indian speakers from the KSU (King Saud University) database [17].
Research findings of this study highlight that non-native Arabic speakers often mispro-
nounce five Arabic phonemes. The system trained with native and non-native speakers of
Arabic phonemes and tested with only non-native speakers. A threshold was set to be com-
pared with the calculated score of GOP (Goodness of Pronunciation) to decide whether the
phoneme was pronounced correctly or not. Five experiments were conducted to set up the
suitable parameters for the system using HMM (Hidden Markov model). The system used
16 mixtures with 19 HMM re-estimation. Moreover, it extracted 12 MFCC (Mel-frequency
Cepstral Coefficients) from sound data. The result of the GOP showed a high accuracy from
87% to 100%, and the false rejection was zero to less than 10%. HMM for automatic speech
recognition system has been proposed to help improve the pronunciation for Malaysian
teachers of the Arabic language [18]. The aim is to develop a computer system for standard
Arabic pronunciation learning by estimating the pronunciation score based on the HMM
log-likelihood probability model. The system is designed to extract feature vectors from
speech utterances using the MFCC technique; then, the Baum Welch Algorithm is applied
to train the system and build the HMMs set. The pronunciation scoring system uses HMMs
with the test speech features to perform classification of the speech utterances by applying
the Viterbi Algorithm to calculate word pronunciation score. The dataset consisted of
200 words recorded by 20 native Arabic speakers and 10 non-native speakers. The accuracy
performance of the proposed system was 89.69%.
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2.2. Audio Features

In audio classification, features identification and extraction for audio processing
is one of the most popular techniques. A system was developed in [19] to recognize
the Makhraj (the areas of the mouth from which the Arabic alphabets are pronounced)
pronunciation using MFCC features extraction techniques to build a database of features
from the audio dataset. Then, the SVM classifier has been used to classify the Arabic
alphabet’s Makhraj pronunciation. The system is trained with the recorded audio of the
Arabic alphabet Makhraj pronunciation. For new input data, the system extracted the
features and matched them with the trained data. Then, it was classified and analyzed
using the SVM method with RBF (Radial Basis Function) kernel. The audio data used
in the research is a collection of 28 Arabic alphabets’ audio and 12 features coefficients
were extracted to distinguish between Makhraj pronunciation of Arabic alphabet. Different
waveforms analysis is used to present the audio data, using audio visualization, FFT (Fast
Fourier Transform), and Mel waveform. The result showed that using audio visualization,
all letters had a similar representation. On the other hand, using FFT and Mel waveform,
each Arabic Makhraj pronunciation showed different representations, which can be used to
distinguish between different Arabic alphabets. Another research study proposed a CNN
feature-based model to detect mispronunciation in Arabic words [20]. The proposed system
extracted features from different layers of the AlexNet network. Researchers collected
Quranic verses words that cover all Arabic alphabet letters 30 times by speakers of different
ages. The participators of the collected dataset were native/non-native Arabic speakers.
After removing the noise from the dataset, it converted to a 2D spectrogram and was used
to input the CNN model. Then, discriminative features were extracted from fully connected
layers 6, 7, and 8 of AlexNet containing high dimensions features. This method showed a
significant result compared with the CNN model. It achieved 85% on the complete Arabic
dataset. The MDD (Mispronunciation Detection and Diagnosis) task was performed using
the RNN (Recurrent Neural Network) [21] and CTC (Connectionist Temporal Classification)
model. The model consisted of five parts, the input layer, which accepts the framewise
acoustic features. Then is the convolution, which contains a total of four CNN layers and
two max-pool layers. The third part is a bi-directional RNN that captures the temporal
acoustic features. The fourth part is MLP layers (Time Distributed Dense layers), which
ends with a soft-max layer for the classification output. The last part is the CTC output
layer that generate the predicted phoneme sequence. The experiment results showed that
the proposed approach significantly outperformed previous approaches. Some researchers
used LDA (Linear Discriminant Analysis) to classify the data into the correct class and
draw a decision region between the given classes [22]. The first step in this system is
preprocessing speech signals, which helps prepare the data for the next processing. The
preprocessing includes end-point detection, pre-emphasis, and normalization. The second
step is features extraction and uses MFCC techniques to extract different coefficients order
12, 20, and 35. The main contribution of this research is to test a different number of MFCC
coefficients with varying percentages of training and testing in LDA. The best performance
achieved is 92% for the Arabic phoneme (Taa) when using 35 MFCC coefficients and 80%
of training data. A recent work uses APDM (Acoustic and Phonetic Decoding Model) for
recognizing vowels for naturally uttered MSA-based Gas (Genetic Algorithms) [23]. They
use MFCC and the LPC (Linear Prediction Coding) techniques to obtain speech parameters
from the speech signal. GA based on Manhattan distance decision rule is applied on several
Algerian male and female speakers’ recordings and classify phonemes with accuracy of
98.02%. The studies that used the audio features data require extra preprocessing efforts to
identify and extract the features from the audio dataset for further processing. Therefore,
these methods are costly in terms of processing performance.

2.3. Tools in Arabic Learning

Many previous studies have developed tools for recitation assessment; in this regard,
the HAFSS system [24] took user recitation of some Holy Quran phrases (in Arabic) as an
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input and then assessed the quality of the users’ recitation. It provides feedback messages
to help users know their pronunciation errors and improve their recitation. This system
included a speech recognizer to detect errors in user’s recitation. For each decision from the
speech recognizer, there is a confidence score that is used to choose the suitable feedback.
One of the main components in the system is the automatic generation of the pronunciation
hypotheses model, which is used to generate pronunciation errors in user’s recitation and
detect the pronunciation patterns. The system has been tested in a school with two student
groups, and the results showed improvement in students’ recitation when using the HAFSS
system. The performance of the students has been increased from 38% to 77% while getting
lessons from a teacher and using the HAFSS system to practice recitation. In [25], a tool
was developed that detects pronunciation errors in young Algerian students. The idea was
to differentiate between young Algerian students who have difficulties in pronunciation
from those who have standard pronunciation. Since the native language of Algerian is
a delicate Arabic language, it is very difficult for Algerians to formulate the equivalent
sound in standard Arabic. The researchers proposed a system based on a decision tree that
provides a decision for the pronunciation of Arabic if it is correct. Moreover, the system
provides feedback if the pronunciation contains articulations problems to enhance the
pronunciation skills of the learners—the system trained with the acoustical model built on
MFCC representation and HMM models. Three scores were used for the decision tree, first
the GLL (global average log-likelihood). The second score was the TDS (Time Duration
of the Speech), the total time to produce the sound, and the total number of phonemes of
each pronounced word. All the scores are input to the decision tree to accept or reject the
pronunciation sound. The system was trained on correct Arabic pronounced words and
tested with eight young Algerian students who read 16 Arabic words to test the system.
The result showed a 95.8% TPR (true positive rate) for good pronunciation and 88.4% for
bad pronunciation. Their dataset was too specific and smaller in size. So, more data with
further experiments would be needed to validate their approach. Arafa et al. [9] developed
a system for teaching Arabic phonemes employing ASR (Automatic speech recognition) by
detecting mispronunciation and giving feedback to the learner. In the experimental study,
the authors recorded Arabic phonemes 10 times from 89 elementary school children, which
resulted in 890 recordings for each Arabic phoneme. The previous studies supported the
fact the automated tools are beneficial in support the CA learning process and improve the
students’ performance.

2.4. Audio Datasets in CA

From the previous research, we found that many studies have used a variety of datasets
in developing CA audio processing systems. However, many of such studies are limited to
Arabic alphabets and some basic words. Although, the challenging task in learning Arabic
pronunciation is the correct use of Arabic short vowels. ASR is a way of automatically
transcribing the speech into text [26]. One of the major challenges for ASR for Arabic is the
predominance of non diacritized text material where diacritics [27] is the use of vowels (e.g.,
short vowels Fatha, Damma, and Khasra) for both acoustic and language modeling that can
change the meaning of the sentence. However, the majority of the acoustic features for ASR
are available without diacritized form [26]. It means that there is no vowel information,
which results in the loss of variations in the pronunciation of the speech. In this scenario, it
becomes difficult to train a reliable acoustic model without knowing short vowels. Authors
report encouraging results for classifying Arabic phonemes, but they do not consider
vowels in their study. The research on the Arabic speech for vowels focuses that the
MSA [28] used the formants and consonant-vowels-consonant (CVC) utterances to identify
vowel similarities and differences. The HMM technique was applied to classify vowels,
and the resulting performance of phonetic features of vowels was analyzed. Al-Anzi and
AbuZeina [28] highlighted that different researchers had considered different phonemes for
the Arabic language; for instance, some take 34 phonemes (28 consonants and six vowels)
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while others take 112 phonemes by considering four diacritics for each alphabet. So, indeed,
Arabic short vowels are crucial in CA; however, the research is limited in this area.

It has been emphasized that autonomous Arabic speech recognition poses challenges
due to the vast lexical forms of vowels, which are semantically associated with a word in
a sentence [2,29]. Thus, the correct classification of Arabic alphabets pronunciation with
vowels is another important research challenge. None of the above research work has
considered the correct pronunciation of the CA alphabet with vowels. Furthermore, the
research is also limited in preprocessing performance due to features identification and
extraction tasks. Therefore, it is required to improve the existing methods and algorithms
for Arabic speech classification.

2.5. Summary of the Literature

The survey of the literature shows that the existing work in Arabic pronunciation can
be categorized as mispronunciation detection [9,13], sometimes with a focus on non-native
speakers [17,18], speech error detection [15], correct pronunciation detection [10], and de-
tecting the similarities and differences between pronunciation of vowels and consonants for
MSA [30]. As such, there have been a number of approaches from articulatory models [15]
and transfer learning [10] to CNN [13] and acoustic models [31]. To the best of our knowl-
edge, we could not identify any work that can detect the correct pronunciation of Arabic
alphabets vowels in CA. One possible reason of not undertaking this work previously
maybe because it makes a total of 84 cases to be distinguished from one another. This task
is not only challenging in terms of data availability and retrieval but also in terms of model
development. To carry out such a challenging task will remove many barriers in the correct
utterance of CA words, which can benefit millions of people.

In this research work, we take up this challenging task and propose a deep convolu-
tional neural network algorithm for the classification of Arabic alphabets with vowels. Our
research is different from the previous works in terms of the dataset, features engineering,
proposed architecture, and evaluation performance.

3. Materials and Methods

After exploring the existing literature, we have identified limited contributions in short
Arabic vowels classification; because there was no existing dataset available, we began by
collecting the Arabic short vowels audio data. We used a convenience sampling technique
whereby the acquaintance, students, and faculty members were identified through personal
contacts and social media. The data was collected in the form of audio clips from each
participant.

3.1. Data Collection

One way to collect the audio dataset was to use an online audio recording tool like
Phonic.ai (http://www.phonic.ai, accessed on 10 November 2021) website [32]. The website
provides a service for collecting the participants’ responses via sound recording. The
website first collects user information through a survey followed by the instructions to
record their audio. Then, demographic data such as age and gender are collected from the
participants. The users also specify if they are native or non-native Arabic speakers. The
survey is followed by a permission agreement to participate in this study; the participants
must agree to continue and complete the survey. Then a sample of sound records for the
Arabic alphabets with short vowels is played for the participants to listen and understand
how their voice should be recorded. Finally, the recording page shows a video containing
all the Arabic alphabets with a sequence of short vowels arranged in order and displaying
them one by one with a gap of three to five seconds. The video lasts for two minutes and
forty-nine seconds. Moreover, some participants shared their sound recordings through
WhatsApp messenger application after reading and understanding the instructions.

The total number of the received audio was 85 individual recordings from 42 males
to 43 females. There were 81 native Arabic speakers, and four non-native speakers. The

http://www.phonic.ai
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received audio files were saved using a naming scheme consisting of the speaker identifica-
tion code, their gender, native or non-native specification, the age range of the participant,
the source of data collection, and the date of the recording. The dataset had 6229 records
belonging to 84 classes. It contained an average of 74 examples per class. The data set was
imbalanced in terms of the number of examples per class.

Table 1 describes the summary of statistics for the obtained recordings. The dataset is
available in the form of audio clips on Kaggle (https://www.kaggle.com/amnaasif/arabic-
short-vowels-audio-dataset, accessed on 10 November 2021) for researchers and interested
stakeholders.

Table 1. Summary of data collection from participants.

Gender Status Number of Records Age Distribution

Male
Native 40 7–50+ years old

Non-native 2

Female
Native 41 7–40 years old

Non-native 2

3.2. Data Preprocessing

After data collection, we applied the following preprocessing steps to the audio files.
Noise Reduction: The received audio recordings contained various noise and back-

ground sounds, as they were collected in different environments. The Audacity (https:
//www.audacityteam.org, accessed on 10 November 2021) software was used to identify
the noise in our dataset and helped in reducing it.

Data Segmentation, Resampling, and Silence Truncation: Each recorded audio by a
participant contained all the pronunciations, which were to be segmented into separate
pronunciations for each vowel. This was done using audio segmentation based on the
silence between each segment. We made all the segments in equal time duration of one-
second padding the shorter one with silence. Since the received recordings were collected
from different sources, the audio sampling rate varies from one sample to another; so, the
audio recordings were resampled to a 16 kHz sample rate. Finally, we tested the segments
of audio files to ensure intelligibility and clarity of pronunciation by listening to each
segment and removing any sounds that were not clear or had the incorrect pronunciation
of an alphabet.

Data Labeling: To label each recorded instance belonging to a class, each short vowel
is coded with a unique number for further processing. Table 2 presents the short vowels
and their class labels.

3.3. Spectrogram Conversion

Instead of using audio signals as input, we converted each input instance into its
equivalent waveform and then to a spectrogram of 32 × 32 pixels. “Spectrograms are
2D images representing sequences of spectra with time along one axis, frequency along
with the other, and brightness or color representing the strength of a frequency component
at each time frame” [33]. The advantage of spectrograms over audio signals is that they
retain more information than the hand-crafted features for audio analysis, they are of lower
dimension than the raw audio and have found their role in neural networks [33].

https://www.kaggle.com/amnaasif/arabic-short-vowels-audio-dataset
https://www.kaggle.com/amnaasif/arabic-short-vowels-audio-dataset
https://www.audacityteam.org
https://www.audacityteam.org
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Table 2. Representation of Arabic Short Vowels (ASV) with Class Label (CL) in IPA and native script along.

Arabic short vowel
�
@ @

�

�
@

�
H. H.�

�
H.

��
H

�
H
�

��
H

�
�

H
�

H
�

�
�

H
�
h. h.

�

Class label 1 2 3 4 5 6 7 8 9 10 11 12 13 14
IPA symbol aa ai au Ba bi bu Ta Ti Tu θa θi θu dZa dZi

Arabic short vowel �
h.

�
h h

�

�
h

�
p p

�

�
p

�
X X�

�
X

�	
X

	
X�

�	
X

�P

Class label 15 16 17 18 19 20 21 22 23 24 25 26 27 28
IPA symbol dZu èa èi Ћu xa xi Xu Da Di du ða Ði ðu ra

y Arabic short vowel P
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IPA symbol ri ru za Zi zu sa Si Su Sa Si Su sQa sQi sQu

Arabic short vowel
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Class label 43 44 45 46 47 48 49 50 51 52 53 54 55 56
IPA symbol dQa dQi dQu tQa tQi tQu ðQa ðQi ðQu Qa Qi Qu Ka Ki

Arabic short vowel
�	
¨
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¬
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��
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�
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�
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�
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Class label 57 58 59 60 61 62 63 64 65 66 67 68 69 70
IPA symbol Ku fa fi Fu qa Qi Qu Ka Ki ku la Li lu ma

Arabic short vowel Ð
�

�
Ð

�	
à

	
à
�

�	
à �ë �ë �ë

�
ð ð

�

�
ð �ø



ø

�

�ø



Class label 71 72 73 74 75 76 77 78 79 80 81 82 83 84
IPA symbol mi Mu na Ni nu Ha Hi Hu Wa wi wu Ja ji ju

4. CNN Model for Arabic Short Vowels Classification

Inspired by existing approaches to developing CNN architecture, we started with
an initial architecture consisting of five convolutional and two pooling layers. With our
constructed dataset and the first CNN model, we achieved a training accuracy of 84.27%
and validation accuracy of 40.15%. Based on previous approaches [34,35], and the low
validation accuracy, it was evident that the small dataset could not give high classification
accuracy. Because obtaining more user data was not an option, for achieving good accuracy,
we developed a two-phase approach as shown in Figure 1. In the first phase, our focus was
on improving the validation results as much as the initial training results by generating
more training and validation data. Data augmentation is a useful technique to improve
the performance of model and expand limited datasets to take advantage of deep learning
models. The validation error must continue to decrease with the training error to develop
a useful deep learning model. However, data augmentation is not only a technique to
improve accuracy by avoiding the overfitting. Many other alternative solutions are model
fine-tuning and hyperparameter tuning to achieve higher accuracy by avoiding the overfit-
ting [36]. Therefore, once our desired validation accuracy of 85% could be achieved using
a bigger dataset, in the second phase our focus was to improve the deep learning model
to achieve a test accuracy of 95% on the test data. As can be seen in the figure, model
development is an iterative process in each of these phases. In phase 2, after each cycle of
training, validation, and testing, the results are analyzed, and the model is modified by
fine-tuning it. At the same time, the hyperparameters are optimized to achieve the desired
accuracy above 95%.
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4.1. Data Augmentation

Data augmentation is a technique for increasing the number of records in the dataset by
slightly modifying the copies of original data for producing synthetic data using statistical
methods and algorithms. Many data augmentation techniques exist in the literature [37],
so we applied a few techniques one-by-one. Each time an augmentation technique was
applied, it resulted in the gradual increase of the audio instances in the dataset; we also
kept evaluating the validation accuracy of the base model, which was also improving. We
used the augmentation techniques of noise injection, time-shifting, and changing the audio
speed using time stretch, as shown in Figure 2. Other audio data augmentation techniques,
such as pitch shift, were not ideal for our dataset because it required randomly changing
the pitch, thus, distorting the pronunciation. The techniques are described as follows.

Noise injection: This technique introduces white noise in the audio dataset [38] as
a ratio between the signal and noise. This method is appropriate for our model as we
can assume that given environmental variations, user input is not noise-free in most
circumstances. We applied random noise augmentation by adding two types of noise
values X to audio files using the NumPy library in Python, with X = 0.005, and X = 0.0005.
Figure 2b illustrates the noise injection results of an audio file, where noise is injected at the
rate of X = 0.005.

Time-shifting: The method of time-shifting is applied to shift the audio forward or
backward [38]. We used the roll method in Python’s Numpy library to shift the start of
an audio file S milliseconds. If Da is audio data, and Da = [x1, x2, . . . ., xn], by applying
Silent St = [S1, S2, . . . ., Sm], it becomes Dshi f ted = [S1, S2, . . . ., Sm, x1, x2, . . . ., xn−m], Where
St ≤ Ds. Figure 2c presents the result of the time-shifting function; the audio file is shifted
forward for 2 milliseconds at the beginning of the graph by replacing it with silence.

Changing speed: This technique allows adjusting the speed of audio signal S by a
certain rate R as S = S÷ R. We used the values of R = [1.25, 1.4, 1.5, 1.6]. Figure 2d illustrates
the result of changing the audio speed where R = 1.5. It is investigated in [39] that short
vowels can be varied on shorter and longer duration.

After applying the data augmentation techniques, we ended up with a total of 49,829
audio files. With the augmented dataset, we achieved a validation accuracy of more
than 85%.
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4.2. Fine-Tuning the CNN Architecture

We started with a sequential CNN architecture with eight processing layers to develop
our baseline model. The architecture is made up of convolutional layers such that each
layer applies a set of convolution filters to an input followed by a non-linear activation
function [40]. The convolutional layers are defined with a kernel of size 3 and the number
of filters set to 32, 64, and 128 in different layers. A resizing layer is used to downsample
each input to speed up the model training process. A normalization layer normalizes each
pixel in the image using mean and standard deviation values. The other important layer of
the CNN architecture is the pooling layer [41], and its function is to progressively reduce
the input to decrease the number of parameters and increase the network performance.
There are different types of pooling operations: max pooling, average pooling, global
max pooling, and global average pooling used for downsampling of the input samples.
The CNN can also have additional layers for optimization and improved performance.
The batch normalization layer [42] allows normalizing the input of each layer, as the
problem of internal covariate shift occurs due to constantly changing the distribution of
activation, and each layer needs to learn to adapt to a new distribution. Similarly, the
dropout layer [43] is used to reduce the model overfitting by randomly dropping out some
percentage of the layer output. The flatten layer is used to convert the two-dimensional
data into one-dimension for final classification by the dense layer.

Each layer has its associated activation function [44], whose task is to define how the
weighted sum of input is transformed to the output from the nodes in a layer of the network.
There are various activation functions, and the most popular ones are the ReLU (rectified
linear unit), Sigmoid, and SoftMax. The ReLU function does not allow the activation
of all the neurons simultaneously; when the output of the linear transformation is zero,
the output neurons get deactivated. SoftMax function restricts the output values in the
range 0 to 1, which are treated as probabilities of a particular class and usually used in the
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last layer of the neural network. Mathematically, the SoftMax function σ is applied to a
vector of inputs,

→
z , where each component of z is converted into corresponding probability

according to its weight, ezi is standard exponential function for input vector, k stands for
the number of classes and ezj presents standard exponential function for output vector
shown in Equation (1) as follows:

σ(
→
z )i =

ezi

∑k
j=1 ezj

(1)

The dataset was divided into a ratio of 80% for the training set and 10% for validation
and testing sets each. The batch size was set to 32. With the CNN architecture having
eight layers, we achieved a testing accuracy of 80%. An improvement strategy [35] was
to update the baseline sequential model by adding more convolutional, max pooling, and
dense layers and updating the network to 12 layers. To find the optimal CNN model, we
ran our model by applying a random search for the best parameters, which allows finding
the optimal values of filter, kernel, and learning rate to achieve maximum accuracy. We
found that the accuracy can be increased by increasing the filter size. We tested many CNN
model modifications in a trial-and-error [35,45] manner and kept increasing the testing
and validation accuracy in small steps. That allowed us to improve the testing accuracy
to 90.0%.

4.3. Hyperparameters Tuning

In deep learning neural networks, the function of optimizers [46] is to reduce the losses
to achieve the most accurate results possible. We evaluated different optimizers: Adam,
Nadam, RMSprop, and SGD, and found Adam [47] to achieve the best performance in the
proposed network. Adam stands for adaptive moment estimation that adaptively estimates
the first and second-order moments. It updates the network weights iteratively based on
the training data. Specifically, Adam uses the update vector v̂t and the past gradient m̂t
differently than the previous algorithms, shown in Equation (2):

θt+1 = θt −
η√

v̂t + ε
m̂t (2)

Here θt represents the weights and bias parameters, η stands for the learning rate or
step-size, m̂ and v̂ represent the first and second moment vectors and by parameterizing
them by t we get their moving averages over time. Adam combines the advantages of
AdaGrad and RMSProp algorithms [26] and compared to other optimizers, it requires
less memory, is computationally efficient, and is suited for problems with large data or
many parameters.

We utilized the learning rate scheduler to dynamically adjust the learning rate to
achieve the desired accuracy. Initially, the learning rate was set to 0.001, and after 80 Epochs,
the learning rate was reduced by 10% every Epoch. We continuously reduced the learning
rate because it helped in achieving optimal weight update by gradually maintaining the
training loss and avoiding its oscillating over training epochs [48]. We utilized the early
stopping hyperparameter for stopping the model prematurely if the loss was not decreasing
anymore. We also used the Tensorboard tool to get training details for analysis and further
improvements to the model through the generated time-series graphs, histograms, and
distributions [49]. We added 2 batch normalization and 1 dropout layer to this model.
These steps are explained in Algorithm 1, where, labeled audio dataset is input to the
model that output as training loss, accuracy, and predicted labels. The audio data was first
converted to a labeled waveform dataset. Then the transformed to labeled spectrogram
dataset. The spectrogram dataset was resized to 32 × 32 pixels and input to our optimized
sequential DLNN model. The model was executed by passing the callback functions
of learning rate schedular (lr_scheduler), early stopping (callback_Early_stopping), best
model checkpoint (model_checkpoint_callback), and tensorboard (tensorboard_callback).
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Together, hyperparameter tuning and model fine-tuning helped in achieving the testing
accuracy of 95%.

Algorithm 1: Steps of classification of Arabic short vowels on a fully optimized and fine-tuned
neural network

Input
aDataset = Audio dataset
labels = Labels of classes
train_files, val_files, test_files = split(aDataset(80,10,10))

Output
Accuracy = Model accuracy
Loss = Model learning loss
y_pred = Predicted labels

Algorithm
Begin

waveform_ds = Map waveform and labels from aDataset
spectrogram_ds = Map spectrogram and labels from waveform_ds

Function preprocess_dataset(files)
output_ds = Map waveform_ds from files_ds of files
output_ds = Map spectrogram_ds of output_ds
Return output_ds
Endfunction
train_ds = preprocess_dataset from train_files

val_ds = preprocess_dataset from val_files
test_ds = preprocess_dataset from test_files

input_shape = Shape of spectrogram in spectrogram_ds
norm_layer = Normalization in preprocessing

model = Sequential(input_shape, Resizing(32, 32), norm_layer, layers)
trainNetwork train_ds, val_ds, callbacks =
[lr_scheduler,callback_Early_stopping, model_checkpoint_callback,
tensorboard_callback]

load weights of best_model
model train accuracy = Evaluate(train_ds)
model val accuracy = Evaluate(val_ds)
model test_accuracy = Evaluate(test_ds)
Loss_graph metrics[‘loss’], metrics[‘val_loss’]
Accuracy_graph metrics[‘Accuracy’], metrics[‘val_ Accuracy’]

End

Figure 3 shows the resulting architecture after fine-tuning and applying hyperpa-
rameter tuning to the baseline architecture. As can be seen, hyperparameters have been
added in the form of batch normalization and dropout layers in addition to the optimizer
selection and learning weight. FC1 and FC2 represent the two fully connected layers for
classification followed by the SoftMax activation function that assigns a probability to each
of the output classes.
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Figure 3. The architecture of the optimized CNN model.

4.4. Model Execution

The code is executed on a GPU-based desktop system with hardware configuration of
Intel (R) Core (TM) i9 CPU @3.70, NVIDIA GeForce RTX 3070, and 64 GB RAM. The model
is developed and run using the TensorFlow (https://www.tensorflow.org/, accessed on 10
November 2021) platform, mainly the Keras (https://keras.io/, accessed on 10 November
2021) API. The maximum number of epochs was set to 150. It took on average 91 s to
complete one Epoch. We used the Jupyter notebook in conda (https://docs.conda.io/en/
latest/, accessed on 10 November 2021) environment management system with miniconda
installer for running the CNN model.

5. Results

In this study, we designed and executed four different experiments using combinations
of two datasets and two model settings: (1) the original dataset trained on a sequential
baseline CNN model, (2) the original dataset trained on an optimized and fine-tuned model,
(3) the augmented dataset trained on the baseline CNN model, and (4) the augmented
dataset trained on the optimized, fine-tuned model. Table 3 shows the comparative results
(training, validation, and testing) of the four experiments. In the first experiment, the
validation and testing accuracy gave very low results on the original dataset. The reason is
that 6229 audio files are too few for 84 classes, which are on average 74 instances per class.
Therefore, when performing validation and testing, the sample size becomes very small.
However, after data augmentation, model optimization, and fine-tuning, the validation
and testing accuracy increased to 95.87% and 95.77%, respectively. This implies that data
augmentation and fine-tuning proved useful in model improvement.

Table 3. Model execution results on different parameters.

Exp. No. Experiment Settings Accuracy
Training Validation Testing

1 The original dataset on baseline CNN model
(n = 6229) 84.27% 40.15% 36.0%

2 The original dataset on fine-tuned model
(n = 6229) 99.74% 59.33% 56.91%

3 The augmented dataset using baseline CNN
model (n = 49,829) 98.93% 90.63% 90.0%

4 Model optimization, hyperparameter tuning,
and augmented dataset (n = 49,829) 99.9% 95.87% 95.77%

https://www.tensorflow.org/
https://keras.io/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
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Figure 4a,b show the accuracy and loss of the optimized and fine-tuned CNN model.
We can observe that the training and validation losses improve continuously. The optimized
and fine-tuned CNN model has achieved the best training accuracy of 99.857% and loss of
0.0073, and the validation accuracy is 95.87% and loss of 0.2329.
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Figure 5 shows the details of the misclassification by the classifier. Eleven of the
84 classes have 0% error rate. Only 20 classes have four or more mispredictions. The
Figure shows that class 10 (phoneme (

�
�

H, θa)) and class 15 (phoneme ( �
h. , dZu)) have been

misidentified a maximum of eight times. From the analysis of the confusion matrix, we
observe that the topmost misclassified classes are those not spoken in CA pronunciation by
the native local people. For example, class 10 (phoneme (

�
�

H, θa)) is often pronounced as 7

(phoneme (
��

H, ta)) in local Arabic dialect.
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6. Discussion

This research addresses the recognition of short vowel phonemes in the Arabic lan-
guage. The recognition task falls into the classification of classical Arabic words, a dialect of
the Arabic language that is very old but is understood and applied to this day by millions of
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people around the world. Our work is one step ahead of the previous efforts in classifying
a total of 84 Arabic short vowels. The authors in [10] achieved an accuracy of 97.88% using
CNN for Arabic alphabets (28 classes) recognition without considering the vowels. We
believe that the authors could achieve highly accurate results because without considering
the vowel phonemes the chances of interclass misclassification are reduced significantly.
Alotaibi and Hussain [30] have considered formants and consonant-vowels-consonant
(CVC) utterances for identifying similarities and differences of vowels for MSA, but to the
best of our knowledge, there is no work for CA vowels recognition despite their similarities
with the MSA [12].

This research started with data collection followed by its augmentation through
various techniques, which is lacking in the previous studies. In [9,10,20,50], the authors have
contributed to the basic Arabic alphabets audio data collection, and they mostly performed
manual feature extraction. In [51], the authors collected the audio dataset of Arabic words.
However, Almisreb et al. [39] investigated Arabic short vowels’ properties that helped
us understand their characteristics and duration variations. We were inspired by this
approach and applied data augmentation to our collected audio files. Our model supports
the automatic classification of Arabic short vowels on 84 classes using deep learning neural
networks instead of manually identifying the audio features as done in the studies [10,23,26].
The data augmentation helped us to achieve accuracy above 95%, as in the previous research
the authors have used data augmentation on 28 classes of Arabic alphabet dataset, and
improved DCNN model’s accuracy from 65.89% to 95.95%, Alexnet’s model accuracy from
78.03% to 98.41%, and BLSTM’s model accuracy from 53.18% to 87.90%[10]. In the previous
studies, the authors have identified different audio features for the classification of Arabic
alphabets [10,18] into 28 classes, and Arabic words [2,7,25,29] using the CNN model. The
studies in [13,17,19,20,26] identified appropriate features of Arabic audio for applying
machine learning techniques [17,23,50] for classification purposes.

Mispronunciation detection of Arabic is a significant parameter in a Computer Assisted
Language Learning (CALL) system [51]. This is mainly a problem for non-native speakers,
and approaches like [52] try to detect confusing Arabic pronunciation of similar-sounding
letters for non-native speakers. However, this problem even exists in the Arabic-speaking
world due to the prevalence of different regional dialects in the various parts of the world.

Our proposed approach can be utilized for developing CNN models in a similar
domain for learning support systems. This approach helps construct CNN models from
scratch and improves them by applying various techniques of data augmentation, fine-
tuning neural networks, and hyperparameters tuning. Similar methods are used in other
domains [34] for CNN models improvements. Given that the model’s performance im-
proved with synthetic data, there are chances of achieving high accuracy if more real data
can be retrieved. Given our experience in this research, we believe that it will be helpful
for the researchers to save their time and make these processes simple by reducing the
complexity of audio data preprocessing by bypassing features identification steps.

Due to a shortage of participants for audio collection we could only get maximum 85
audio records per class and total 6229 audio files. This dataset is smaller for the requirements
of the CNN model training and validation process. However, the previous studies [10,20]
on CA audios the authors utilized between 2k–4k audio files to investigate DLNN models.
Thus, data augmentation helped us in obtaining sufficiently large dataset. Furthermore,
in this paper, we have focused on data collection in single geographic region (95%) from
Saudi Arabia, which has a native Arabic speaking population. It would be of interest to
evaluate this approach on data from non-native speakers as well as natives from other
Arab countries.

In the near future, we intended to improve our work by obtaining data from other
Arabic-speaking groups to see the generalization of our approach in a wider context.
We planned to expand our current work to participants from different nationalities as
well as non-native speakers and age groups to explore their pronunciation similarity and
differences from native speakers, areas of improvements to facilitate development of Arabic
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learning tools and applications. The analysis will be made on duration, variability, and
overlapping attributes among CA learners. In addition, we also aim to quantify the standard
duration of pronunciation of both short and long vowels in the classical Arabic language.

7. Conclusions

This article introduced a CNN architecture for the classification of Arabic short vowel
alphabets. Using data augmentation techniques and hyperparameters tuning, we achieved
a significant boost in our testing accuracy of 95.77% from a baseline model. Compared
to previous approaches for Arabic alphabet classification, which classify only 28 basic
alphabets, the current task was more challenging as it involved some similar sounding
phonemes from 84 classes. The current work can be considered a significant leap in
achieving highly accurate detection of mispronunciation of Arabic short vowels, which is
considered an important step in learning classical Arabic. This contribution is beneficial
for all interested stakeholders in CA to assist them in developing applications concerning
Arabic pronunciation and learning recitation of the Holy Quran. Consequently, the CA
learner will be benefitted for practicing Arabic short vowels using any tool based on our
proposed model in unavailability of their real teacher. Furthermore, the comprehensive
process of developing DLNN reported in this paper will help the developers and researchers
to build learning tools by following the similar steps.
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