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Abstract: The demand for energy storage is increasing massively due to the electrification of transport
and the expansion of renewable energies. Current battery technologies cannot satisfy this growing
demand as they are difficult to recycle, as the necessary raw materials are mined under precarious
conditions, and as the energy density is insufficient. Metal–air batteries offer a high energy density as
there is only one active mass inside the cell and the cathodic reaction uses the ambient air. Various
metals can be used, but zinc is very promising due to its disposability and non-toxic behavior, and as
operation as a secondary cell is possible. Typical characteristics of zinc–air batteries are flat charge and
discharge curves. On the one hand, this is an advantage for the subsequent power electronics, which
can be optimized for smaller and constant voltage ranges. On the other hand, the state determination
of the system becomes more complex, as the voltage level is not sufficient to determine the state
of the battery. In this context, electrochemical impedance spectroscopy is a promising candidate
as the resulting impedance spectra depend on the state of charge, working point, state of aging,
and temperature. Previous approaches require a fixed operating state of the cell while impedance
measurements are being performed. In this publication, electrochemical impedance spectroscopy
is therefore combined with various machine learning techniques to also determine successfully the
state of charge during charging of the cell at non-fixed charging currents.

Keywords: electrochemical impedance spectroscopy; artificial neural networks; support vector
regression; zinc-air battery; state estimation; state of charge

1. Motivation
1.1. Importance of Battery Technology

The general sales volume of device batteries in Germany for all battery technologies
is shown in Figure 1. A rapidly increasing trend can be seen. Currently, the lithium-ion
technology is the most widely used, which were first brought to market by Sony in 1991.
It offers high energy density and low weight. Another advantage is durability, as the
technology is not based on the electrode material dissolving chemical reactions, but on
the flow of lithium-ions between the anode and cathode. Lithium-ion batteries initially
powered mainly portable devices with high energy requirements for which conventional
nickel-cadmium or NiMH batteries were too heavy or too large. Now, they also serve as
energy storage for pedelecs, modern electric wheelchairs, and PHEV.
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Figure 1. Total sold quantity of device batteries in Germany [1].

This trend is not expected to slow down, as topics such as the digitization of industry,
ubiquitous computing, and the IoT are only on the rise. Industry 4.0 is the name given to a
future project for the comprehensive digitization of industrial production [2]. Depending
on the size, location, and type of production facility, the requirements may only be possible
with the help of battery-powered sensors and devices, as well as with energy-autonomous
systems that require a buffer battery.

However, digitization is also taking place in areas outside industry. Battery electric
vehicles (BEV) are the largest growth market for rechargeable batteries. Currently, the
transportation sector within the EU is still largely based on fossil fuels and is responsible for
more than 25% of Europe’s greenhouse gas emissions. Excluding the COVID-19 crisis, this
share is even growing [3]. In addition to global warming, vehicles with combustion engines
also form a significant part contributing to air pollution. In particular, the proportion of
particulate matter and nitrogen dioxide increases as a result of combustion engines [3].
Electrified or partially electrified vehicles can help here. The level of greenhouse gas
emissions over the entire vehicle life cycle depends to a large extent on the CO2 balance of
the generated electricity [3]. Even in the case of combustion vehicles, partial electrification
in the form of a PHEV in combination with a battery can lead to an improvement in the
environmental balance. Together with a falling price, this is leading to an increase in BEVs
around the world, as can be seen in Figure 2. Furthermore, the demand for battery capacity
and the raw materials is also growing massively. As electric cars mainly use lithium-ion
cells, the demand for cobalt in particular is considered critical. This is as, as with many
other ores, mining is partly carried out under precarious conditions, so that alternative
battery technologies have to be used.
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Figure 2. Worldwide new registrations of battery electric vehicles and plug-in hybrids (PHEV) [4].

The environmental footprint of BEV is particularly good when renewable electricity
is used to charge the electric cars. Renewable energy sources are energy sources that
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are practically inexhaustible in the horizon of mankind for sustainable energy supply or
are renewed relatively quickly [5,6]. Uranium and other nuclear fuels are also finite, so
nuclear energy is not an alternative to fossil fuels due to limited resources [6]. Therefore, a
sustainable energy policy must rely on biomass, geothermal energy, hydro power, ocean
energy, solar energy, and wind energy.

As renewable energies are to a large extent not permanently available and depend, for
example, on the weather, grid stability must also be considered when expanding renewable
energies. For example, the locations and technical characteristics of the plants influence
grid stability, as does the quality of the grid. In addition, grid stability depends on the
respective short-term power flows in the power grid, which in turn depend heavily on
the weather in a renewable power supply. The grid is considered stable when frequency,
voltage, and angular stability are satisfied.

While voltage stability can be maintained by distributed generation facilities and
communication systems, maintaining frequency stability is more complex. To date, the
rotating masses of the power generators support the grid frequency in the first moments of
a power loss (frequency-response reserve). Such a power deficit can occur, for example,
due to the failure of an offshore wind farm. The foreseeable absence of rotating masses
raises the question of whether there will be sufficient frequency-response reserve in the
power system in the future, or whether the system will have sufficient inertia in the event of
abrupt power plant or line failures to allow sufficient time for the deployment of spinning
reserve [7,8].

If the mismatch between consumed and generated energy exceeds the time horizon of
the frequency response reserve, primary control power is used to ensure that frequency
stability is not affected. If the energy demand is higher than predicted, power plants already
in use are first operated at a higher working point and, if necessary, additional power plants
that are in standby mode are brought online. The demand for control power that needs to
be held in reserve increases with the increasing amount of weather-dependent renewable
energies, whose output can only be predicted to a certain extent [9]. In principle, the
possible power gradients of weather-dependent solar and wind power plants are sufficient
to react quickly compared to large power plants. However, it should be noted that the
availability of control power is only possible if there is sufficient wind or sun. As the
allocation of control power by weather-dependent renewable energies is only possible by
throttling, free available energy remains unused, which applies to the allocation of negative
and positive control power. In the case of positive control power, however, the extent is
greater, as the plants must be permanently throttled in order to be able to increase output if
necessary [7].

Hence, for a complete roll-out of renewable energies, alternatives for power control
must also be considered in order to ensure a safe system state of the grid. Due to the fast
activation and reaction time, battery systems are ideal for providing the necessary control
power. The time required to provide or consume energy is mainly determined by the used
power electronics and reaches full load in the range of 20 ms. This means that battery
systems can provide both frequency response reserve and operating reserve. To a certain
extent, it is even possible to generate the replacement reserve with batteries. Therefore, the
energy transition can only be achieved by a massive expansion of battery storage power
plants. Already today, battery storage power plants are used to a significant extent. For
example, in 2017, about 700 battery storage power plants with a capacity of over 2.5 GW
were in operation. The majority of these use lithium-ion batteries with the problems already
described [10].

1.2. Benefits of Zinc–Air Batteries

As already explained in the previous section, lithium-ion accumulators are currently
used in numerous battery applications. Especially when considering the further storage
demand due to electromobility and the expansion of renewable energies, a shortage of the
necessary cell materials is expected. In particular, cobalt, which is used for the production
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of the positive electrode, is only available on a small scale on earth and has a high toxicity.
The problem is further intensified by the fact that the majority of cobalt deposits are located
in countries with poor working conditions, making it difficult to switch to other suppliers.

Zinc is a relatively frequent element on Earth, representing 76 ppm of the Earth’s
crust, making it the 24th most frequent element [11]. It is thus more common than lithium
(60 ppm), cobalt (40 ppm), or lead (18 ppm) [11–13]. Consequently, the price of zinc per ton
is much lower than that of lithium [14]. In addition, the deposits are distributed all over
the world, so that better working conditions can be guaranteed. Large deposits exist in the
United States, Canada, Australia, and China, but there are also zinc deposits in Europe
that are being actively mined [11]. Another major advantage of zinc is that it is completely
recyclable. For example, it is estimated that in North America more than 33% of the utilized
zinc is made from recycled materials. Globally, the recycling rate is about 40% of the
produced zinc, with the recycling loops in Europe being largely closed for zinc recycling.

Further advantages of metal–air batteries, and thus of zinc–air batteries, are par-
ticularly high theoretical specific energies and theoretical energy densities [15,16]. The
theoretical specific energy is given by Equation (1).

e =
Vcell ·Mreaction

charge carrier transfer per mole
, (1)

Here, Mreaction is the mass of the reactants, for a substance amount of one mole. For
illustration, Figure 3 shows the theoretical specific energies of different metal–air batteries in
comparison to current battery technologies. It can be seen that the theoretical specific energy
of metal–air batteries is several times higher than that of other battery technologies. For
metal–air batteries, one differentiates whether the oxygen content is included or excluded in
the calculation. This seems confusing at first, but is based on practical operation, as oxygen
is usually used from ambient air and is not inside the cells. The lithium–air cells stand out
with the highest specific energy. However, this is a primary cell technology. This means
that lithium–air batteries can only be discharged once, as superoxide ions form during the
discharge process and react with the electrolyte, preventing a recharge [17]. Aluminum–
air batteries are also primary cells and cannot be recharged. In contrast, operation as a
secondary cell is theoretically possible with magnesium–air batteries. Metallic magnesium
even has the advantage that dendrite formation does not occur during the charging process.
However, there are no commercial magnesium–air secondary cells yet, as research is
currently being carried out on electrolytes and electrodes that work with magnesium
ions [18].

Zinc-Air

Magnesium-Air

Lithium-Air

Aluminium-Air

Lithium-Ion 400

4 300

5 210

2 789

1 090

400

8 140

11 140

6 462

1 350

O2 mass included
O2 mass excluded

Figure 3. Theoretical specific energy of different battery technologies in [W h kg−1] [16,19].

Compared to the lithium–air primary cell, the theoretical specific energy of zinc–air
cells is much smaller. In addition to the positive aspects of gaining raw materials, they
also offer the advantage that secondary cell operation is possible. In relation to current
secondary cell technologies, the theoretical specific energy is still much higher. However, it
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should be noted that the zinc–air battery as a secondary cell has not yet been optimized to
the extent that lithium-ion technology has. Therefore, the actual specific energies of current
cells are approximately at the level of current lithium-ion cells [20].

Another advantage of the zinc–air technology is the low price. In two economic
analyses by Brinker and Greßhoff, the manufacturing costs of zinc–air batteries are com-
pared with the manufacturing costs of lithium-ion accumulators and other energy storage
systems [21,22]. While the theoretical energy density of a zinc–air battery is about a factor
of 2 greater than that of a lithium-ion cell, the difference in manufacturing costs is much
greater. Thus, the expected production price of zinc–air in relation to the stored energy
is a factor of 10 lower than that of lithium-ion cells. As the production of zinc–air cells
is not yet automated, Brinker compares the material costs of the cells. This should be a
pessimistic estimate insofar as no complex processes are necessary to produce zinc–air
cells. For example, no process takes place under vacuum. Cell prices alone are of course
only comparable if an equal number of cycles can be guaranteed. Here, there is still a lot
of potential for improvement due to the early stage of development. Nevertheless, the
material price with respect to stored energy and number of cycles is already competitive
with lithium-ion technology [21].

2. Problem

In order to be able to use zinc–air batteries, however, adapted battery management
systems are required. Battery management systems are electronic circuits that ensure the
safe state of the battery systems and monitor and control the charging and discharging
processes of the batteries. Their protective functions include, for example, deep discharge
protection, overcharge protection and overcurrent protection. For these essential functions
to work safely, the state of charge (SoC) of the respective cell must be known or determinable.
In current cell technologies, the cell voltage is usually used for this purpose, as typically
the cell voltage of an empty cell is lower than that of a full cell. Deep discharge protection
is also necessary for lead–acid and lithium-ion batteries, as this can disable the battery. In
lithium-ion batteries, even a slight deep discharge leads to irreversible damage and loss of
capacity. In the case of a significant deep discharge, it is even likely that copper bridges
will form, leading to a short circuit. In this condition, the cell becomes unstable and heats
up very strongly, creating a fire hazard [23].

Deep discharge should also be avoided for zinc–air batteries. Although there is no
fire hazard here, a loss of capacity, performance, and lifetime is to be expected. In the
charged state, the zinc anode consists mainly of metallic zinc and is therefore mechanically
stable. During deep states of discharge, the zinc oxidizes to zincate, which mixes within
the electrolyte to form a viscous paste. Due to gravity, the anode mass now slowly sinks
towards the bottom of the cell and the anode surface area decreases along with a loss of
capacity and power. If the cell remains in a SoC that is too low for a longer period of time,
more and more anode mass accumulates at the bottom of the cell and flows towards the
counter electrode. Once this is reached, a short circuit occurs, preventing further battery
operation. Therefore, zinc–air batteries must also be protected against deep discharge to
ensure a long cycle life.

Overcharging can also damage batteries. When various lithium-ion batteries are
overcharged, metallic lithium can be reduced and accumulated at the cathode; this can
also result in the release of oxygen at the anode. In an ideal case, the produced oxygen
will outgas through a safety valve. Otherwise, it reacts with the electrolyte or the anode.
As a result, the accumulator heats up and can even catch fire [24,25]. Less critical is the
electrolysis that occurs when a zinc–air battery is overcharged. The water component
of the electrolyte outgasses during this process, and the electrolyte level drops so that
some of the anodes can no longer be used for battery operation. In addition to the loss
of liquid and capacity, the electrolyte concentration also increases. Typically, the initial
concentration is selected to achieve maximum conductivity. The change in concentration
therefore additionally leads to reduced cell performance by increasing losses. Although it is
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possible for zinc–air batteries to compensate for the loss with distilled water, overcharging
the cells should generally be avoided for the reasons mentioned.

In order for these essential protective functions can work, the SoC of the respective
cell must be known or determinable. In current cell technologies, the cell voltage is usually
used for this purpose, as typically the cell voltage of an empty cell is lower than that of a
full cell [26]. The Nernst equation can be used to estimate the resulting change of the open
circuit voltage. The Nernst equation describes the dependence of the electrode potential of
a redox couple on temperature and concentration [27,28]:

Ered = EΘ
red −

RT
zF

ln
aRed
aOx

(2)

where EΘ
red corresponds to the standard electrode potential at normal conditions, R is the

universal gas constant, T specifies the absolute temperature, and z defines the number of
electrons transferred in the reaction. In order to determine the voltage change due to the
SoC, these variables can be considered constant. In contrast, the SoC is a key determinant
of the activity of the redox partner (aRed and aOx, respectively). The activity indicates the
concentration corresponding to the behavior of a real mixture. As an approximation, the
concentration of the reduced or oxidized species and thus the SoC can be used. The Nernst
equation describes the behavior at one electrode at a time, so that the differences of both
electrodes accumulate. Using the example of a lithium-ion battery, the nominal voltage
is 3.6 V, but a charging cycle of an empty battery starts at 3.4 V and finishes at 4.2 V. The
resulting voltage difference due to the SoC is

VLiIon,SoC,diff = VLiIon(SoC = 1)−VLiIon(SoC = 0) = 4.2 V− 3.4 V = 0.8 V. (3)

In both lead–acid batteries and lithium-ion cells, the voltage differences are therefore
sufficiently high to enable simple detection of the SoC. In individual variants of lithium-
ion batteries, the voltage difference can already be reduced in some areas. Lithium-iron
phosphate batteries, for example, show only a slight change in cell voltage in the SoC
range between 10% and 90% during both charging and discharging, making it difficult to
determine the SoC.

When analyzing zinc–air batteries, the change in cell voltage as a function of the SoC
is even less significant. Usually, zinc–air batteries use oxygen from the ambient air. The
amount of oxygen consumed during discharging or the amount released during charging is
relatively small compared to the amount of oxygen in the air, and therefore has only a very
small influence on the partial pressure of oxygen in the ambient air. The redox potential
of the air electrode therefore shows almost no dependence on the SoC of the cell. Instead,
only the zinc anode contributes to the change in open circuit voltage. Applying the Nernst
equation to the zinc anode, the activity of the oxidation partner can be assumed to be a
constant concentration of KOH solution cKOH . In contrast, the chemical activity of the
reduction partner is strongly influenced by the SoC, as it is the ratio xZnO of zincate to zinc:

Ered,ZnAir,anode = EΘ
red,ZnAir,anode −

RT
zF

ln
xZnO
cKOH

. (4)

Unfortunately, the resulting impact is not very distinct as the redox potential difference
between a fully charged and a nearly empty battery is about

VZnAir,SoC,diff = Ered,ZnAir,anode(xZnO → 0)− Ered,ZnAir,anode(xZnO = 1)
VZnAir,SoC,diff ∼ 60 mV.

(5)

The influence of the SoC is thus an order of magnitude smaller than with traditional
technologies. In particular, the temperature and possible aging of the cell and especially
of the electrolyte have a stronger effect on the cell voltage than the SoC. It is therefore not
possible to determine the SoC from the open-circuit voltage of a zinc–air cell. Figure 4
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shows the cell voltage of a zinc–air cell during an active charge and discharge cycle. Both
the charging process and the discharging process are performed with a constant current.
Even with an active charge current, the change in cell voltage over the charge cycle is so
small that neither SoC detection nor effective end-of-charge detection is possible from the
cell voltage. In addition, it is problematic that, towards the end of the charging process,
an accompanying electrolysis process starts at a similar voltage level, so that overcharging
with gassing cannot be detected either. The voltage characteristic during the discharge
process is also largely constant. Towards the end of the discharge process, however, there
is a voltage drop, therefore deep discharge detection is at least possible with the aid of a
conventional voltage threshold. While SoC detection is very difficult this way, the behavior
on the other hand has the advantage that applications using a zinc–air cell can be optimized
for very constant voltage ranges.
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Figure 4. Successive charging and discharging of a zinc–air battery with constant current.

In this article, therefore, it is analyzed whether it is possible to develop a method for
detecting the SoC of zinc–air batteries with the help of alternative methods. EIS turned out
to be a promising measurement technique to obtain measurement data which depend on
the SoC. Due to the special electrode arrangement of the used zinc–air cells, an adapted
measurement hardware is presented.

The previous approaches always specified a fixed DC current that was used during
measuring the impedance spectra [29–31]. This principle can also be applied in practice.
However, the current working point must then be left in order to use the working point
that was used for training the models. When charging, this can lead to situations where
energy generated by a photovoltaic system cannot be utilized at this point in time. When
discharging, the energy of the new working point may not be sufficient and additional
energy from the grid is needed reach the desired working point. In both cases, there is a
monetary loss. This article therefore analyzes whether it is also possible to create a model
that generalizes the DC current or the working point. In detail, this means that the models
are trained with data from different working points and thus an evaluation with different
direct currents is also possible. The acquired measurement data are then combined methods
of artificial intelligence to determine the SoC as accurately as possible. Therefore the focus
is on a model that generalizes the DC current (=the working point) of the battery during an
EIS measurement.

Figure 5 illustrates why this aspect is particularly difficult. The figure shows impedance
measurements at different SoC (Ah values) and DC currents (A values). One can see that an
increase in the DC current behaves similar to a change in the SoC. Thus, the characteristics
are sorted according to their DC currents and not according to the SoC.
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Figure 5. Impedance spectra of zinc-air batteries at different working points and SoCs.

3. Setup

EIS determines the impedance, i.e., the AC resistance, of electrochemical systems as
a function of the frequency of an AC voltage or current. Electrochemical systems are, for
example, batteries. EIS can be used to obtain precious information about the system under
investigation and the processes taking place in it. Usually, EIS is performed on batteries by
imposing an alternating current, that is, the current of the working electrode is sinusoidally
modulated and the resulting voltage and its phase are measured. The DC component of the
modulated current is usually set to 0 so that the EIS is charge neutral and the state of charge
of the cell is not influenced. Due to the three-electrode technology used in our zinc–air
cells, the charge-neutral method cannot be used, as the DC component must be at least as
large as the AC amplitude so that there is no switching between charging and discharging
during an impedance measurement. The concept of impedance and the complex alternating
current theory assume that there is a linear relationship between the amplitudes of voltage
and current. In electrochemical systems, this is only the case approximately for small
amplitudes, e.g., 1 mV to 10 mV [32]. Significantly larger voltage amplitudes, therefore,
must not be used for measurement.

In particular, the necessary DC component during an impedance measurement and the
three-electrode technology prevent the use of an existing instrument for the measurement
of impedance spectra. Therefore, developments for the measurement of impedance spectra
of zinc–air, cells as well as adaptations for existing measuring instruments, are presented in
this section.

In this article, a rechargeable zinc-air cell from the company 3e Batteriesysteme is
used. The cell can be seen in Figure 6 and has a capacity of 100 Ah. Figure 6 also shows the
schematic diagram of the internal structure. The cell has a symmetrical structure in order
to increase the active surface area. Inside the electrolyte there are nickel nets which serve as
positive contacts during the charging process.

gas diffusion
electrode

gas diffusion
electrode

nickel net

nickel net
zinc anode

electrolyte

Figure 6. Used zinc–air cell and schematic structure.
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The overall structure of the developed circuit is shown in Figure 7. The entire EIS
process is controlled by a microcontroller, so that the setup is rather small and field ap-
plications are possible. The STM32F4 microcontroller represents the centerpiece of the
schematic that controls all of the other peripherals. One of its two digital analog converters
is used to output a sine wave at the frequency that is measured. The other digital analog
converter creates several constant voltages using a sample and hold circuit that enables the
duplication of numbers of outputs as long as constant voltages are being output. These
voltages control the amplitude and the offset of the signal. The accuracy of the output signal
is kept high, as amplitude and offset are controlled separately. A galvanostatic impedance
measurement is preferred, as it is easier to control the current than such a small voltage.
Therefore, the output signal is used as input of a current controller that applies the AC
current to the battery under test. Last but not least, an external analog digital converter
is used to measure both the actual applied AC current and the resulting voltage response
of the battery under test. According to MacDonald the amplitude of the voltage response
has to remain less than 10 mV [32]. Therefore, a high precision, high speed analog digital
converter, AD7768-4, is used so that the voltage response can be measured with sufficient
accuracy despite the voltage offset of the battery. Offset compensation is thus not necessary.

Co
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DAC

SPI

STM32F4

S&H

V

I

ADC

gain

offset

Figure 7. Schematic of developed circuit for measuring impedance spectra.

3.1. Signal Generation and Measurement Unit

Figure 8 takes a closer look to the signal generation. The sine voltage VDAC1 is the
digital analog converter output of the microcontroller which oscillates between 0 V and
3.3 V. The left amplifier is the voltage controlled gain amplifier LMH6503. It amplifies its
differential input voltage. Therefore, Rpot1 sets the negative input voltage to 1.65 V so that
the differential input voltage is a symmetrical sine wave. The amplitude of the output
signal Vamp can be controlled by VGain. The components on the right-hand side implement
a difference amplifier. As all resistors that belong to this circuit have an equal resistance,

Vout = Vo f f set −Vamp

applies to the output voltage. Accordingly, voltage Vamp is inverted and shifted by an offset.
As Vamp is a symmetrical sine wave, and only the phase difference between the applied
current and the voltage response is evaluated for determining the impedance, an inversion
of Vamp does not have any impact on the measurement.
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VDAC1

Rpot1
R2Vamp

R2
R2

R2

VGain VOffset

VOut

Figure 8. Schematic signal generation.

VGain and VO f f set are generated by a single digital analog converter output using
a sample and hold circuit shown in Figure 9. The first amplifier implements a voltage
buffer that decreases the current of the digital analog converter. The following voltage
divider shifts the digital analog converter output range to symmetrical ±1 V range by
referencing the lower pin of R2 to a negative voltage. Thereby, the offset voltage of Vout
can correspond to either a constant charging or a constant discharging current. The actual
sampling is implemented by a digitally controlled analog switch S1 while the capacitors
hold the sampled voltages. The circuit is controlled by the microcontroller that uses a timer
with three output compare channels that cyclically generate interruptions at three different
time points. During the first interruption, the switch is set to middle position that is not
connected. The second interruption changes the output of the digital analog converter
output voltage to the value of the next clamp. Finally, the switch is switched to this clamp
charging the corresponding capacitor. The final voltage buffers output the voltage that is
stored in the capacity. As the input current of an operational amplifier is rather small, the
voltage of the capacity is almost constant, even when the digital analog converter signal is
removed when switching to the other path.

VDAC2

R1 s1

R2 R3

R3

C

C

VGain

VOffset

Figure 9. Schematic of Sample and Hold component.

3.2. Current Controller

Regarding the control of the current, the first question that arises here is whether digital
or analog control is better. Although it is much easier to adapt the controller parameters to
the system being measured, the time constants are very small, so that the sampling intervals
of a digital control would lead to instabilities. Therefore, an analog control system that
is based on operational amplifier is used. The OPA549 is used as the output operational
amplifier, which can directly drive the required currents. A possible implementation using
an instrumental amplifier to measure the load current iL and two operational amplifier that
implement a differential amplifier and a PID controller is shown in Figure 10. The main
purpose of the instrumentation amplifier is to measure and amplify the differential voltage
of the shunt resistor RS and to reference its output voltage

vS(t) = (vA(t)− vL) · GS = RSiL(t) · GS (6)
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to ground potential. The value vI(t) sets the desired load current multiplied by RS and GS:

vI(t) = iL,desired · RS · GS. (7)

Therefore, the operational amplifier on the left-hand side implements the differential
amplifier with a gain of 1 and determines the negative of the measured error e(t):

vE(t) = vS(t)− vI(t) = −e(t). (8)

The actual controller is implemented by the op amp on the right-hand side. As an
approximation, the inputs of an operational amplifier can be regarded as current-less, so
that the current flowing through R2 and C2 can be assumed to equal i1(t). Therefore, i11
and i12 form two components of the regulating variable:

i2(t) = i1(t) = i11(t) + i12(t) (9)

Due to the negative feedback, both input terminals of the operational amplifier are
forced to ground potential. Therefore, the current i11(t) can be calculated by

i11(t) =
1

R1
vE(t) = −

1
R1

e(t). (10)

Furthermore, i12 is defined by

i12(t) = C1
d vE(t)

dt
= −C1

d e(t)
dt

. (11)

The output voltage vA is determined by the current i2 :

vA(t) = −i2R2 −
1

C2

∫
i2(t) dt. (12)

Inserting Equations (9) to (11) results in

vA(t) = −
R2

R1
vE(t)−

1
R1C2

∫
vE(t) dt− R2C1

d vE(t)
dt

− C1

C2
vE(t), (13)

vA(t) = −
(

R2C2 + R1C1

R1C2

)
vE(t)−

1
R1C2

∫
vE(t) dt− R2C1

d vE(t)
dt

, (14)

vA(t) =
(

R2

R1
+

C1

C2

)
e(t) +

1
R1C2

∫
e(t) dt + R2C1

d e(t)
dt

. (15)

Comparing the last equation with the equation of a PID controller

y(t) = Kp · e(t) + Ki

∫
e(τ) dτ + Kd

d e(t)
dt

(16)

results in the following parameters:

Kp =
R2

R1
+

C1

C2
, (17)

Ki =
1

R1C2
, (18)

Kd = R2C1. (19)
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Figure 10. Schematic of the PID current controller.

In the next step the controller parameters were optimized. As the load RL represents
the battery under test, which cannot be described sufficiently accurately by a resistor, an
equivalent circuit consisting of a voltage source, a series resistor and a RC parallel circuit
was used as RL. The circuit simulator Microcap already includes an optimizer. During the
optimization the controller parameters were tuned to minimize the expression RMS(v(VE))
when a step function is applied to the input. Thus, the root mean square of the voltage Ve,
which in turn represents the control deviation should be as small as possible. The optimized
circuit was then produced on a printed circuit board. Care must be taken to ensure that the
connections that drive the high current to the battery under test are sufficiently sized.

First, the step response of the current controller was measured using a test impedance,
whereby the target signal was generated with the aid of a function generator. The voltage
VS is used to measure the current and shown in Figure 11. The step response of the current
controller asymptotically follows the input signal without overshoot and thus demonstrates
the behavior of a first order low pass filter. The test signal transitions to 500 mV, so that
the time constant can be read when 315 mV is reached. This occurs after 43 µs and thus
corresponds to a cutoff frequency of 23 kHz. The current regulator is thus sufficiently fast
for frequencies usually measured during EIS.
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Figure 11. Step response of the PID current controller.

Figures 12 and 13 show the results when combining the signal generation unit and the
current controller. Once again, the test impedance was used as RL, which was designed
on the basis of Kiel’s dissertation [33]. First of all, it is noticeable that there is no visible
difference between these two signals. However, the signals correspond rather to a first
order delay element than a step function. This is due to the fact that the input signal is
generated by the signal generation. The charging of the capacitor in the sample and hold
part is mainly responsible for the slow voltage rise. Therefore, the current controller is
dimensioned sufficiently fast to output the generated signals.
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Figure 12. Step response of the PID current controller combined with signal generation unit.

Figure 13 takes a closer look at the control deviation VE. At the beginning of the step,
when the slope is at its maximum, there is a small control deviation. In relation to the step
height of 400 mV, the maximum deviation of 6.3 mV is still relatively small.
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Figure 13. Control deviation of the PID current controller combined with signal generation unit when
applying a step.

3.3. Drift Compensation

Due to the three-electrode technology, the measurement of the impedance spectra can
only be performed during a charging process and during a discharging process, respectively,
so that the state of charge of the cell changes to a certain extent during the measurement.
As the measurement time at low frequencies is up to 30 s, the DC component of the voltage
measurement may change during the measurement. The voltage change is particularly
large at the beginning of charging or discharging processes as the slowest processes have
yet to decay. The voltage signal of such a case is shown in Figure 14 as an example.
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Figure 14. Measured voltage signal of an impedance measurement whose direct component increases
during the charging process.
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The resulting error is minimized by modeling the DC voltage component in a lin-
ear way and subtracting it from the characteristic of the voltage. Linear functions are
determined by two points. Thus, the mean values of the first sine period (p1) and the
last sine period (p2) of the voltage signal are being determined. The mean value of a sine
period without offset is zero. Therefore, for the evaluated periods, the mean value can be
used to determine the offset value pi,v. The associated time component pi,t of the points
corresponds to the midpoint of each period. Thus, the point (p1) of the first period is given
by its components

pi,v =
sp

∑
s=0

vs

sp
, (20)

pi,t =
sp

∑
s=0

ts

sp
=

1
2 · f

. (21)

Here, s implements a control variable that passes through the voltage samples vs and
their corresponding time points ts. The number of values corresponding to the period is
given by sp and the measured frequency by fk. The equation of a line described by p1 and
p2 is then subtracted from the raw measurement data. As can be seen in Figure 15, the error
is almost completely eliminated.
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Figure 15. Adjusted voltage signal of an impedance measurement after subtracting the linear DC
voltage function.

3.4. Measurement Data

Afterwards, the corrected voltage signal and the measured current signal are Fourier
transformed to V and I. As only one frequency is applied at a time, only this frequency
has to be evaluated. To save computational effort, the Goertzel algorithm can therefore be
used [34]. Finally, the impedance Z of frequency k is calculated by

Zk =
Vk
Ik

. (22)

Several impedances for different frequencies are measured quickly one after the other
and can be combined to a spectrum. Figure 16 shows some example measured spectra data.
Between the measurements, the cell was discharged for 45 min, therefore the spectra are not
exactly identical. It can already be seen here that especially the low-frequency components,
which are found on the right-hand side, are influenced by the state of charge.
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Figure 16. Samples of measured impedance spectra. The frequency range is from 100 mHz to 10 kHz.

3.5. Adapter Board

Another possibility for measuring impedance spectra is the use of a commercial
impedance spectroscope. The most difficult challenge in the search for a suitable product is
the simultaneous application of a DC current during the impedance measurement. This
is essential for the developed zinc–air cell, as it uses a three-electrode technology and the
respective charge or discharge region must not be left during the impedance measurement.
If no DC current is applied, the cell would be charged during the first half-period of the
sine wave and discharged during the second half-period. The EISmeter from the Digatron
company was finally chosen.

Although the EISmeter can apply a DC current during the measurement, it is only
designed for two-pole cells. Besides the manual reconnection, one way to still use zinc–
air cells with three-electrode technology is to use two channels of the EISmeter for one
cell. One channel is taken exclusively during charging of the cell and is connected to the
charging electrode and one channel is connected to the air cathode is used only during
discharging of the cell. Of course, the method has the disadvantage that it reduces the
number of simultaneous tests by half. To overcome this, an electrode changer board was
developed. The corresponding circuit is shown in Figure 17. It is based on a Hall-effect
current sensor from Allegro Microsystems. An operational amplifier, which works as a
comparator, detects the direction of the current, i.e. whether the cell is being discharged
or charged. Depending on the case, a different current path is enabled to the appropriate
electrode. An identical control is also available for the path of the voltage measurement,
whereby smaller transistors are used here.

EM+

EM-

Vctrl Vctrl

Vctrl

Vctrl

Bat+,ch Bat+,dch

Bat-

Figure 17. Schematic of the electrode changer board used to drive three-electrode technology cells
with EISmeter impedance spectroscope.

4. Data Generation

To generate measurement data, a procedure shown in Figures 18 and 19 is used. Here,
zinc–air cells are continuously charged or discharged with an alternating current of 1 A, 2 A,
or 3 A. This means that the charging process starts with 1 A. A short delay is made until
the cell voltage has become familiar with the current and a measurement of the impedance
spectrum is started. After that, the charging current is increased to 2 A; again a short delay
is made and the next impedance measurement is started. The same is performed for 3 A
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and then it starts again at 1 A. As expected, this also results in a change in the battery
voltage.
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Figure 18. Charging cycle at varying charge currents.

Meanwhile, the applied charge is counted so that, in this scenario without any breaks,
the actual state of charge is known and can be used as target values for supervised learning.
Once the cell is full, the discharge process starts using the identical technique. Therefore,
discharging processes have been recorded where the discharge current was regularly
alternated between 1 A, 2 A, and 3 A. The resulting voltage curve and the corresponding
discharge current for one discharge cycle are shown in Figure 19.
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Figure 19. Discharging cycle at varying charge currents.

After several charge and discharge cycles, there is no random division of the resulting
data into training data and test data, but the measurements at 1 A and 3 A form the training
data set and the measurements at 2 A form the test data set. This ensures that the results
correspond to an actual generalization of the working point. The hyperparameters are
optimized by cross-validating the training set only to prevent data leakage. Of course, the
feature vector must be extended to include the DC current value, so that the following
feature vector is now obtained:

xi = [Ibat,DC,<{Zi,1}, . . . ,<{Zi,m},={Zi,1}, . . . ,={Zi,m},
|Zi,1|, . . . , |Zi,m|, φ(Zi,1), · · · , φ(Zi,m)]. (23)

5. Methods

Typically, the measured impedance spectra are used to parameterize an electrochemical
equivalent circuit of the Battery Under Test. In the context of generalizing the DC current
during impedance measurement, machine learning techniques are alternatively used. In
the context of this paper, artificial neural networks and support vector regression are used
for this purpose. These methods are briefly described in this section.
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5.1. Artificial Neural Networks

ANN are networks of artificial neurons, each of them inspired by the biological model.
McCulloch and Pitts introduced a threshold element as first artificial neuron that outputs a
Boolean value oj depending on the sum of input signals xi [35]. By now, a commonly used
implementation of a neuron is the perceptron model, which extends the threshold element
by a weighting of the input signals wij [36]:

oj =

{
1 ∑i wijxi + b > 0
0 otherwise

(24)

The general structure of feed forward networks is shown in Figure 20 and allows only
a signal flow in forward direction. There are also network structures that allow a feedback
to a previous layer, e.g., Recurrent Neural Networks. Several neurons are organized in
layers. When using perceptron neurons, these networks are called Multilayer Perceptron.
The first layer is called the input layer and represents the features of an input sample
extended by a constant bias. The bias can be used as a threshold value by the following
layer. Here, only one hidden layer is illustrated, but multiple hidden layers are also possible.
The signal flows through all hidden layers until it reaches the output layer. Each neuron in
the output layer represents an output value [37].

+1

x1
+1

f(X)

a2

a3

an

x2

x3

xn
input
layer

fe
at
ur
es

hidden
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output
layer

Figure 20. General structure of artificial neural networks.

Multilayer perceptron networks are used in applications where an input sample is
associated with an output class or an output variable. The input example can thereby be
described in a higher-dimensional feature space. The structure is characterized in particular
by the fact that the order in which example data are evaluated by the previously trained
network has no influence on the individual result, the network has no memory.

In contrast, a Recurrent Neural Network, for example with an Elman structure, stores
values of the hidden units within the feedback loop. The values are then available as input
values in the subsequent data set. The output of the network thus also depends on the
internal state of the network, which is determined by the previous data. Recurrent Neural
Networks are therefore very well suited for modeling sequences, as found in time series
analysis. They are also successfully used for the analysis of sentences, which consist of
words and letters.

Training Algorithms

Training algorithms are used to set weights of each neuron. When small logic functions
(AND, OR, etc.) are patterned, it is possible to manually set those weights. However, ANNs
are frequently used in applications with huge datasets. Therefore, algorithms have been
developed that autonomously optimize the weights of the network. These algorithms can
be divided into supervised and reinforced learning. In this thesis, supervised learning is
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used exclusively, which means that the training samples also contain target values tj for
the output j.

One example is the Perceptron Learning Rule that works for binary input and output
signals. The idea is that the weight is incremented when the output is 0, but should be
1; the weight is decremented when the output is 1, but should be 0; and the weight left
unchanged, when the output corresponds to the expectation [36]:

∆wperceptron
ij = α ·

(
tj − oj

)
· xi

wij(k + 1) = wij(k) + ∆wij

. (25)

where tj is the target value and α sets the learning rate. However, this approach only works
when all training data is linear separable.

The delta rule overcomes this problem by minimizing the error function

E∆ = ∑
j

1
2
(
tj − oj

)2 (26)

using a gradient decent. This means that the activation function has to be derivable. The
weight space of the neurons is moved against the direction of the gradient of E∆ with
respect to each weight

∂E∆

∂wij
=

∂ 1
2
(
tj − oj

)2

∂wij
. (27)

As we differentiate with respect to the weights of jth neuron, the weights of the other
neurons in the sum vanishes. Inserting

oj = φ

(
∑

i
wijxi

)
= φ(v) (28)

and applying the chain rule results in

∂E∆

∂wij
= −

(
tj − oj

)
· xi · φ′(v). (29)

Once again, a learning rate is used for weight update and the minus sign is eliminated
for moving in the direction of the minimum. This results in the updated equation

∆wdelta
ij = α

(
tj − oj

)
· xi · φ′(v). (30)

The delta rule is only applicable to single layer–layer neural networks. A general-
ized form is the Error Backpropagation learning. It uses the very same error function
to minimize:

Eebp = ∑
j

1
2
(
tj − oj

)2. (31)

However, the adjustment of the weights depends on whether the neuron is in the
output layer or in the hidden layer:

∆webp
ij = −α

∂E
∂wij

= αδjoi (32)

and

δj =

{
φ′(v)

(
tj − oj

)
if j corresponds to an output neuron

φ′(v)∑k δkwjk if j corresponds to hidden neuron
. (33)
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Here, i corresponds to prior neurons of j and k corresponds to subsequent neurons.
This means that oi is the input of neuron j, for the first layer oi equals xi. Moreover, for
hidden neurons the weight adjustment depends on the error of the subsequent neurons.
Thus, the error is back propagated to hidden neurons. The Error Backpropagation algo-
rithm is also a gradient decent based, which makes it vulnerable for finding local minima.
Therefore, different solutions are possible for different weight initialization.

Secondly, the algorithm tends to oscillate when the learning rate is too large. Several
approaches make use of a momentum term in order to smooth the solution process. The
tendency for oscillations can also be tackled by lowering the learning rate constant. How-
ever, this also decreases the training speed. In contrast, the directional search extension
can speed up the solution process. The idea is to look for a minimum in gradient direction
before the calculation for a new gradient. The minimum in gradient direction can be found
using the Newton–Raphson method.

In Recurrent Neural Networks, the Error Backpropagation algorithm cannot be used
in its original form due to the recurrent loops preventing it. With the help of the Backprop-
agation Through Time method, this problem can be overcome. Backpropagation Through
Time is a method based on Backpropagation. Here, the Error Backpropagation method is
extended by a time factor. As the output of a Recurrent Neural Network depends on the
order of the data, the training data are an ordered sequence of k input and output pairs
〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉. In order to subsequently apply the original Backpropagation
algorithm, the Recurrent Neural Network must be unfolded. The unfolded network thus
contains k inputs. The recurrent components of the original network are completely dupli-
cated for each required time step. The Backpropagation algorithm is then applied to the
expanded network.

The complexity of the resulting unfolded network increases drastically when in-
creasing the length of the training sequence. This can lead to problems when using the
Backpropagation algorithm as, as shown in the corresponding Equation (33), the variations
of the weights also depend on the gradients of the errors of the subsequent neurons. In case
of a long sequence, the error term of the unfolded network is multiplied accordingly many
times. Provided that the error term is smaller than 1, a frequently repeated multiplication
results in a value close to 0 (vanishing gradient problem). On the other hand, the magni-
tude of the error term could also be larger than 1, so that after repeated multiplication the
resulting gradients explode and the gradient descent becomes unstable. For deep recurrent
neural networks the Backpropagation Through Time Algorithm is therefore not suitable,
instead other structures such as the Long Short-Term Memory module should be used.

5.2. Support Vector Regression

The basic idea of ε-SVR is finding the flattest function f (x) whose deviation from the
training data is not larger than a given parameter ε. In case of a linear function

f (x) = 〈w, x〉+ b (34)

where 〈·, ·〉 denotes the dot product, the resulting optimization problem is given by:

minimize 1
2 ‖ w ‖2

subject to
{

yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− yi ≤ ε

} (35)

Here, the flatness is defined as norm of the parameter vector, ‖w‖2= 〈w, w〉. The
constraints mean, that training data with an error smaller than ε is not taken into account
while errors larger than ε are not acceptable [38,39].

However, depending on the type of function, it is not always feasible to find a function
that keeps the deviation small enough for all training data. Under certain circumstances,
this function does not exist. Therefore, the margin can be softened depending on the
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training data by using slack variables ξi and ξ∗i which belong to a positive or negative error,
respectively:

minimize 1
2 ‖ w ‖2 +C ∑ι

i=1
(
ξi + ξ∗i

)
subject to


yi − 〈w, xi〉 − b ≤ ε + ξi
〈w, xi〉+ b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0


(36)

The margin is extended by the slack variables, so that deviations larger than ε are now
acceptable, but penalized. Figure 21 illustrates the development of the penalty. As long as
the deviation is within the ε margin, no penalty is applied. If the deviation becomes larger
than ε, the penalty increases with a slope defined by the parameter C.

0

0

+ξ

+ξ

−ξ

-ξ

ζ
ζ

Figure 21. Penalization of training data with a deviation larger as ε.

Thus, there is a trade-off between the flatness of the resulting function and the size of
the remaining deviation that can be set by constant C. This trade-off is especially important,
as flatter functions tend to be more robust to unseen data.

Lagrange multipliers can be used to find the extremum of a (optimization) function
f (x) with constraints g(x). Essentially, at the point of extremum, the gradients of f (x) and
g(x) need to point in the same direction. Otherwise, it would be possible to increase or
decrease the value of f (x) by moving along g(x). However, while the gradient vectors have
to point in the same direction, they do not necessarily have the same length. Therefore, the
Lagrange multiplier λ is added to the gradient of g(x) in order to re-scale its vector length.
The resulting constraint for an extremum of f (x) at g(x) is

∇ f (x) = λ∇g(x). (37)

Applied to Equation (36) f (x)− λg(x) gives the so-called Lagrangian:

L :=
1
2
‖ w ‖2 +C

ι

∑
i=1

(ξi + ξ∗i )−
ι

∑
i=1

(ηiξi + η∗i ξ∗i )+

−
ι

∑
i=1

αi(ε + ξi − yi + 〈w, xi〉+ b) +−
ι

∑
i=1

α∗i (ε + ξ∗i + yi − 〈w, xi〉 − b) (38)

where ηi, η∗i , αi, and α∗i represent the Lagrange multipliers. According to the saddle point
condition of Equation (37), the partial derivatives of L with respect to ω, b, ξi, and ξ∗i have
to be zero:

∂L
∂b

=
ι

∑
i=1

(α∗i − αi) = 0 (39)

∂L
∂ω

= ω−
ι

∑
i=1

(αi − α∗i )xi = 0 (40)

∂L
∂ξi

= C− αi − ηi = 0 (41)
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∂L
∂ξ∗i

= C− α∗i − η∗i = 0 (42)

Constants αi and α∗i define the resulting support vectors. ηi and η∗i can be eliminated

through Equations (41) and (42) as η
(∗)
i = C− α

(∗)
i . Furthermore, ω can also be expressed as

ω =
ι

∑
i=1

(αi − α∗i )xi (43)

which is known as Support Vector expansion, as ω can completely be described by a linear
combination of the training data [39].The substitution of Equations (39) to (42) into (38)
results in the optimization problem

maximize − 1
2 ∑ι

i,j=1
(
αi − α∗i

)(
αj − α∗j

)
〈xi, xj〉+

−ε ∑ι
i=1
(
αi + α∗i

)
+ ∑ι

i=1 yi
(
αi − α∗i

)
subject to ∑ι

i=1
(
αi − α∗i

)
= 0 and αi, α∗i ∈ [0, C]

. (44)

The result of the optimization problem determines the linear combination of the
training data that is used to describe ω. Finally, the complete algorithm can be described
using the data, even the evaluating f (x):

f (x) =
ι

∑
i=1

(αi + α∗i )〈xi, x〉+ b. (45)

According to the Karush–Kuhn–Tucker conditions, the product of the primal variables
and the constraints vanishes at the point of solution:

αi(ε + ξi − yi + 〈ω, xi〉+ b) = 0
α∗i
(
ε + ξ∗i + yi − 〈ω, xi〉 − b

)
= 0

(46)

and
(C− αi)ξi = 0(
C− α∗i

)
ξ∗i = 0

. (47)

Firstly, Equation (47) means that only samples (xi, yi) with α
(∗)
i = C lie outside the

ε-tube [39], as either ξ
(∗)
i is zero, which means that the sample lies inside the ε-tube or

ξ
(∗)
i > 0, but then α

(∗)
i has to equal C in order to fulfill the equation. Secondly, according to

Equation (46) α
(∗)
i = 0 for samples that lie inside the ε-tube. The inner part of the brackets

is non-zero when the sample lies in the tube, as ξ
(∗)
i ≥ 0. Thus, α

(∗)
i have to be zero in

order for the equation to vanish. In conclusion, only samples outside the ε-tube have
non vanishing coefficients and are used to create the regression model. They are called
Support Vectors.

Until now, this subsection only described the linear function case. A simple method
for archiving a nonlinear algorithm is a preprocessing map Φ of the input space into
a higher dimensional feature space [40]. However, this approach can quickly become
computationally infeasible for higher dimensional input space or feature space [39]. As
already seen in Equation (44), it is sufficient to know the result of the dot product of the
mapped input samples instead of explicitly calculate the mapped samples. The result of
the dot product of the mapped input samples is called kernel

k
(
xi, xj

)
= 〈Φ(xi), Φ(xj)〉. (48)
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and substitutes the former dot product in the optimization problem:

maximize − 1
2 ∑ι

i,j=1
(
αi − α∗i

)(
αj − α∗j

)
k
(
xi, xj

)
+

−ε ∑ι
i=1
(
αi + α∗i

)
+ ∑ι

i=1 yi
(
αi − α∗i

)
subject to ∑ι

i=1
(
αi − α∗i

)
= 0 and αi, α∗i ∈ [0, C]

. (49)

There are several types of kernels that fulfill the necessary conditions, but note that
the optimization now finds the flattest function in feature space, not in input space [39].

5.3. Feature Extraction

The impedance spectra form a continuous course. As a result, the differences in
impedance values for neighboring frequencies are rather small and there is a strong correla-
tion. Therefore, to reduce the dimensionality of the feature vector, the principle component
analysis (PCA) is applied. PCA is a statistical technique that allows you to combine many
variables into a few principal components. Its aim is to combine the variance of the data
from many individual variables into few principal components. These principal compo-
nents are stochastically independent of each other. As shown in Figure 22, this creates a
new coordinate system whose axes each map the direction of maximum variance and are
orthogonal to each other. The essential tool of this procedure is the diagonalization of a
symmetric matrix with the help of an orthogonal matrix.
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Figure 22. Illustration of the principal component transformation.

When using the principle component transformation, the question arises about how
many components should finally be taken over. One approach is to specify the number of
components directly. Another approach is the definition of the portion of the explained
variance. This portion can be determined by the eigenvalues of the principal components.
Table 1 shows the explained variance depending on the number of principal components
when applying the principal component transformation to the training data. As can be
seen, the assumption that there is a strong variance between the measurement frequen-
cies is confirmed. Already three principal components are sufficient to describe 90% of
the variance.

Table 1. Explained variance depending on number of principle components.

No. Princ. Comp. Explained Variance

1 46%
2 76%
3 90%
4 95%
5 97%
7 98%
9 99%
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6. Results
6.1. Regression Using Artificial Neural Networks

Typically, the measured EIS spectra are used to fit the parameters of an equivalent
circuit that describes the chemical processes of the cell. Due to some components of the
equivalent circuit having nonlinear behavior, minimizing the squared error does not result
in a system of equations that allows a direct solution using linear regression. Instead, a
Newton–Raphson-like algorithm must be used to iteratively approach the minimum of the
error function. This step is necessary for each evaluation of a newly measured spectrum
and therefore takes a lot of computational resources. To avoid an under determined system
of equations, it is also necessary to measure at least as many frequencies as parameters [41].
This may also increase the time needed. Following the identification of the parameters
of the electrical equivalent circuit, it is then still necessary to relate the model parameters
to the desired SoC, for example with a quadratic approximation. An analysis of the EIS
data based on the electrochemical model does provide insights into the chemical processes
of the cell. However, insofar as the goal is only to determine the SoC, this comes at the
expense of speed and the necessary computing power for each evaluation. ANN can offer
an advantage here. While training the network still takes its time, evaluation in the field is
fast and easy, not least as the SoC can be modeled directly. Thus, in a short experiment on a
desktop PC, a speedup of about 3 orders of magnitude could be achieved. An evaluation
of the equivalent circuit, for example, takes on average 82.23 ms, while the evaluation of
the trained neural network took only 51.86 µs. Typically, BMS use microcontrollers with
much less computing power, making the evaluation there require correspondingly more
computing time. Moreover, ANN have already been used successfully for the analysis of
EIS spectra [42,43].

As at this point it is intended to investigate whether the models also generalize to an
unseen DC current component (=working point), the training data consist of all measure-
ments which have taken place at the working points 1 A and 3 A, while the spectra which
have been measured at a DC current of 2 A form the test data set. As the measurements
have been performed alternating, the ratio of training to test data is 2:3.

In a first approach, the feature vector, as described in Equation (23), is obtained from
the DC working point and from the measured impedance data. For the regression of the
SoC, multilayer perceptron networks are used, which have a hidden layer in addition
to the input and output layer. As the neural network is sensitive to feature scaling, for
each feature, the mean is removed and scaled to a variance of σ2 = 1. Impedance values
at similar frequencies correlate strongly with each other. Therefore, it is additionally
analyzed whether a reduction in the feature vector by means of a principal component
transformation leads to better results or to a better generalization. Here, the principal
component transformation is only applied to the measurement data of the spectrum, as the
DC operating point is very important for the generalization, but has only a small variance
due to the two different values in the training dataset.

The quality of the resulting model significantly depends, among other factors, on the
hyperparameters used. However, the use of a principal component transformation also
affects the optimal values of the hyperparameters. Therefore, for each number of principal
components, optimized values for the number of neurons and the L2 regularization term α
are found using the Grid Search procedure in combination with cross-validation. In Grid
Search, a grid is spanned containing all defined combinations of parameter values. These
are used sequentially by cross validation to train a model and test on unseen data. In this
process, the training data is divided into five groups. The model is fitted with the data
from four groups and tested against the unseen data from the fifth group. This process is
repeated a total of five times, so each group is used once to determine performance. The
average of the five runs of the RMSEP is then used as the performance of the Grid Search
hyperparameter combination.

The optimized hyperparameter values depending on the number of principal com-
ponents are shown in Table 2. In addition, the performance values for the best model
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in each case can also be found there. The level of information when using a single prin-
cipal component is not sufficient to produce a good model. As a result, the RMSEP for
cross-validation with training data is 26.22 A h, which corresponds to more than 25% of the
nominal capacity. Using two principal components and more, the performance values are
much better. It is interesting to note that the optimal number of neurons in the hidden layer
is below 10 in all cases. Higher values lead to poorer generalization due to overfitting.

Table 2. RMSEP on unseen testdata and optimized hyperparameters of current generalization using
artificial neural networks depending on number of principal components.

No. Princ. Comp. RMSEP Hidden Neurons α

0 2.76 A h 6 6.4× 10−4

1 26.22 A h 7 5.5× 10−3

2 3.43 A h 9 2.6× 10−8

3 2.92 A h 7 2.9× 10−3

4 3.45 A h 4 6.6× 10−7

5 2.11 A h 8 7.1× 10−3

7 1.79 A h 9 3.2× 10−3

9 1.94 A h 5 3.4× 10−8

Figure 23 illustrates the cross-validation performance for the training data graphically.
The error bars reflect the standard deviation of each run during cross-validation. While
too few principal components initially lead to a poorer performance, a partial reduction
in the input dimensionality can also lead to an improvement of the model. For example,
the RMSEP is below the value when PCA is not applied, starting with five principal
components. The best result is obtained with seven principal components, although the
standard deviation is larger here than with nine principal components.
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Figure 23. RMSEP and standard deviation of crossvalidated training data depending on number of
principal components.

In the next step, models are now fitted with the complete set of training data using
the optimized hyperparameters. Then, the prediction of the test data takes place and the
prediction is compared with the target values. The difficulty is now much higher compared
to the cross-validation of the training data, as the training data set consists of spectra at a
DC component of 1 A or 3 A, but now predictions have to be made to measurements at a
working point of 2 A.

Nevertheless, the resulting performance is sufficiently accurate for the most part, as
can be seen in Table 3, which summarizes the RMSEP as a function of the number of
principal components. In most cases, the performance on the unseen working point is at
a similar level or even better than when cross-validating the training data. The network
with two principal components performs best. Here, the RMSEP with a value of 0.16 A h
is even significantly better than for the training data. An outlier is the network that uses
nine principal components, where the performance is significantly worse. This is where
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overfitting comes in once again. The large number of neurons causes the network to overfit
to the training data.

Table 3. RMSEP on unseen validation data during current generalization using artificial neural
networks depending on number of principal components.

No. Princ. Comp. RMSEP

No PCA 3.20 A h
1 2.45 A h
2 0.16 A h
3 3.24 A h
4 0.17 A h
5 3.98 A h
7 1.32 A h
9 24.1 A h

Figures 24 and 25 show the predicted data and the difference from the target value
when no principal component transformation is performed and for the best fit (two com-
ponents). Here it can be seen particularly well that the generalization of the DC working
point for the model with two components works very well. The network trained with the
complete impedance set of the spectrum with no PCA applied also shows good results, but
there are larger deviations, especially for values at the beginning of the charging process.
A possible reason could be overfitting, which is avoided by the lower number of features
when applying PCA and thus a better performance is obtained.

0 20 40 60 80 100 120

0

25

50

75

100

State of Charge [A h]

pr
ed

ic
ti

on
[A

h]

No PCA
2 PCA comp.
perfect fit

Figure 24. Difference between predicted state of charge values and the actual values of polynomial
and radial basis model.
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Figure 25. Difference between predicted state of charge values and the actual values of polynomial
and radial basis model.
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6.2. Regression Using Support Vector Regression

The procedure for model building using support vector regression is more or less
identical to the procedure for model building using artificial neural networks in Section 6.1.
During training, the data of the training dataset are used in the cross-validation procedure.
For this purpose, the data set is divided into five equal parts. Within five runs, four parts are
used to train one model at a time and the remaining part is used to determine performance.
By using a different part for performance evaluation in each run, an average performance
can be determined afterwards. Before training, the mean value of each feature of the
training parts is removed and the variance is scaled to 1. In addition, the influence of a
principal component transformation, in particular the number of principal components
used, is examined. A change in the number of principal components also affects the
optimal value of the SVR hyperparameters. Therefore, Bayesian optimization is used
to obtain optimized hyperparameters for each number of principal components that is
analyzed. Again, the optimization is performed using only the mean performance of the
cross-validation with the training data to prevent data leakage. Finally, after the optimal
hyperparameters have been found, the complete set of training data is used for fitting the
model and the performance on the test data is determined. The RMSEP is used as the
performance metric.

Figure 26 shows the RMSEP values of the cross-validation with training data. Ad-
ditionally, the error bars represent the standard deviation of the RMSEP within the five
parts. The performance using a single principal component is out of scale with a value of
30 A h. This is no surprise, as the constant current is now also part of the feature vector
and the principal component transformation has to bring in this information as well. After
applying PCA, the mean error decreases with increasing number of principal components.
At a number of seven or more principal components, even better performance is achieved
than when the principal component transformation is not applied. Here, we see that SVR
is relatively immune to overfitting, as regulation is already built into the optimization
function and small deviations within the ε band are not penalized.
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Figure 26. RMSEP and standard deviation of crossvalidated training data depending on number of
principal components.

Table 4 shows the resulting metrics when using the optimized hyperparameters to fit
a model using all training data and predicting the test data depending on the number of
principal components used. Again, model accuracy is very poor when only one principal
component is used. It is interesting to note that the results of the test data are in most cases
even better than the results of the cross-validation with the training data. This may be due
to the fact that the number of training data used is now 20% larger without cross-validation.
Another aspect is that the results seem to be better when the value of the DC current falls
within the range of the training data. Due to the fact that in the previous cross-validation
only 1 A and 3 A data were available that mark the current limits, now only 2 A direct
current data is tested. In some cases, the reduced information content through the PCA
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even provides an improvement in performance compared to the original data. Thus, the
best result is achieved with a principal component number of four.

Table 4. RMSEP on unseen test data and optimized hyperparameters of current generalization using
Support Vector Regression depending on number of principal components.

No. Princ. Comp. RMSEP ε σ C

No PCA 1.90 A h 0.0094 0.00067 31.6
1 31.8 A h 0.19 1.1 × 10−10 5.19
2 2.73 A h 0.12 0.98 30.2
3 4.38 A h 0.002 0.64 2.21
4 0.465 A h 0.0084 0.02 30.2
5 0.881 A h 0.043 0.018 31.6
7 1.37 A h 0.029 0.013 28.8
9 1.17 A h 0.0088 0.0085 31.3

Figures 27 and 28 show the predicted data and the difference from the target value
when no principal component transformation is performed and for the best fit (four com-
ponents). The first data point, in particular, directly marks the largest deviation. This is
most likely due to the fact that the diffusion processes have not yet settled. Thus, at the be-
ginning, the cell voltage still increases by approximately 15 mV during the measurement of
the complete spectrum, while later the cell voltage only changes by 2–5 mV. The remaining
test data are approximated very well, but there is a slight tendency for too low predictions.
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Figure 27. Difference between predicted state of charge values and the actual values of polynomial
and radial basis model.

0 20 40 60 80 100 120

−5

−2.5

0

2.5

5

State of Charge [A h]

pr
ed

ic
ti

on
er

ro
r

[A
h] No PCA

4 PCA comp.
perfect fit

Figure 28. Difference between predicted state of charge values and the actual values of polynomial
and radial basis model.
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7. Conclusions

In this publication, it has first been shown why a massive expansion of battery technol-
ogy can be expected in the future. One important point here is certainly the electrification of
vehicles. However, electric cars are particularly climate-friendly only if the electricity they
use is also generated ecologically. To counteract global warming, the share of renewable
energies must therefore be massively expanded in the future. However, electricity from PV
systems and wind turbines, which account for a large proportion of renewable energies,
is only available intermittently or irregularly. At the moment, the stabilization of the
transmission grid can still be maintained with power plants and their rotating masses. If
the expansion of renewable energies leads to the shutdown of the majority of power plants,
system stabilization must be made possible in an alternative way. Therefore, a massive
expansion of battery technology is to be expected in this point as well.

This massive expansion of battery technology cannot be based on existing battery
technologies alone for several reasons. First, the raw materials of existing technologies are
limited and are mainly found in countries that do not allow safe working conditions. Zinc,
on the other hand, is more often found in countries that do not exploit their employees,
such as Australia and North America. Another point concerning raw materials is the
recyclability cycle. The simple construction of zinc–air batteries helps here. They can
be opened without danger and the components can be separated without great effort.
Secondly, the theoretical energy density of metal–air batteries is much greater than existing
battery technologies. For example, the theoretical energy density of zinc–air cells is three
times greater than that of lithium-ion cells.

However, the operation of zinc–air cells is more complex, as existing BMS cannot be
used. The reason for this is the small voltage differences that occur during charging and
discharging. State of the art battery technologies typically use the cell voltage to detect
the state of charge. When a zinc–air cell is charged, the cell voltage increases by only 40
mV during the charging process, i.e., by an order of magnitude less than in other battery
technologies where the cell voltage can be used to detect the state of charge. State of charge
detection based on cell voltage is not possible, in particular as the influence of temperature
and electrolyte concentration on cell voltage is greater than the state of charge itself. The
charging process is further complicated by the fact that an accompanying electrolysis
process starts at about the same voltage level as the battery charge voltage when the cell
is overcharged. This means that overcharging cannot be detected from the cell voltage.
Both overcharging and deep discharging damage the cell. However, when discharging,
a large voltage drop occurs towards the end of the discharge process, which can be used
to detect the end of discharge. Previously, it was therefore not possible to use zinc–air
batteries without coulomb counting. The typical application scenarios are excluded by this
obstacle, as the cell must be operated continuously in order not to lose the known SoC due
to self-discharge. In order to take advantage of the benefits of zinc–air batteries, a method
has therefore been developed that enables the detection of the state of charge.

A very promising method to generate measurement data that depend on the state
of charge of the cell is EIS. Here, the impedance of the cell is measured for a whole set of
different frequencies. However, the unique electrode arrangement of zinc–air secondary
cells means that conventional EIS measurement systems are not suitable for use with
zinc–air batteries. Therefore, the development of an adapter board was demonstrated that
allows existing EIS measurement systems to be used with zinc–air batteries. As stand-alone
EIS measurement systems are usually very large and cost-intensive, a small and low-cost
measurement system was developed, which makes the integration of the measurement
technology financially attractive even for smaller energy storage systems, such as those
used in the private sector for intermediate storage of solar energy.

Typically, the measured impedance spectra are used to parameterize an electrical
equivalent circuit of the battery. However, many of the components of the equivalent
circuit depend not only on the frequency but also on the operating point or the DC current
component during the impedance measurement. Therefore, an exact knowledge of the
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cell processes is necessary to work out the influence of the DC current on the parameters.
Typically, previous approaches therefore assume a fixed operating state of the cell while
the measurement data are being recorded. In the article, methods of machine learning,
were also used to check the capability of determining the state of charge on the basis of the
EIS spectra measured at different charging currents. Artificial neural networks and SVR
turned out to be particularly promising. In contrast to the common process of parameter
fitting, both methods use the raw measured data of the measured impedance spectra as
input data, so an exact knowledge of the battery model is not necessary and they can be
applied particularly easily. The hyperparameters of the two methods were optimized in
the grid search procedure and via a Bayesian optimization on the basis of the training data
set in order to prevent data leakage.

A crucial point and a highlight is that both artificial intelligence methods can also
be applied to unknown DC currents during impedance measurement. A change in the
charge or discharge current, for example, leads to a change in the linearized charge transfer
resistance and thus to different impedance spectra. Provided that the training data contains
the charging current selected from the outer limits of possible charging currents, the
determination of the state of charge when interpolating the charging current within these
limits is very precise. In principle, both methods are sufficiently accurate. By means of a
principal component transformation, the dimensionality of the feature space was reduced
with very little loss of information. Provided that a particularly strong reduction in the
dimensionality is used, ANN show a better performance. Thus, the RMSEP is smaller when
using one to four principal components inclusive than with SVR. The best result is obtained
when using two principal components. With a higher dimensionality of the input data
the SVR is ahead. Even when the principal component transformation is not used, SVR
shows a smaller tendency to overfit, so that the metric is only about half as large. When
considering the best results, the ANN achieves an error of 0.16% and the SVR achieves an
error of 0.47% on unseen data.

In practice, this success is of great relevance. Now, no predefined charge current is
needed, which was trained beforehand. Thus, the current working point of the battery does
not have to be left in order to start the determination of the state of charge, as long as the
dc current is within the trained limits.
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