
applied
sciences

Article

A Practical and Efficient Node Blind SignCryption Scheme for
the IoT Device Network

Ming-Te Chen † and Hsuan-Chao Huang ∗,†

����������
�������

Citation: Chen, M.-T.; Huang, H.-C.

A Practical and Efficient Node Blind

SignCryption Scheme for IoT Device

Network. Appl. Sci. 2022, 12, 278.

https://doi.org/10.3390/app12010278

Academic Editor: Gianluca Lax

Received: 8 November 2021

Accepted: 21 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Information Engineering, National Chin-Yi University of Technology,
Taichung 41170, Taiwan; mtchen@ncut.edu.tw
* Correspondence: sc100@ncut.edu.tw; Tel.: +886-4-23924505 (ext. 8775)
† These authors contributed equally to this work.

Abstract: In recent years, Internet of Things (IoT for short) research has become one of the top ten
most popular research topics. IoT devices also embed many sensing chips for detecting physical
signals from the outside environment. In the wireless sensing network (WSN for short), a human can
wear several IoT devices around her/his body such as a smart watch, smart band, smart glasses, etc.
These IoT devices can collect analog environment data around the user’s body and store these data
into memory after data processing. Thus far, we have discovered that some IoT devices have resource
limitations such as power shortages or insufficient memory for data computation and preservation.
An IoT device such as a smart band attempts to upload a user’s body information to the cloud server
by adopting the public-key crypto-system to generate the corresponding cipher-text and related
signature for concrete data security; in this situation, the computation time increases linearly and the
device can run out of memory, which is inconvenient for users. For this reason, we consider that, if
the smart IoT device can perform encryption and signature simultaneously, it can save significant
resources for the execution of other applications. As a result, our approach is to design an efficient,
practical, and lightweight, blind sign-cryption (SC for short) scheme for IoT device usage. Not only
can our methodology offer the sensed data privacy protection efficiently, but it is also fit for the above
application scenario with limited resource conditions such as battery shortage or less memory space
in the IoT device network.

Keywords: sign-cryption; unsign-cryption; cryptography module; IoT device

1. Introduction

In recent years, Internet of Things(IoT for short) devices has widely applied in our
daily life. From the life of human beings to industry 4.0, there are many common machines
composed of several IoT devices such as the air conditioner, electronic vehicle, mobile
phone, etc. These devices can collect physical signal data and transfer these data to a
powerful gateway device of the IoT network through the Internet in a digital manner.
When the gateway has received the sensed data from a sender node, it preserves these
records in a database or cloud storage service. However, such IoT devices have limitations
compared with a general gateway server, such as fewer memory space or limited computing
power. This situation usually occurs in the communications between nodes of wireless
sensing network(WSN for short) and IoT networks. Once an IoT device has collected
physical data from a human body, it then must forward these data to the powerful gateway
that can preserve the final result data into a database and perform other cryptography
operations. From the above scenario, we discover that, if any IoT devices attempt to
perform a heavy encryption/decryption computation such as modular exponentiation
over a large prime number in a public key algorithm, then they must perform a signature
operation later for concrete security protection and authentication on these sensed data.
This will lead to fast power consumption and free-memory usage of these nodes.

Appl. Sci. 2022, 12, 278. https://doi.org/10.3390/app12010278 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9583-4419
https://doi.org/10.3390/app12010278
https://doi.org/10.3390/app12010278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app12010278
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010278?type=check_update&version=2

Appl. Sci. 2022, 12, 278 2 of 13

To solve the above situation, we adopt the sign-cryption approach to let a sensing
node perform the lightweight sign-cryption operation and generate the final cipher-text
with its own signature simultaneously on the powerful server side. When the gateway
server has received this cipher-text from a sensor node, it can decrypt this cipher-text first,
then perform the validation of this plain-text with the inside signature’s help for data
authentication.

We consider the following situation of an IoT device called DSi that attempts to
transfer sensed data to a receiver calledR, where i = 1 ∼ l and l is the total number of all
the sensor nodes. To keep the data confidential, DSi must encrypt its own data first. At
this time, it can adopt an efficient encryption/decryption method to generate a cipher-text.
Then, DSi can forward this cipher-text to a powerful base station (BS for short), which it
equips with more computing power than all the sensor nodes in the same IoT network.
However, DSi must also consider its own memory limitation and remaining computing
power to perform such encrypting/decryption computation in sequence. The node DSi
may not be able to perform the signature computation after it has generated encryption if
the remaining power is not enough to perform signature generation in this time; thus, it
must transfer the heavy computation to a powerful node such as the base station BS.

Due to the mentioned situations, we concluded that, if there exists an efficient method
allowing IoT devices to perform encryption and signature operations on the sensed data
in one operation, it could save more computing time and energy, which can then be used
for other computations. In the recent literature, sign-cryption was discussed in [1–4]. The
authors claimed that the sender can transfer the data only to perform one sign-cryption
time, and it can output a cipher-text with a guaranteed signature within. Then, the receiver
can decrypt the received cipher-text with a secret random number inside the corresponding
signature. When the signature is verified by the receiver successfully, the receiver can obtain
the random secret value by applying its own secret key. Finally, the receiverR can obtain the
final data by inputting this secret random number to decrypt the cipher-text. Unfortunately,
their computation efficiency are not practical to fit above situation for IoT device network.
There are some research limitations in our proposed scheme. One is that the sender device
S is already authenticated with the receiverR; they both inherently trust each other within
the same IoT network environment. The authentication mechanism is beyond the scope of
this research. Another limitation is that IoT device management is also beyond our research.
We can adopt other proposed authentication mechanisms [5–10] for devices to authenticate
with each other in an IoT device network and also construct an IoT devices group with other
devices. Our scheme focuses on the efficient signature and encryption scheme for these power
limitation IoT devices such as the Zigbee chips or IoT sensor devices embedding less memory.

To provide a mechanism to generate a signature and a cipher-text for IoT devices
simultaneously, we propose an efficient and practical, fair sign-cryption scheme based
on quadratic residue (QR for short) for the IoT device network. Not only does it offer
an efficient and practical solution to IoT devices, but it also reduces the signature and
cipher-text generation cost in our methodology. We also offer the formal security proof on
our proposed scheme in the Appendix A and evaluate the efficiency of our mechanism in
this research.

2. Related Work and Security Definitions
Related Work

In this section, we discuss the related research proposed in [1–4]. In [1], the authors
propose a CPAS scheme for the vehicular sensor network and assume that there exists
two TAs, where one is a tracing Authority (TRA for short) and the other is a public key
generation center (PKG for short) for tracing the identity and key pairs of all vehicles,
respectively. The TRA can produce a pseudo-ID for all vehicles after it has verified the real
identity from them. The PKG also can generate the key-pairs for these vehicles. If there is a
dispute in the protocol, the TRA can determine the real identity of the pseudo-ID key-pair
through the help of the PKG. At this time, each vehicle does not show its real identity

Appl. Sci. 2022, 12, 278 3 of 13

through the above scheme’s methodology. On the other hand, we can discover that the total
efficiency computation of this scheme is 3Pa + 1SM for signature verification operation
and 3Pa + (n + 1)SM for n signatures batch verification, where Pa is a pairing operation
and SM is a symmetric encrypting operation. We consider that the pairing operation is
demanding for comparing our scheme with others in Table 1 for Internet of Things (IoT for
short) devices. From the efficiency comparison in Table 1, we can see that our approach is
much more efficient than [1]. In [2], we observed that authors also claim their scheme is
more efficient than those in other articles [3,4]. However, this paper [2] is still slower than
our proposed approach in Table 1.

On one hand, from the data authentication aspect, the gateway is unaware of what the
sensor node’s data are in our approach. The sensor node will blind the forward data first
before sending these data to the gateway. On the other hand, the gateway also provides its
own random parameters during the signature generation of the offline-sign-cryption phase.
This means that each signature is generated by the gateway’s signing parameters and the
sensor node’s parameters after the above offline-sign-cryption and online-sign-cryption
phases. Meanwhile, our approach can guarantee the situation where the signer cannot fully
control the signature generation and provide the unlinkability to the signature. In [3], the
authors provide an efficient sign-cryption methodology between the traditional public key
crypto-system to the identity-based crypto-system and vice versa. This can be applied in
the multireceiver construction for the IoT device network and provides a general prototype
for this crypto-system transformation. We think that this idea is effective and suitable for
the IoT device to transfer sensing data to another crypto-system construction. However, the
sensing node still requires great computation effort on the paring operation and can cause a
performance bottleneck on these sensor nodes. We also see in [3] that its computation cost
is about 3 Pa, where Pa is a pairing operation on a large prime number q. Finally, in [4],
the authors claim their approach is only about 4 Mu + 2 Pa, where Mu is the modular
multiplication and Pa is the paring operation. After converting to the final computation
approximately, we discover that this scheme still costs 409 Mu more than ours in Table 1. In
this approach, our contribution is to construct an efficient methodology that can generate a
signature and encryption based on the QR at the same time and also preserve a concrete
security proof on well-known hard problems such as the RSA factoring problem [11].

Table 1. Performance comparison.

Sign-Cryption Unsign-Cryption Totally Approx.

[1] 2Mu + 1Pa 3Pa + 1Ad + 1⊕ 4Pa + 2Mu + 1Ad + 1⊕ 327Mu + 1⊕
[2] 4Mu + 1Ex + 2Ha + 1⊕ 1Ex + 2Pa + 2Mu + 2Ha 2Ex + 2Pa + 6Mu + 4Ha + 1⊕ 647Mu + 1⊕
[3] 4Ha + 1Ex + 2⊕ 3Ha + 1Pa + 2⊕ 1Ex + 1Pa + 7Ha + 4⊕ 322.8Mu + 4⊕
[4] 1Ex + 2Mu + 2Ha + 1⊕ 2Pa + 3Ha + 1Ad + 1Ex + 2Pa+ 2Mu + 1Ad + 5Ha + 1⊕ 409Mu + 1⊕

Ours 4Ha + 29Mu + 1⊕ + 1SE 1SD + 2Ha + 1⊕ 33Mu + 1SE + 1SD + 6Ha + 2⊕ 36.2Mu + 2⊕
Ex—Modular exponentiation, Ad—Addition operation, Mu—Modular multiplication, SE—Symmetric Encryp-
tion operation, Ha—Hash operation, SD—Symmetric Decryption operation, Pa—Pairing operation, ⊕—XOR
bit operation.

3. The Proposed Scheme

The following is our proposed scheme, which contains four phases: the initial phase,
blinding phase, offline-sign-cryption phase, and the unsign-cryption phase.

3.1. Preliminary

In this subsection, we provide some definitions used in our proposed scheme as follows:

• n: A large prime number, which it computes from two large primes p1 and p2 such
that n = p1 · p2, where p1 ≡ p2 ≡ 3 (mod 4).

• l: The total number of all Internet of Things (IoT for short) nodes.
• n̂: A large prime number, which it computes from two large prime p3 and p4 such

that n̂ = p3 · p4, where p3 ≡ p4 ≡ 3 (mod 4).

Appl. Sci. 2022, 12, 278 4 of 13

• DSi: An IoT data sender, which is a sensor node that forwards collected data to the
receiver R, where i = 1 ∼ l and l is the number of all sensor nodes.

• BS: A base station, which helps to collect data sent from a sensor node DSi, where
i = 1 ∼ l.

• R: An IoT data receiver, which receives data from the sender DSi.
• ⊕: An exclusive-or operation for symmetric encryption/decryption usage.
• H1, H2: Two secure hash functions that each of them maps Z∗n → {0, 1}n with collision-

resistance and outputs the same n-bits hash strings.
• Epkj

: A symmetric key encryption function for the party j with the public key pk j,
where j ∈ {DSj, R}, where j = 1 ∼ l.

• Dskj
: A symmetric key decryption function for the party j with the private key sk j,

where j ∈ {DSj, R}, where j = 1 ∼ l.

3.2. Initial Phase

In this phase, an IoT node DSl acts as a data sender; it first selects two large, distinct
primes, where one is p1 and the other is p2 such that n = p1 · p2, where l = 1 ∼ l and l are
totally node numbers. DSi also publishes this n and we could know that given a QR in
Z∗n; there are four different square roots (or 2 roots) of the QR in Z∗n. From this property,
we could derive the 2ith roots of the QR in Z∗n, where i must be larger than 1 in Z∗n. On
one hand, we assume that there exists a powerful base station as a signer BS, which also
selects two large primes, where one is p3 and the other is p4 in the same IoT network
environment. It also computes n̂ = p3 · p4 and sets up to let n < n̂. Then, it publishes n̂ and
its prefix string Ω. In the following, we take Fan and Lei’s Scheme [12] as our reference.
Nevertheless, the data receiver (R for short) sets up its own private/public key pair as (skR,
pkR). When the set-up is finished, it publishes its own public key to the IoT network.

• First, a node DSi randomly chooses its own QR numbers (z1, z2, z3) from Z∗n similar
with y1, y2 and y3, where each of them is computed from yi = (z2

i mod n) and
i = 1 ∼ 3, respectively. Then, base station BS also selects two random QR numbers α
and β such that they allow (β2/α2 mod n) to belong to QR in Z∗n. DSi also publishes
(n, y1, y2, y3) to the signer BS. Once the signer BS has received them from DSi, DSi
computes γ = (κ2 mod n̂) with a random number κ and the identifier ẑ = H1(z)
mod n̂ with an identifier number z. After setting up these random numbers, BS
forwards (γ, n̂, z, ẑ) to DSi and enters the offline-signing phase.

3.3. Offline-Signing Phase

• When DSi has received (γ, n̂, z, ẑ) from the BS, DSi also computes the following
messages if the checking of z is valid, where ẑ = H1(z) mod n̂. DSi selects a random
number r ∈ Z∗n and computes the following:

C1 = EpkR(r)

C2 = H1(r)⊕m

C3 = H1(C1, C2, r, ẑ, m)

(1)

• After computing the above equations, DSi also allows β2/α2 as τ and performs the
following:

C′1 = C1 ∗ τ2 ∗ γ

C′2 = C2 ∗ γ

C′3 = C3 ∗ γ

h = H1(C′1, C′2, C′3)

(2)

• From the above equations, we know that DSi blinds the sensor data and computes
a cipher-text (C′1, C′2, C′3). Then, DSi forwards (C′1, C′2, C′3, h, z, ẑ) to BS. When BS has

Appl. Sci. 2022, 12, 278 5 of 13

received these messages from DS′i , it verifies above them with z, checks the h from
(C′1, C′2, C′3), and enters the online-signing phase.

3.4. Online-Signing Phase

• When BS obtains (C′1, C′2, C′3, h, z, ẑ) from DSi, it could perform verification of these
cipher-texts. If they are valid, then BS decrypts them with γ−1 as follows:

C1 = C′1 ∗ τ2 ∗ γ−1

C2 = C′2 ∗ γ−1

C3 = C′3 ∗ γ−1

(3)

• After decrypting the above cipher-texts successfully, BS computes the signature as
follows with a QR number λ:

C′3 = C−2
3 ∗ (

β

α
)−2 ∗ (λ)2

C′′3 = C′3 ∗ y1 (mod n)

C′′2 = C′2 ∗ y2 (mod n)

C′′1 = C′1 ∗ y3 (mod n)

(4)

• The signer BS finishes the signing operation and generates the signature (C′′1 , C′′2 , C′′3)
to the data sender DSi. When the node DSi has received this signature, it could
unblind the signature by computing the following operations:

C′1 = C′′1 ∗ y−1
3

C′2 = C′′2 ∗ y−1
2

C′3 = C′′3 ∗ y−1
1

C∗3 = C′3 ∗ (
1
α
)2

= C−2
3 ∗ β−2 ∗ (λ)2

(5)

• Then, the DSi computes the final encrypted cipher-text messages (C′′′1 , C′′′2 , C′′′3) to the
BS in the following and enters the unsign-cryption phase:

C′′′1 = C′′1 ∗ γ

C′′′2 = C′′2 ∗ γ

C′′′3 = C∗3 ∗ γ

(6)

3.5. Unsign-Cryption Phase

• When BS received these cipher-text messages from DSi, it can decrypt by the following
operations:

C∗3 = C′′′3 ∗ γ−1

t = (C∗3)
2 ∗ (λ)−4

= C−4
3 ∗ β−4

t∗ = t ∗ y1

(7)

Appl. Sci. 2022, 12, 278 6 of 13

• After BS has computed this signature t from the above equation, it forwards (t∗, z, ẑ)
to the node DSi and allows the DSi to decrypt t∗ and un-blinds this signature t
as follows:

t = t∗ ∗ y−1
1

SR = t ∗ β4

= C−4
3 ∗ β−4 ∗ β4

= C−4
3 mod n

(8)

• After DSi summarizes the above equation, we conclude that the node DSi has the
final signature σR = (SR, C1, C2, C3), where S4

R = C3 = H1(C1, C2, γ, τ, ẑ, m). Then,
the node DSi can forward the sign-cryption signature σR and cipher-text messages
(C1, C2, C3) to the receiver R of the Internet host.

• Once the receiver R has obtained this sign-cryption signature σR and cipher-text
messages (C1, C2, C3) from DSi, it can perform the following steps:

r∗ = DskR(C1)

m ?
= C2 ⊕ H1(r∗)

C3
?
= H1(C1, C2, r, ẑ, m)

S4
R

?
= C3

(9)

4. Functionality Comparisons and Security Analysis

In this section, we could provide functionality comparisons with other schemes and
security analysis about our proposed scheme.

4.1. Fast Sign-Cryption Operation

The proposed scheme only needs three hash operations, one ⊕ operations, five multi-
plication operations, and one symmetric encryption in the offline-signing phase. In this
situation, our proposed scheme is more efficient than [2]. In addition, the sensor node DSi
can blind the sensed data to the base station efficiently and with data confidence. The base
station BS cannot be aware of the sensed data content. If the base station is compromised by
a malicious attacker, DSi can also protect this data to prevent its exposure outside the IoT
network. At the same time, it also guarantees the protection of user’s personal information.

4.2. Signer Fair Signature Operation

Our proposed scheme can offer the signature of sensed data after the base station BS
has received the encrypted sensed data from the user. In this time, BS only can apply the
square root operation on these sensed data to generate the corresponding signature under
these blind and encrypted data. In the online-signing operation, the IoT device can perform
lightweight operations on the user’s sensed data and obtain the signing result after the
offline-signing phase performed by the signer BS. From the two signing phases above,
we know that the IoT device and the base station can present some random numbers in
these phases to prevent the unfair situation that the signature generation is controlled by a
certain party.

4.3. User Data Protection

In our proposed scheme, we use the sign-cryption method to generate the encryption
data with the corresponding signature within. In this time, the signer cannot know what
the plain-text is without the corresponding decryption key. Only the receiver is aware
of the corresponding decryption key to decrypt this cipher-text. Thus, our sign-cryption
scheme could offer privacy protection of the user’s personal sensed information.

Appl. Sci. 2022, 12, 278 7 of 13

4.4. Efficiency Comparisons

In this section, we evaluate the efficiency of our approach in the following. First, there
is an assumption that the prime numbers p1, p2, p3 and p4 are 1024 bits in length; Ha is
computation time for one hash computation; SE is the time for a symmetric encryption
operation, and SD is time for a symmetric decryption operation. Meanwhile, we also
define that Ex is the computation time for one modular exponential operation in a 1024-bit
module, Mu is the time for one modular multiplication in a 1024-bit module, Mecc is the
time for a number performing another point addition over an elliptic curve [13], and Pa is
the time for the computation time of a bilinear pairing operation of two elements over an
elliptic curve. Then, we assume that Ex ≈ 8.24Mecc for the ARM CPU to process at 200 Mhz
in [14]. From the above assumption, we can discover that there exists some relation in
the following, where Ex ≈ 240Mu = 600Ha ≈ 3Pa and Ad ≈ 5Mu in [15–21]. From the
above computation time evaluation, we can see that our approach total computation time
is 33Mu + 6Ha + 2⊕ +1SE + 1SD. Then, the result is approximate to 36 Mu modular
multiplication operations. Comparing with [2], we can see that our approach is much
faster under the 1024-bit prime numbers. In the following two simulation results shown in
Figures 1 and 2, our approach provides the QR-signature simulation and RSA signature
simulation, respectively. On the other hand, we implemented our approach on a Ubuntu
20.04 operating system with Intel Core i5-1135G7 CPU @ Base 2.4 GHz up to 4.2 GHz
CPU and 8 GB memory. This simulation is carried out by using GO language and python
language with “crypto/encoding/Matplotlib” library on the 10 nodes to 50 nodes, where
are shown in Figures 1 and 2, respectively.

Figure 1. QR Signature Simulation on 10 nodes to 50 nodes.

4.5. Security Definitions
4.5.1. QR Signature Security

We provide the definition on the digital signature’s security as follows: In the initial
phase, we assume that there exists some functions used in our proposed scheme; one is the
signature generating function Sig(·) and the other is the verification function Ver(·), where
the signer S can input her/his signing key skS into this signing function with the message
m. Then, we can claim that σ is the resulting output from the signing function by S and
the receiver R can verify σ by the verification function Ver(·) with the message m and the
signer’s public key pkS. The above scheme is based on well-known hard problems such
as the RSA factoring problem. If there exists an attacker F whose goal is to forge a valid
signature S′ on the message m and pass the verification, i.e., Ver(S′, m, pkS) = 1, then F
outputs it successfully with non-negligible probability larger than ε, we can use F ’s ability to
factor the RSA factoring problem. However, in fact, the attacker F ’s advantage is less than ε.

Appl. Sci. 2022, 12, 278 8 of 13

This means that the probability of F to output a forged signature and for this signature to
pass the verification function with non-negligible probability is less than ε.

Adv[S′i ←− FSig(skS ,m)|Ver(S′i , m, pkS) = 1] < ε.

Figure 2. RSA Signature Simulation on 10 nodes to 50 nodes.

4.5.2. Unforgeability

In this proposed scheme, we provide the signature definition of our sign-cryption
scheme. From the above digital signature definition, we discuss the case where there exists
a forger F with the ability to forge a valid QR-signature on our scheme. We assume that
there are some functions such that F can make the hash query to the hash functions H1(·)
and H2(·), symmetric encryption EncpkR(·) function and the signing function Sig(·). After
preparing these functions, F can make its own query on these functions. F can ask i times
query, where i = 1 ∼ l and l is the total number of IoT nodes. After the above qs times
query, if F can output qs + 1 signatures on our proposed scheme, we can use F to break
the RSA factoring problem.

AdvUn f

FSig(·),H1(·),H2(·),RO1,EpkR
(·)(θ, t′) ≤ 1

2l · qs · qe · qd
+ ε′.

Lemma 1. First, we assume that there exists a secure digital signature function Sig(·) and a
secure hash function H1(·), which could be replaced with a random oracle RO1 and a secure hash
function H2 in our proposed scheme. We also claim that our proposed scheme with the above
unforgeability (Unf for short) satisfies the following situations. In other words, if our scheme is
(t′, ε′) unforgeable, then

AdvUn f

FSig(·),H1(·),H2(·),RO1,EpkR
(·)(θ, t′) ≤ 1

2l · qs · qe · qd
+ ε′.

where t′ is total experiment simulation time, including simulating l as an upper bound on the
number of IoT devices, at most signature oracle qs times query, at most encryption oracle qe times
query, at most decryption oracle qd times query, and ε′ has taken over the coin toss of our scheme.

4.5.3. Indistinguishability

In this definition, we assume the Indistinguishable (Ind for short) game where there
exists an attacker A in the following simulation, which is controlled by a simulator S .
First, we defined that there is a symmetric encryption/decryption function Epki

(·)/Dski
(·),

where i ∈ {DSj, BS, R}, j = 1 ∼ l, in which DSj is one of the l IoT devices; BS is the base
station, and R is the receiver of the outside network. The simulator S will prepare all

Appl. Sci. 2022, 12, 278 9 of 13

set-up parameters including key pairs for the above parties. After set-up is complete, S will
launch the proposed scheme simulation with A. A can perform the encryption/decryption
on the chosen message m. S also can reply the cipher-text C = Epki

(m) and the original
message m toA. After the above game simulation, S can replace the encryption/decryption
functions to an encryption/decryption oracle (τ, τ−1), which performs the same action as
our above symmetric encryption/decryption function. Through the above training phase,
A sends a chosen target message (M0, M1) to S ; S will perform a coin flip b on the message
(Mb, M1−b). Then, S inputs the Mb to the encryption oracle Epki

to obtain the final result
Cb. S forwards Cb to A to guess whether Mb is M0 or M1 on its coin flip b′—that is,

Pr[b′ ←− A(Epki
(·),Dski

(·),τ,τ−1)|b = b′] <
1
2
+ ε′.

4.5.4. Indistinguishable-Chosen Cipher-Text Attack (Ind-CCA for Short)

In this proposed scheme, we continue to define the chosen cipher-text attack security
of our SC approach. There also exists an attacker A, whose goal is to distinguish the
cipher-text of our sign-cryption scheme. First, we assume that there is a simulator A to
control the environment situational parameters including key pairs, security parameters,
and hash length. After setting up, S defines the experiment in which A can make a query
as follows.

• Phase 1: In this phase, the attacker A could make the encryption/decryption query
on the chosen message m. If A makes the encryption query on the m of the IoT device
i, where i = 1 ∼ l, then S inputs the m into Ci,1 = Epki

(γi), Ci,2 = m⊕ H1(γi) and
Ci,3 = H1(C1, C2, γi, m), where i = 1 ∼ l. Here, S will preserve these parameters into
the encryption oracle list Ei entry. On the other hand, A asks the decryption query on
the cipher-text (Ci,1, Ci,2, Ci,3), S will check if there are any parameters matching this
cipher-text in the Ei entry. If the answer is yes, S forwards the original message back
to A and keeps this query in the decryption oracle Di entry.

• Challenge: In this phase, if A chooses a target IoT device j∗ and a message pair
(M∗0 , M∗1), where M∗0 and M∗1 are never asked the encryption query and decryption
query before, j∗ 6= i and i = 1 ∼ l. In this time, S will toss the coin flip b and inputs
the M∗b into the encryption oracle Epk∗j

(·). Finally, S returns the target cipher-text
(C1,j∗ , C2,j∗ , C3,j∗) to A. When A has received this target cipher-text, it still can make
the decryption query on other cipher-texts except (C1,j∗ , C2,j∗ , C3,j∗).

In the following, we model above the actions as game simulation steps that we played
with the attacker A.

ExpInd−CCA−b
A,SC (θ)

Phase 1
i ∈ {1, . . . , l}, Mi ←− AEpki

(·,θ),Dski
(·,θ),H1(·)

γi ←− {0, 1}∗
C1,i ←− Epki

(γi)
C2,i ←− Mi ⊕ H1(γi)
C3,i ←− H1(C1,i, C2,i, γi, Mi)
Challenge Phase
b ∈ {0, 1}, j∗ 6= i, (M∗b , M∗1−b)←− A
Mb,j∗

b←− S
C1,j∗ ←− Epkj∗ (γj∗)

C2,j∗ ←− Mi ⊕ H1(γj∗)
C3,j∗ ←− H1(C1,j∗ , C2.j∗ , γj∗ , Mb,j∗)

b′ ←− A(Epkj∗
(·,θ),Dpkj∗

(·,θ),τ,τ−1)
(C1,j∗ , C2,j∗ , C3,j∗ , M∗b ,

M∗1−b)
Return b′.

Appl. Sci. 2022, 12, 278 10 of 13

The advantage ok function of the adversaryAwhere it is defined as AdvInd−CCA
A,SC (θ) =

|Pr[ExpInd−CCA−1
A,SC (θ) = 1]− Pr[ExpInd−CCA−0

A,SC (θ) = 1]| < ε′.

Lemma 2. We defined that our sign-cryption SC scheme can withstand Ind-CCA attacks if there
exists no such attacker A that could guess the cipher-text during above experiment Exp with
non-negligible probability than ε′, i.e.,

AdvInd−CCA
A,SC (θ, t) <

1 + ε′

2 · qe · qd
,

where at most t time bound, at most qe times encryption query, at most qd times decryption query
under the θ security parameter.

Theorem 1. First, we assume that our sign-cryption SC scheme is an Ind-CCA secure symmetric
encryption/decryption scheme with a secure hash random oracle H1 and also satisfied with the
unforgeability (Unf) in the following. Then, we can say that, if SC is (t′, ε′) Ind-CCA secure and
unforgeable, then

AdvUn f ,Ind−CCA
F ,A,SC (θ, t) ≤ (

1
2l · qs · qe · qd

· ε + 1 + ε′

2 · qe · qd
),

where t is the maximum total experiment time including adversary execution time, l is an upper
bound on the number of all IoT devices of at most qs times signing query, at most encryption oracle
qe times query, and at most decryption oracle qd times query under the security parameter θ in
the experiment.

5. Conclusions

In the final result, we can see that our approach is suitable for an IoT device to compute
the QR signature and encryption simultaneously. From Table 1, we also can see that our
approach is more efficient than other schemes [1–4]. Our methodology not only efficiently
computes the encryption and signature simultaneously, but can also support the fair protocol
of two parties during communication between these IoT devices. This point also prevents
allowing a single device such as the powerful gateway being compromised by attackers when
IoT devices attempt to perform a signature operation or data exchange with this gateway. At
the same time, this approach also provides data privacy protection for users. On one hand,
our future goal is to develop a lightweight hierarchical sign-cryption scheme for IoT devices,
and it can offer the authentication functionality between different levels of IoT devices with
data privacy protection simultaneously. On the other hand, our approach can extend to
develop a novel and real practical IoT data migration methodology for the IoT network in
the future.

Author Contributions: Conceptualization, M.-T.C. and H.-C.H.; methodology, M.-T.C.; software,
H.-C.H.; validation, M.-T.C. and H.-C.H.; formal analysis, M.-T.C.; investigation, H.-C.H.; resources,
H.C.H.; data curation, H.-C.H.; writing—original draft preparation, M.-T.C.; writing—review and
editing, H.-C.H.; visualization, H.-C.H.; supervision, H.-C.H.; project administration, H.-C.H.; fund-
ing acquisition, H.-C.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This study was supported in part by grants from the Ministry of Science and
Technology of the Republic of China (Grant No. MOST 109-2221-E-167-028-MY2).

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 278 11 of 13

Appendix A

Proof of Theorem 1. First, we define experiments of the above two security definitions
and each attacker’s ability, respectively. We will provide the proof of Lemma 1 and also
define that there exists an attacker F whose goal is to forge a signature in the proposed
scheme. We also define a simulator S that can control the experiment of the proposed
scheme. On the other hand, S is given a signing oracle Sig(·), which can perform the same
action as signature generation by the signer in our approach. S also prepares all IoT device
key pairs, including the receiver’s one.

Before beginning the experiment of digital signature, S is given a hard RSA problem
in n∗ and its goal is to use the F ’s ability to factor this n∗. During this time, S will also
prepare the symmetric encryption/decryption function for the F encryption/decryption
query. The query types are discussed below.

• Encrypting query: F can make an encrypting query on the chosen message m, the
target receiver i and the corresponding hash value H1(r′i). During this time, S checks
the H1 list record and determines the random number r′i . If there is no hash record on
the list, S will generate the (∗, H1(r′i), r′i) entry for the random number r′i on the list.
Then, S generates the corresponding cipher-texts in the following:

C′1 = Epki
(r′i)

C′2 = m⊕ H1(r′i)

C′3 = H1(C′1, C′2, r′i , m).

(A1)

Then, S forwards this cipher-text (C′1, C′2, C′3) back to F to finish this Encryption query
and records (C′1, C′2, C′3) into the H1 list to be noted as (C′1, C′2, C′3, H1(r′i), r′i).

• Decrypting query Dec(·): When F forwards a cipher-text (C′1, C′2, C′3) to S , S will
search the H1 list to see if there is any entry in this list; if yes, S uses the H1(r′i) to
decrypt the cipher-text (C′1, C′2, C′3). Finally, S returns m back to F .

• QR Signnature query: When F makes the signature query on the chosen message m,
S will generate the following:

C′1 = Epki
(r′i)

C′2 = m⊕ H1(r′i)

C′3 = H1(C′1, C′2, r′i , m)

S′R
4
= C′3

(A2)

After generating the signature S′R and the corresponding cipher-text (C′1, C′2, C′3), S
will check the signature list s1 to see if there is any entry inside; if no, S preserves the
signature S′R into the signature list and stores (C′1, C′2, C′3, S′R, H1(r′i), r′i , m) in the s1 list.
Then, S transfers S′R back to F . F can make the above signature query several times
on the chosen message m. If F has made l times signature query on the message m,
F can forge l + 1 signatures on the message m. Then, we can have the probability of
adversary F

AdvUn f
F ,Sig(·),Enc(·),Dec(·)(θ, t) ≤ 1

2l · qs · qe · qd
· ε, (A3)

where there is at most qs times signature query, at most qe times encryption query,
and at most qd times decryption query in the polynomial t time bound under security
parameter θ.

Second, we present the proof of Lemma 2 as follows. We assumed that there exists an
attacker A whose goal is to distinguish a cipher-text (C1, C2, C3) from a given message tuple
(M0, M1) with non-negligible probability. Before simulating the experiment, we model a
simulator S , which is given a RSA hard problem n∗ and its goal is to factor n∗ and find the
prime factor of n∗. During this time, S also generates all key pairs of IoT devices including

Appl. Sci. 2022, 12, 278 12 of 13

the base gateway BS and the receiver R. When everything is ready, the S also allows A to
send query types in the following.

• Cipher-text query on Enc(·): In this simulation, A can also launch a cipher-text query
with an input the message m, the target receiver i, and the corresponding hash value
H1(ri) to S . When receiving this query, S checks the H1 list records and finds out if
there exists a random number ri and other related records before. If there is no hash
record on the list, S will generate a new entry (∗, H1(ri), ri) for the random number ri
on the list. Then, S performs the following steps:

C1 = Epki
(ri)

C2 = m⊕ H1(ri)

C3 = H1(C1, C2, ri, m)

(A4)

Subsequently, S sends this cipher-text (C1, C2, C3) back to A and stores (C1, C2, C3)
into the H1 list to be noted as (C1, C2, C3, H1(ri), ri).

• Plain-text query on Dec(·): WhenAmakes a plain-text query on S with an cipher-text
(C1, C2, C3), S will search the H1 list first to see if there is any entry inside or not; if
yes, S uses the H1(ri) to decrypt the cipher-text (C1, C2, C3) and returns m back to A.

• Signing query: When Amakes an QR signature signing query on the chosen cipher-
text (C1, C2, C3), S will calculate the following equations:

C1 = Epki
(ri)

C2 = m⊕ H1(ri)

C3 = H1(C1, C2, ri, m)

S4
R = C3

(A5)

After performing the above training, we defined it as the Phase 1 training phase of
the experiment in the above definition. In the next phase, the A can send a target message
tuple (M∗0 , M∗1) and forward it to S . In this time, S will choose one of them by a coin toss
on b. Then, S performs signing steps as follows:

C∗1 = Epki
(r∗i)

C∗2 = M∗b ⊕ H1(r∗i)

C∗3 = H1(C∗1 , C∗2 , r∗i , M∗b)

S4∗
R = C∗3

(A6)

After generating the above cipher-text (C∗1 , C∗2 , C∗3 , S4∗
R), S returns it back to the A.

During this time, A can make the decryption query except on the target cipher-text
(C∗1 , C∗2 , C∗3 , S4∗

R). If A can distinguish the cipher-text (C∗1 , C∗2 , C∗3 , S4∗
R) computed from M∗b ,

we can have

AdvInd−CCA
A,SC (θ) =|Pr[ExpInd−CCA−1

A,SC (θ) = 1]− Pr[ExpInd−CCA−0
A,SC (θ) = 1]|

=Pr[ExpInd−CCA−1
A,SC (θ) = 1]− (1− Pr[ExpInd−CCA−1

A,SC (θ) = 1])

< ε′.

(A7)

Then, we can obtain that

AdvInd−CCA
F ,A,SC (θ, t) = Pr[ExpInd−CCA−1

F ,A,SC (θ) = 1] ≤ 1 + ε′

2 · qe · qd
,

where at most qe times encryption query and at most qd times decryption query in the
polynomial t time bound under the security parameter θ. The probability that A can

Appl. Sci. 2022, 12, 278 13 of 13

distinguish the above target cipher-text (C∗1 , C∗2 , C∗3) is less than ε′. We have summarized
the above proofs of Lemmas 1 and 2. We can obtain

AdvUn f ,Ind−CCA
F ,A,SC (θ, t) ≤ (

1
2l · qs · qe · qd

· ε + 1 + ε′

2 · qe · qd
).

References
1. Shim, K.A. CPAS : An Efficient Conditional Privacy-Preserving Authentication Scheme for Vehicular Sensor Networks. IEEE

Trans. Veh. Technol 2012, 61, 1874–1883. [CrossRef]
2. Naresh, V.S.; Reddi, S.; Kumari, S.; Allavarpu, V.D.; Kumar, S.; Yang, M.H. Practical Identity Based Online/Off-Line Signcryption Scheme

for Secure Communication in Internet of Things. IEEE Access 2021, 9, 21267–21278. [CrossRef]
3. Sun, Y.; Li, H. Efficient signcryption between TPKC and IDPKC and its multi-receiver construction. Sci. China Inf. Sci. 2010,

53, 557–566. [CrossRef]
4. Li, F.; Xiong, P. Practical secure communication for integrating wireless sensor networks into the Internet of Things. IEEE Sens. J.

2013, 13, 3677–3684. [CrossRef]
5. Hammi, B.; Fayad, A.; Khatoun, R.; Zeadally, S.; Begriche, Y. A Lightweight ECC-Based Authentication Scheme for Internet of

Things (IoT). IEEE Syst. J. 2020, 3, 3440–3450. [CrossRef]
6. Choi, S.; Ko, J.; Kwak, J. A Study on IoT Device Authentication Protocol for High Speed and Lightweight. In Proceedings of the

2019 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, 28–30 January 2019; pp. 1–5.
7. Ning, H.; Liu, H.; Yang, L.T. Aggregated-Proof Based Hierarchical Authentication Scheme for the Internet of Things. IEEE Trans.

Parallel Distrib. Syst. 2015, 3, 657–667. [CrossRef]
8. Kim, B.; Yoon, S.; Kang, Y.; Choi, D. PUF based IoT Device Authentication Scheme. In Proceedings of the 2019 International

Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019;
pp. 1460–1462.

9. Lounis, K.; Zulkernine, M. T2T-MAP: A PUF-Based Thing-to-Thing Mutual Authentication Protocol for IoT. IEEE Access 2021, 9,
137384–137405. [CrossRef]

10. Taher, B.H.; Jiang, S.; Yassin, A.A.; Lu, H. Low-Overhead Remote User Authentication Protocol for IoT Based on a Fuzzy Extractor
and Feature Extraction. IEEE Access 2019, 7, 148950–148966. [CrossRef]

11. Rivest, R.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978,
21, 120–126. [CrossRef]

12. Fan, C.I.; Lei, C.L. A User Efficient Fair Blind Signature Scheme for Untraceable Electronic Cash. J. Inf. Sci. Eng. 2002, 18, 47–58.
13. Koblitz, N.; Menezes, A.; Vanstone, S. The state of Elliptic curve cryptography. Des. Codes Cryptgogr. 2000, 19, 173–193. [CrossRef]
14. Lauter, K. The Advantages of Elliptic curve cryptography for wireless security. IEEE Wirel. Commun. 2004, 11, 62–67. [CrossRef]
15. Bertinoi, G.; Breveglieri, L.; Chen, L.; Fragneto, P.; Harrison, K.; Pelosi, G. A pairing SW implementation for smart cards. J. Syst.

Softw. 2008, 81, 1240–1247. [CrossRef]
16. Hankerson, D.; Menezes, A.; Scott, M. Software Implementation of pairings. Identity-Based Cryptogr. Cryptol. Inf. Secur. 2008,

2, 188.
17. Hohenberger, S. Advances in Signatures, Encryption, and E-Cash from Bilinear Groups. Ph.D. Dissertation, Massachusetts

Institute of Technology, Cambridge, MA, USA, 2006.
18. Li, Z.; Higgins, J.; Clement, M. Performance of Finite Field Arithmetic in an Elliptic Curve Cryptosystem. In Proceedings of

the 9th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS’01), Cincinnati, OH, USA, 15–18 August 2001; pp. 249–256.

19. Ramachanfdran, A.; Zhou, Z.; Huang, D. Computing cryptography algorithm in Portable and embedded devices. In Proceedings
of the IEEE International Conference on Portable Information Devices, Orlando, FL, USA, 25–29 May 2007; pp. 1–7.

20. Schneier, B. Applied Cryptography, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1996.
21. Takashima, K. Scaling Security of Elliptic Curves with Fast Pairing Using Efficient Endomorphisms. IEICE Trans. Fundam. Electron.

Commun. Comput. Sci. 2007, 90, 152–159. [CrossRef]

http://doi.org/10.1109/TVT.2012.2186992
http://dx.doi.org/10.1109/ACCESS.2021.3055148
http://dx.doi.org/10.1007/s11432-010-0061-5
http://dx.doi.org/10.1109/JSEN.2013.2262271
http://dx.doi.org/10.1109/JSYST.2020.2970167
http://dx.doi.org/10.1109/TPDS.2014.2311791
http://dx.doi.org/10.1109/ACCESS.2021.3117444
http://dx.doi.org/10.1109/ACCESS.2019.2946400
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1023/A:1008354106356
http://dx.doi.org/10.1109/MWC.2004.1269719
http://dx.doi.org/10.1016/j.jss.2007.09.022
http://dx.doi.org/10.1093/ietfec/e90-a.1.152

	Introduction
	Related Work and Security Definitions
	The Proposed Scheme
	Preliminary
	Initial Phase
	Offline-Signing Phase
	Online-Signing Phase
	Unsign-Cryption Phase

	Functionality Comparisons and Security Analysis
	Fast Sign-Cryption Operation
	Signer Fair Signature Operation
	User Data Protection
	Efficiency Comparisons
	Security Definitions
	QR Signature Security
	Unforgeability
	Indistinguishability
	Indistinguishable-Chosen Cipher-Text Attack (Ind-CCA for Short)

	Conclusions
	
	References

