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Abstract: Loop closure detection is a key challenge in visual simultaneous localization and mapping
(SLAM) systems, which has attracted significant research interest in recent years. It entails correctly
determining whether a scene has previously been visited by a mobile robot and completely establish-
ing the consistent maps of motion. There are many loop closure detection methods that have been
proposed, but most of these algorithms are handcrafted features-based and perform weak robustness
to illumination variations. In this paper, we investigate a Siamese Convolutional Neural Network
(SCNN) to solve the task of loop closure detection in RGB-D SLAM. Firstly, we use a pre-trained
SCNN model to extract features as image descriptors; then, the L2 norm distance is adopted as
a similarity metric between descriptors. In terms of the learned features for matching, there are
two key issues for discussion: (1) how to define an appropriate loss as supervision (utilizing the
cross-entropy loss, the contrastive loss, or the combination of two); and (2) how to combine the
appearance information in RGB images and position information in depth images (utilizing early
fusion, mid-level fusion or late fusion). We compare our proposed method of different baseline
by experiments carried out on two public datasets (New College and NYU), and our performance
outperforms the state-of-the-art.

Keywords: Siamese convolutional neural network; SLAM; loop closure detection; RGB-D

1. Introduction

Visual simultaneous localization and mapping (SLAM) is one of the fundamental
problems in robotics with numerous important applications, such as robot motion [1,2],
trajectory planning [3], driving recorder [4], etc. The algorithms for solving SLAM can be
roughly classified into two categories: filter-based SLAM and graph-based SLAM. Since
traditional filter-based methods, such as Kalman filter [5,6] and Particle filter [7], would
accumulate errors when mapping, it cannot be applicable in the process of large-scale map
creation. Therefore, recent studies have concentrated on the graph-based method.

Loop closure detection is a key challenge in the task of graph-based visual SLAM. It
aims at determining whether a robot has visited a location (such as an office, corridor, or
library as we can see in Figure 1) previously arrived at, and is vital for the generation of a
consistent map by correcting errors that accumulate overtimes. The problem of visual loop
closure detection shares similar ideas with image retrieval; however, significant distinctions
exist between these two visual tasks. The purpose of image retrieval is to find out the
highest similarity image with the reference image. In comparison, loop closure detection
searches identical images to the current scene, without considering object occlusion and
light variation. Although the task of loop closure detection has been approached from
various angles, all solutions are based on matching and share a common framework:
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extracting features as image descriptors, followed by measuring the similarity between
two descriptors.
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keypoints and generate descriptors for matching. Figure 2 shows matching maps of a 
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racy in Figure 2b is much lower than Figure 2a. However, the key point-based descriptor 
is usually invariant to affine transformation and illumination. 
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Figure 1. Example of different scenes encountered by the robot.

Recent developments in computer vision have motivated many image descriptors for
feature representations, such as Scale Invariant Feature Transform (SIFT) [8], Speeded Up
Robust Features (SURF) [9], Oriented FAST and Rotated BRIEF (ORB) [10], and GIST [11],
etc. These approaches are based on keypoints matching and have been widely utilized
in loop closure detection. However, all the above descriptors are hand-crafted and have
weak robustness to the illumination variations. For example, we applied SIFT to extract
keypoints and generate descriptors for matching. Figure 2 shows matching maps of a scene
with angle variations and illumination variations. As expected, the matching accuracy in
Figure 2b is much lower than Figure 2a. However, the key point-based descriptor is usually
invariant to affine transformation and illumination.
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To overcome the limitations of key points-based matching, in recent years, Bag-of-Visual-
Words (BoVW) have been widely used in loop closure detection for visual SLAM [12–16].
These methods store the scene as a visual dictionary and use the K-Means algorithm to
generate clusters of the extracted features, where each cluster represents a “word”. The
image is described by the histogram of each visual vocabulary instead of key point-based
descriptors. Fast Appearance-Based Map (FAB-MAP) [12] is one of the typical applications
of the BoVW and has become a standard baseline in loop closure detection algorithms.
Fisher Vector (FV) [17,18] and vector of locally aggregated descriptors (VLAD) [19,20]
are derived from the basic idea of BoVW and become mainstream algorithms for visual
SLAM [21,22]. Fisher vectors utilize a Gaussian Mixture Model to generate codebook and
local descriptors are vector-quantized to visual words. Compared with BoVW, FV contains
richer information. VLAD can be viewed as a simplification of Fisher vector and reduce the
computational redundancy. In addition to the above mentioned, GIST as a global image
descriptor has also been extensively applied to loop closure detection [23–25]. The GIST
descriptor is computed by the Gabor filter on a whole image and the generated descriptor
is no more than 1000 dimensions

Inspired by the outstanding performance of deep learning architecture in various
computer vision tasks, deep learning-based descriptors have recently come into usage in
the problem of loop closure detection [26–29] and the effectiveness and superiority of deep
features have been validated on multiple public datasets.

Gao et al. [27,28] firstly trained an unsupervised stacked auto-encode mode to extract
feature representations in RGB images and then, the loop is judged by the similarity
matrix. To speed up feature processing, there are many methods, such as [30,31], but
PCANet [30], which is a simple deep learning architecture, has also been used in loop
closure detection. Xia et al. [29] used PCANet to extract feature descriptors and then,
the similarity of two descriptors is measured by the cosine distance. As expected, their
algorithm costs the shortest computational time of 0.012 s per image. The convolutional
neural network structure has gained more and more attention in multiple computer vision
tasks, including image and video classification [32,33], object and face detection [34,35],
action recognition [36,37], bioacoustics [38], etc. The remarkable achievements of ConvNet
on computer vision are largely contributed to its excellent data generalization ability.
Thus, it is advisable to apply the power of ConvNet structure to the specific task of
loop closure detection instead of using traditional image descriptors. Hou et al. [26]
creatively proposed the ConvNet-based method, which utilized AlexNet to automatically
learn feature descriptors and then the similarity between descriptors was measured by
the L2-norm distance for visual loop closure detection and achieved the state-of-the-
art performance. In their implementations, they utilized AlexNet [32], which made a
breakthrough success in the Large Scale Visual Recognition Challenge 2012 (ISVRC2012)
to extract features and then, the L2 norm distance was used for matching. However, the
standard ConvNet architecture was essentially designed for image classification tasks, and
descriptors learned by softmax entropy loss may be suboptimal for matching tasks. Thus,
there is space for improvements by improving the ConvNet architecture.

Based on the above analysis, in this paper, we develop a new Siamese Convolutional
Neural Network (SCNN) for the problem of loop closure detection. Firstly, we use the
SCNN model to extract features as image descriptors; then, the L2 norm distance is adopted
as a similarity metric between descriptors. The proposed method is validated on two open
datasets. Among them, New College [12] is widely used in visual SLAM research; the NYU
dataset [39] consists of RGB-D image pairs with both color and depth images collected by a
high-resolution Kinect camera, as shown in Figure 3.
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The main contributions of our study can be summarized into three aspects: (1) We
utilized a novel Siamese Convolutional Neural Network (SCNN) combining RGB stream
and depth stream in a late fusion way to extract features as image descriptors and used
the L2 norm distance as a similarity measure between descriptors for the specific task of
loop closure detection, which can improve the detection accuracy. (2) We investigated three
strategies (early fusion, mid-level fusion, and late fusion) to combine RGB stream and
depth stream for RGB-D loop closure detection. This was combined with the experimental
selection of late fusion to achieve high accuracy and recall, which is most suitable in the
RGB-D loop closure detection task. (3) Our proposed approaches achieved state-of-the-art
performance on both the RGB dataset and RGB-D dataset, which shows that the method
applies to monocular in addition to RGB-D cameras.

The rest of this paper is organized as follows: the proposed method and the overall
framework are detailed in Section 2; the experiments and comparisons of results are
summarized in Section 3; and finally, we conclude this paper in Section 5.

2. Materials and Methods

In this section, we first introduce the proposed Siamese ConvNet architecture spe-
cialized for loop closure detection and then, explore three fusion strategies (early fusion,
mid-level fusion, and late fusion) of combining RGB stream and depth stream for RGB-D
loop closure detection. Our sole aim in this paper is to extract representative features to
apply the loop closure detection tasks, and to learn better similarity metrics.

2.1. Siamese ConvNet Architecture for Loop Closure Detection

For the Siamese ConvNet architecture, the proposed Siamese Convolutional Neural
Networks (SCNN) takes a similar structure to AlexNet [32], which is composed of five
convolutional layers and three fully connected layers. However, in contrast to the classical
Convolutional Neural Networks (CNNs), it takes a pair of images as input and then feeds
forward by two identical branch convolutional structures, which share the same parameters.
An illustration of the enhanced deep architecture can be seen in Figure 4 and the parameters
of each layer are listed in Table 1.

The architecture takes an image pair with pixels of 227 × 227 × 3 as input including
eight layers. The first five layers are convolutional layers, and the last three layers are the
inner product (full connected) layers. Relu, pooling, and normalization follow after the
output of each convolutional layer. The first convolutional layer filters the 227 × 227 × 3
input with kernels of size 11 × 11 × 3 with a stride of 4 pixels and then, the output of
the first convolutional layer is rescaled to 27 × 27 × 96 by the 3 × 3 max pooling. The
second convolutional layer takes the feature maps of the first layer as input, filters it with
256 kernels of size 5 × 5 × 96, and acquires feature maps with a size of 13 × 13 × 256. The
third convolutional layer takes the feature maps of the second layer as input, filters it with
384 kernels of size 3 × 3 × 256, and acquires feature maps with a size of 13 × 13 × 384.
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Note that the parameters of other layers can be looked up in Table 1, which are similar to
the Alexnet.
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Table 1. The relevant layers and their parameters of SCNN.

Layer Layer Type Parameter

input1_1, input1_2 input Image size:227 × 227 × 3
conv1_1, conv1_2 convolution Filter size:11 × 11, Filter Num:96, Stride: 4
pool1_1, pool1_2 pooling Pooling method: Max, Kernel size:3 × 3, Stride: 2
conv2_1, conv2_2 convolution Filter size:5 × 5, Filter Num:256, Stride: 1
pool2_1, pool2_2 pooling Pooling method: Max, Kernel size:3 × 3, Stride: 2
conv3_1, conv3_2 convolution Filter size:3 × 3, Filter Num:384, Stride: 1
conv4_1, conv4_2 convolution Filter size:3 × 3, Filter Num:384, Stride: 1
conv5_1, conv5_2 convolution Filter size:3 × 3, Filter Num:256, Stride: 1
pool5_1, pool5_2 pooling Pooling method: Max, Kernel size:3 × 3, Stride: 2
full6_1, full_6_2 fully connected Neurons output:4096
full7_1, full_7_2 fully connected Neurons output:2048

softmax_1,
softmax_2 fully connected Neurons output:205

feat1_1, feat1_2 fully connected Neurons output:1000

• Pre-train

The Siamese ConvNet on the Place dataset [40] contains more than 2.5 million images
of 205 scene classes. Formally, we feed image pairs with a size of 227× 227× 3 as input and
define training samples of xk

1 =
{

xk
1, xk

2, lk
1, lk

2

}
, where xk

1 and xk
2 represent the k-th input

pairs, and lk
1 and lk

2 are its corresponding labels. Then, the architecture can automatically

extract 2048 dimensions feature vectors fk =
{

fk
1, fk

2

}
:
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fk = Conv(xk
∣∣∣θnet) (1)

where Conv(·|θnet) is the feature extraction function defined by the Siamese ConvNet, and
θnet is the shared parameter to be learned.

Then, the problem can be reduced to select an appropriate loss function as supervision.
Here, we attempt three strategies for feature learning: softmax supervision, contrastive
supervision, and multi-task supervision.

• Softmax supervision:

Softmax supervision. The softmax_1 and softmax_2 layers output the probability of
205 scene classes. We compute the cross-entropy of once iteration and select the softmax
loss as supervision, which can be represented as follows:

Lcls(f
k, lk, θcls) = −[

n

∑
i=1

1
{

i = lk
}

log P(i = lk, θcls)] (2)

where fk =
{

fk
1, fk

2

}
is the k-th extracted feature vectors, lk = {lk

1, lk
2} denotes the class label,

θcls is the parameter of softmax classifier, and 1{·}is the indicator function:

1{a true statement} = 1 and
1{a flase statement} = 0.

P
{
·
∣∣∣fk, θcls

}
represents the predicted probability of each class.

Softmax supervision has been widely used in various image classification tasks, but
the learned features are not well suited for our application of matching tasks, which will be
validated by the experiment in Section 4.

• Contrastive supervision:

The full7_1 layer and full7_2 layer outputs 2048-d feature vectors of fk =
{

fk
1, fk

2

}
. We

apply the L2-normal distance to quantify the similarity between pairs of feature vectors
and define a contrastive loss as supervision, which can be represented as follows:

Lcts(fk, lk, θcst) =


1
2

∣∣∣∣∣∣fk
1 − fk

2

∣∣∣|22 i f lk
1 = lk

2

1
2 max

{
0, m−

∣∣∣∣∣∣fk
1 − fk

2

∣∣∣∣∣∣2}2
i f lk

1 6= lk
2

(3)

Optimizing the contrastive loss equals minimizing the L2-norm distance between
feature vectors, when fk

1 and fk
2 are from the same class (lk

1 = lk
2), and maximize the L2-norm

distance between feature vectors, when fk
1 and fk

2 are from the different class(lk
1 6= lk

2).
θcst = {m} is the parameter to be learned in the contrastive loss function.
Although contrastive supervision can be applicable in matching tasks, we consider it

to be a suboptimal solution due to the lack of regularization items.

• Multi-task supervision:

We can jointly learn the softmax entropy loss and contrastive loss by optimizing the
multi-task loss function. We can define multi-task supervision as follows:

L(xk, lk, θ) = Lcls + λ · Lcst+
∣∣∣∣∣∣θnet

∣∣∣∣∣∣22+∣∣∣∣∣∣θcst

∣∣∣∣∣∣22+∣∣∣∣∣∣θcls

∣∣∣∣∣∣22 (4)

where Lcls is the softmax entropy loss, Lcst is the contrastive loss, and λ is the hyperpa-
rameter balance of the softmax entropy loss and the contrastive loss. θnet, θcls, and θcst are
the parameters to be learned. We use the stochastic gradient descent algorithm to update
the related parameter and the proposed multi-task learning strategy is summarized in
Algorithm 1.
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Algorithm 1 learning strategy for loop closure detection

Input: training set X =
{

x1, x2, x3, . . . , xk
}

, xk =
{

xk
1, xk

2, lk
1, lk

2

}
, initialized parameters θnet, θcls

and θcst. learning rate η(t), t← 0 , times of iteration N, batch size k.
While t 6= N do
t← t + 1 sample M training samples from X
fi = Conv(xi

∣∣∣θnet)

∇θcls =
M
∑

i=1

∂Lcls(f
i ,li ,θcls)

∂θcls

∇θcst = λ ·
M
∑

i=1

∂Lcst(fi ,li ,θcst)
∂θcst

∇fi = ∂Lcls(f
i ,li ,θcls)

∂fi + λ · ∂Lcst(fi ,li ,θcst)

∂fi

∇θconv =
M
∑

i=1

∂Conv(xi ,θconv)
∂θconv

Update θconv = θconv − η(t) · ∇θconv, θcst = θcst − η(t) · ∇θcst, θcls = θcls − η(t) · ∇θcls
End while
Output θconv, θcls and θcst

• Detecting loops;

After training the Siamese networks, we feed the test image to the trained architectures
and then extract the features of the full7 layer as image descriptors. Given two arbitrary
scenes (xi, xj), we compute the L2-norm distance of the generated descriptors:

D(i, j) =
∣∣∣∣∣∣fi − fj

∣∣∣∣∣∣ (5)

By this definition, if an item D(i, j) is smaller than the threshold T, we can say the two
scenes are matching and vice versa.

2.2. RGB-D Fusion for Loop Closure Detection

For RGB-D SLAM, we employ a Microsoft Kinect camera to capture location and depth
information [41] as complementary in our application. The Siamese ConvNet architecture
can feed-forward and generate image descriptions for loop closure detection. However,
how to combine the RGB stream network and the depth stream network needs further
discussion. There are three available strategies for fusion: early fusion, mid-level fusion,
and late fusion.

• Early fusion:

In early fusion strategy, appearance information and depth information are combined
at the beginning of the network. RGB images and depth images are concatenated together,
giving rise to a four-channel input (three channels from RGB stream and one channel from
depth stream). Then, the Siamese network generates the description for the final decision.
Figure 5 shows the flowchart of the early fusion pipeline.
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• Mid-level fusion:

In contrast to the early fusion, RGB images and depth images are respectively fed to
the RGB stream and depth stream, and two networks are fused at intermediate layers with
the same size of feature maps. Finally, the combined architecture outputs the description
for detecting loops. Figure 6 shows the flowchart of the mid-level fusion pipeline.
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• Late fusion:

In the late fusion strategy, the two streams are discriminatively trained for feature
extraction. The generated RGB descriptions and depth descriptions are combined by
averaging for the final decision, as shown in Figure 7.
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We experiment to compare the three-fusion strategy in the next Section 3. By quantify-
ing the experiment results, we conclude that late fusion is best suited in our application of
RGB-D loop closure detection.

3. Results

In our experiment, we use the open-source toolkit Caffe to implement the proposed
Siamese CNN architecture for feature extraction and matching. We perform on a work-
station with Intel Core I7, NVIDIA GTX TITAN X GPU, and the operating system of
Ubuntu 16.04. We utilize the Stochastic Gradient Decent (SGD) to update the parameters
of each layer with the mini-batch size of 100, the momentum of 0.9, and the initial learning
rate of 0.01. The training procedure is maintained until the validation accuracy remains
unchanged for 10 consecutive epochs.

3.1. Experiment Setup

Our proposed method is evaluated on two public loop closure detection datasets (New
College and NYU). New College is an RGB SLAM dataset, which consists of 1073 image pairs
with a resolution of 640 × 480, recorded by a motion robot with two symmetrical cameras on
the right and left side while moving through the outdoor environment, and all ground truth
loops are annotated for evaluating the performance of RGB loop closure detection. NYU is an
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RGB-D SLAM dataset that contains 1449 RGB-D image pairs with a resolution of 512 × 424
including both color and depth images, captured by Microsoft Kinect.

Here, to quantify the comparative experiment results, we use two evaluation criteria:
precision rate and recall rate, which can be denoted as the following formulations:

precision =
NTruePositive

NTruePositive + NfalsePositive
(6)

recall =
NTruePositive

NTruePositive + NfalseNegative
(7)

Precision rate refers to the probability that all loop closures extracted by the algorithm
are true loops. Recall is the probability of being correctly detected in all true loop closures.
The precision–recall curve is utilized to intuitively reflect the performance of different
implementations in the next subsection.

3.2. Experiment Results on New College Dataset

We report the experimental results of our proposed Siamese convolutional neural
network-based method and its comparisons with both traditional methods and other deep
learning-based methods. A precision–recall curve of comparisons on the New College
dataset can be seen in Figure 8.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13 
 

rate of 0.01. The training procedure is maintained until the validation accuracy remains 
unchanged for 10 consecutive epochs. 

3.1. Experiment Setup 
Our proposed method is evaluated on two public loop closure detection datasets 

(New College and NYU). New College is an RGB SLAM dataset, which consists of 1073 
image pairs with a resolution of 640 × 480, recorded by a motion robot with two symmet-
rical cameras on the right and left side while moving through the outdoor environment, 
and all ground truth loops are annotated for evaluating the performance of RGB loop clo-
sure detection. NYU is an RGB-D SLAM dataset that contains 1449 RGB-D image pairs 
with a resolution of 512 × 424 including both color and depth images, captured by Mi-
crosoft Kinect.  

Here, to quantify the comparative experiment results, we use two evaluation criteria: 
precision rate and recall rate, which can be denoted as the following formulations: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑁 + 𝑁  (6) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑁𝑁 +𝑁  (7) 

Precision rate refers to the probability that all loop closures extracted by the algo-
rithm are true loops. Recall is the probability of being correctly detected in all true loop 
closures. The precision–recall curve is utilized to intuitively reflect the performance of 
different implementations in the next subsection. 

3.2. Experiment Results on New College Dataset 
We report the experimental results of our proposed Siamese convolutional neural 

network-based method and its comparisons with both traditional methods and other deep 
learning-based methods. A precision–recall curve of comparisons on the New College da-
taset can be seen in Figure 8. 

 
Figure 8. Precision–recall curves for different methods on the New College dataset. 

The yellow curve shows the experiment results of the global image descriptors GIST, 
which is proposed by Singh et al. [24]. In their implementations, they utilized the GIST 
features to generate global descriptors, and then the Manhattan distance is adopted as a 
similarity metric for matching. Here, we repeated their feature extraction approach and 

Figure 8. Precision–recall curves for different methods on the New College dataset.

The yellow curve shows the experiment results of the global image descriptors GIST,
which is proposed by Singh et al. [24]. In their implementations, they utilized the GIST
features to generate global descriptors, and then the Manhattan distance is adopted as a
similarity metric for matching. Here, we repeated their feature extraction approach and
matching strategy. However, it obviously can be observed that the global descriptor-based
method is barely satisfactory in the loop closure detection tasks.

Cummins et al. [11] proposed a baseline method, in which the Bag-of-Visual-Words
(BoVW) model was employed to generate codebook representations for matching. Here,
we use the green curve to represent the BoVW-based method and we can discover that the
BoVW-based method slightly outperforms the method of [24].

So far, the latest algorithm of loop closure detection is deep learning based. Hou et al. [26]
utilized AlexNet to automatically learn feature descriptors and then the similarity between
descriptors is measured by the L2-norm distance. We use the purple curve to represent
the performance and we observe that the standard CNN achieves comparable experiment
results to that of the FV and the VLAD-based method.
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We test our proposed Siamese CNN-based method on the New College dataset and
show its performance with the red curve. Three learning strategies (softmax supervision,
contrastive supervision, and multi-task supervision) are annotated with different line
shapes. As we can see in Figure 8, the performance of single-task supervision is similar to
the standard CNN method. However, Siamese CNN with the multi-task learning strategy
yields a more than 90% precision rate with an 83% recall rate, significantly increasing the
previous loop closure detection approaches and achieving the state of the art.

3.3. Experiment Results on NYU Dataset

In this subsection, we test our proposed method on an RGB-D loop closure detection
dataset NYU. Firstly, Siamese CNN is utilized to extract descriptors in both RGB stream
and depth stream; and then, we investigate the performance of three fusion strategies
for the RGB and depth stream at different locations of the SCNN, which are early fusion,
mid-level fusion, and late fusion.

In early fusion, RGB images and depth images are combined at the beginning of
the SCNN. In mid-level fusion, two streams are fused at the intermediate layers of the
networks while in late fusion, two streams learn feature descriptors respectively, and then
are combined by score averaging. The experiments use three different fusion methods
respectively combined with SCNN on the NYU dataset.

Here, we depict the performance of three fusion strategies in Figure 9. In mid-level
fusion, the fusion experiments were chosen to be performed in different intermediate layers
of the networks and precision–recall curves were obtained. W list the average precision
of mid-level fusion from the different intermediate layers in Table 2. We can observe that
mid-level fusion at the Conv2 layers achieves the highest average precision score of 0.8111.
However, as shown in Figure 9, the late fusion strategy achieves a 92% precision rate with
an 82% recall rate, which is best suited for the RGB-D loop closure detection task.
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Table 2. Average precision score of mid-level fusion at different intermediate layers.

Layers Conv1 Pool1 Conv2 Pool2 Conv3 Conv4 Conv5 Pool5

AP 0.7444 0.7644 0.8111 0.7778 0.7222 0.7444 0.6667 0.6333
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3.4. Computational Time

Another important way to evaluate our approach is computational efficiency. We use
Matlab to extract traditional hand-crafted features and deep learning-based features with a
3.40 GHz CPU and 32 GB memory. We also use the Caffe for testing the deep learning-based
descriptor extraction time on a PC with NVIDIA TITAN X GPU. The average computational
time for different descriptors is listed in Table 3. The reported time here is based on the average
of over 400 images, which only contains the feature extraction time. We can find the SCNN
descriptors are faster than all hand-crafted descriptors but slower than CNN descriptors on
CPU. For the GPU-based extraction, the SCNN descriptors only take 0.029 s per image on
average, and it approximates the average extraction time with CNN descriptors.

Table 3. Average computational time for different approaches.

Feature BoVW GIST CNN SCNN

Time(s) 1.517 0.524
CPU GPU CPU GPU
0.142 0.021 0.208 0.029

4. Discussion

In this paper, we conduct a comparative study of loop closure detection based on
traditional methods and neural network methods. As traditional methods, such as visual
Bag-of-Visual-Words and feature descriptor methods, are susceptible to environmental
factors, deep learning-based methods are gradually coming into the focus of researchers.
This paper focuses on the extraction of image features by convolutional neural networks
and applies them to loop closure detection.

The SCNN method proposed in this paper is compared and analyzed with another
deep learning method (CNN) and two other artificially designed features (BOVW, GIST) in
terms of accuracy and time performance. The experimental results show that, compared
with the traditional feature extraction method, the neural network method has significantly
higher efficiency and real-time performance. Moreover, the SCNN method greatly improves
the efficiency and accuracy of image feature extraction.

In addition, we make full use of the depth information and divide it into three fusion
strategies according to the different fusion positions of RGB stream and depth stream in
the neural network, which are called early fusion, mid-level fusion, and late fusion, and
the experiments prove that the late fusion strategy has a higher accuracy and recall rate.

In the study of loop closure detection using deep learning algorithms, although the
accuracy and computational efficiency have been improved, how to combine the improved
algorithm with the back-end optimization of visual SLAM requires further research.

5. Conclusions

We introduce Siamese Convolutional Neural Networks (SCNNs) in this paper, which
make full use of depth information and use a late fusion strategy to fuse the rgb stream
with the depth stream to solve the loop closure detection task in RGB-D slam. We used
SCNN-based features from a pre-trained model for scene classification. The experiment
results on the public dataset show that SCNN-based image descriptors perform better than
CNN and hand-crafted descriptors. In addition, the SCNN-based image descriptors can be
applied to RGB-D slam in loop closure detection. Our study can be applied to most indoor
scenes. However, for the special task of loop closure detection, an SCNN model suitable
for outdoor scenes needs to be trained.
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