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Abstract: Silver-ion-based antiseptics are widely used in treating chronic leg ulcers and, given the
emergence of resistance to such compounds, the investigation of silver susceptibility and resistance
profiles of pathogenic strains isolated from this type of wound is a topic of great interest. Therefore,
in this study, 125 bacterial strains isolated from 103 patients with venous ulcers were investigated to
elucidate their susceptibility to silver-nitrate solutions in planktonic and biofilm growth states, and
the associated genetic determinants. The isolated strains, both in the planktonic and biofilm growth
phases, showed high sensitivity to the standard concentration of 1/6000 silver-nitrate solution. It was
noticed that even at concentrations lower than the clinical one (the first 2–3 binary dilutions in the
case of planktonic cultures and the first 6–7 binary dilutions in the case of biofilms), the antiseptic
solution proved to maintain its antibacterial activity. The phenotypic results were correlated with the
genetic analysis, highlighting the presence of silver-resistance genes (sil operon) in only a few of the
tested Staphylococcus sp. (especially in S. aureus) strains, Escherichia coli and Pseudomonas aeruginosa
strains. These results demonstrate that despite its large use, this antiseptic remains a viable treatment
alternative for the management of chronic leg wounds.

Keywords: silver nitrate; chronic leg wounds; susceptibility; resistance; sil operon

1. Introduction

Leg ulcers are lesions due to a lack of skin below the knee that, with chronic evolution
for more than six weeks, can occur as a consequence of a primary or secondary circulatory
disease [1,2]. This pathology represents a significant health problem, affecting 1–2% of the
world’s population [3]: between 0.6–3% of individuals over 60 years of age and over 5% of
those over 80 years, respectively. The prevalence of leg ulcers varies between 1.9–13.1%
and, during lifetime, about 10% of the population will develop such a disease, with a
mortality rate of 2.5% [1]. In Romania, there are no statistics related to the prevalence of this
disease, excepting the SEPIA study conducted in 2004, which was the first epidemiological
survey performed in Romania on the prevalence of chronic venous insufficiency, showing
that approximately 32% of patients had signs or symptoms of venous disease, including
skin ulcers, more than half of which had not been diagnosed before inclusion in the study
and were thus untreated [4]. Regarding the worldwide distribution, the incidence of leg
ulcers in different regions of the world varies as follows: in the US, 2–3 million patients
are reported annually; in the UK: 3.5 cases per 1000 individuals; Ireland: 0.12 cases per
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100 individuals; Switzerland: 0.2 cases per 1000 individuals; New Zealand: 79 cases per
100,000 individuals; China: 1.5–20.3 cases per 100 individuals [1].

The main features involved in leg-ulcer pathology are: increased enzymatic activity
of matrix proteases [5], especially metalloproteinases [6], increased local concentration
of proinflammatory cytokines that trigger an exaggerated inflammatory response, cell
senescence [5], decreased angiogenesis and degradation of the newly formed cell matrix [6],
and deficiency of response to growth factors [5], which causes the low mitogenic activity
of tissue cells and a delayed repair phase [7]. The evolution of leg ulcers is frequently
complicated by the occurrence of chronic-wound-associated infections, the most frequently
isolated microbial strains being Staphylococcus aureus, Escherichia coli, Enterococcus faecalis
and fungi, particularly Candida spp. [7]. Although there are numerous international studies
on the microbiome’s contribution to the evolution of chronic ulcers in Romania, there is
very little data on the virulence or resistance phenotypes of microbial strains isolated from
these chronic pathologies. Elucidation of resistance profiles, not only to antibiotics, but
also to the antiseptics that are used in the treatment of chronic ulcers, is crucial to optimize
therapeutic strategies [8,9].

Silver-based antiseptics are among the most used antiseptics for chronic-ulcer ther-
apeutic management. Silver is inactive in its metallic, elementary form, but it becomes
bactericidal after ionization, a phenomenon that occurs in the air, but much faster in ex-
udative media, such as exudative wounds [10]. Silver has been described as oligodynamic
due to its bactericidal effect at very low concentrations [11]. Silver ions bind to the cell
membrane, leading to the alteration of the electric potential [12] by the massive loss of
protons across the membrane, resulting in the loss of electrical potential and, ultimately,
cell death [11]. Inside the bacterial cell, silver ions interact with nucleophilic groups in
proteins, attaching to the sulfhydryl, amino, imidazole, phosphate and carboxyl groups and
leading to protein denaturation. Silver interferes with the energy-producing systems and
their enzymes [12]. Thus, silver can disrupt respiratory chain enzymes (dehydrogenases)
causing premature electron leakage, which when reacting with cytoplasmic molecular
oxygen (O2) will generate a superoxide radical [13]. When used in the form of nanopar-
ticles, ranging in size from 1 to 100 nm and exhibiting different physical and chemical
characteristics, the bactericidal effect of silver is amplified, which allows it to be used for
the treatment of infections with multi-drug-resistant bacteria [14]. Metal nanoparticles act
by changing bacterial cell-membrane permeability [15]. Ag ions released from nanopar-
ticles can bind to thiol (-SH) groups of proteins and enzymes located on the cell surface,
disorganize the membrane and disrupt ATP synthesis. In the cytoplasm, silver nanopar-
ticles interact with protein-containing components, such as ribosomes and DNA [16].
Another mechanism of action is the release of oxygen radicals (singlet oxygen). The silver
nanoparticles have been proved to exhibit antimicrobial activity against many Gram-
negative (Acinetobacter baumannii, Proteus mirabilis, Escherichia coli, Klebsiella pneumoniae,
nitrifying bacteria, Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae) and Gram-positive
(Enterococcus faecalis, Listeria monocytogenes, Micrococcus luteus, Staphylococcus epidermidis)
bacteria [17].

This broad antimicrobial spectrum of silver and silver nanoparticles has led to the
development of silver-containing dressings. The continuous release of silver ions translates
into anti-inflammatory effects, stimulation of blood-vessel development, killing of bacterial
cells, and hydrating and softening of the necrotic tissue, with the final result being a clean
wound [8,18–21]. Silver can be used not only for wound-infection treatment, but also
prophylactically, mainly in the case of wounds with an increased risk of infection or re-
infection, such as burns, surgical wounds, pressure ulcers adjacent to the anus, exposed
bone wounds, and wounds in immunocompromised patients with impaired circulation,
such as unbalanced diabetics [22].

Unfortunately, different mechanisms of silver resistance have been described, includ-
ing silver sequestration in the periplasm and active efflux, particularly in Gram-negative
bacteria isolated from chronic wounds. The resistance mechanisms are encoded by multiple
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plasmodial genes that could be responsible for the occurrence of multi-drug resistance
phenotypes. In this context, the purpose of this paper was to study the phenotypic and
genetic profiles of resistance to silver nitrate, a compound currently used in the treatment
of leg ulcers, in bacterial strains isolated from Romanian patients with this pathology.

2. Results

In this paper, we tested the efficiency of silver-nitrate solution on 125 strains isolated
from patients with leg ulcers. The tested strains were predominantly Staphylococcus spp.
(47%) (Staphylococcus aureus, S. chromogenes, S. xylosus, S. warnerii, S. haemolyticus, S. sciuri,
S. epidermidis, S. hominis) and Enterobacteriaceae (17%) (Enterobacter aerogenes, E. intermedius,
Serratia marcescens, S. odorifera, Klebsiella pneumoniae/rhinoscleromatis), followed by Enterococcus
spp. (13%) (E. faecalis, E. faecium), non- Enterobacteriaceae (12%) Chryseomonas luteola,
Pseudomonas aeruginosa, Alcaligenes faecalis, Burkholderia cepacia) and streptococci (11%)
(Lactococcus lactis, Aerococccus viridans, Streptococcus uberis).

2.1. Qualitative Screening of the Spectrum of Sensitivity of Different Microbial Strains to
Silver-Nitrate Solution

The qualitative screening of antiseptic activity was performed on all isolates and
was represented as the average value of the growth-inhibition diameter obtained for the
individual strains belonging to Staphylococcus spp., Enterobacteriaceae, Enterococcus spp.,
non-Enterobacteriaceae and streptococci.

Our results showed that the 1/6000 silver-nitrate solution exhibited the best inhibitory
effect against the growth of Staphylococcus spp. strains (as revealed by the highest growth-
inhibition-zone diameters), while the most resistant proved to be the Enterococcus spp.
strains (Figure 1).
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Figure 1. Graphic representation of average growth-inhibition-zone diameters (mm) obtained for the
tested strains in the presence of silver-nitrate antiseptic solution of 1/6000 concentration.

2.2. Quantitative Testing of Antiseptic Efficacy of Binary Concentrations of Silver-Nitrate Solution

The quantitative testing of antiseptic efficacy against planktonic cells revealed that
the 1/6000 silver-nitrate solution inhibited the growth of the tested bacterial strains at the
standard concentration used in medical practice, as well as for the first two (in case of
Gram-positive strains) or four (in case of Gram-negative strains) successive binary dilutions,
followed by a considerable decrease until the loss of the effect at lower concentrations
(Figure 2).
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Figure 2. Graphic representation of planktonic growth dynamics (expressed as average value of
absorbances obtained for different strains) in the presence of binary concentrations of 1/6000 silver so-
lution for the analyzed strains (Dil.1.–10.-tested binary concentrations) (average value of absorbances
obtained for the tested strains are represented).
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2.3. Anti-Biofilm-Activity Assay of the Silver-Nitrate Solution

The quantitative testing of antiseptic efficacy against biofilm-embedded cells revealed
that the 1/6000 silver-nitrate solution inhibited the growth of the Gram-positive strains
(Staphylococcus spp., Enterococcus spp., Streptococcus spp.) and of the Enterobacteriaceae
tested strains at the standard concentration used in medical practice, as well as at lower
concentrations (for the following six to nine serial binary dilutions), while in the case
of the non-Enterobacteriaceae, which are Gram-negative strains, only the standard clinical
concentration and the first binary dilution showed a significant inhibitory effect of biofilm
development (Figure 3).
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Figure 3. Graphic representation of the inhibition of microbial biofilms developed on the inert
substratum in the presence of binary concentrations of the 1/6000 silver-nitrate stock solution for the
analyzed strains (Dil.1.–10.-tested binary concentrations) (average value of absorbances obtained for
the tested strains are represented).

2.4. Study of the Genetic Determinants of Resistance to Silver Ions

The study of the genetic determinism of the resistance to silver ions allowed us to
highlight the presence of the sil genes in only few of the tested strains, i.e., E. coli—silE;
S. xylosus—silS; S. aureus; P. aeruginosa—silB, S. xylosus; methicillin resistant S. aureus (MRSA);
E. coli—silCAB; S. chromogenes; MRSA—silRS; MRSA, S. haemolyticus—silA (Figures 4–7).
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Figure 4. Electropherogram of amplicons obtained by PCR for SilE, SilS, and SilP genes. (A) Wells
3–27—amplicons of the analyzed strains; well no. 28, L-GeneRuler molecular weight marker 3000 bp
(Mid Range DNA); Positive strains: E. coli—258 for the silE gene. (B) Wells 1–22—amplicons of the
analyzed strains; well no. 23, L-molecular weight marker GeneRuler 3000 bp (Mid Range DNA);
Positive strains for the SilS gene: S. xylosus (17).
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Figure 5. Electropherogram of amplicons obtained by PCR for SilB genes. (A) Wells 2–28—amplicons
of the analyzed strains; well no. 1, L-Molecular Weight Marker GeneRuler 3000 bp (Mid Range DNA);
Positive strains: S. aureus number 3015 for the SilB gene. (B) Wells 2–19—amplicons of strains 42–23;
well no. 1, L-Molecular Weight Marker GeneRuler 3000 bp (Mid Range DNA); Positive strains for
SilB gene: number 14532—P. aeruginosa; 25—S. aureus; 13331—P. aeruginosa; 370—S. aureus.
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3. Discussion

The rising prevalence of diabetes represents a public health and socioeconomic bur-
den [23]. Diabetic foot ulcers occur due to a combination of multiple factors: underlying
peripheral vascular disease, impaired leukocyte function and cell proliferation, polyneu-
ropathy and increased plantar pressure, of which unfortunately about 75–85% of cases end
in amputation. Because of the angiopathy and nerve damage, the majority of diabetic foot
wounds are asymptomatic for a great period of time, leading to complications [23–26]. The
neuropathy allows ulceration to develop after unrecognized trauma, whereas poor blood
supply (ischemia) inhibits wound healing [27].

The evolution of the diabetic foot ulcer is divided into four stages: black (necrosis),
yellow (inflammatory exudate), red (granulation formation), and pink (epithelial formation)
and, regarding them, the treatment principles refer to T = tissue; I = infection/inflammation;
M = moisture balance and E = wound edges [28–30].

Silver dressings are used to treat wounds in order to lower the microorganism load in
acute or chronic ulcers and aid in creating an antibacterial barrier [23]. The most important
bactericidal mechanism exhibited by silver-based antiseptics is the binding to the bacterial
surface, which affects the membrane structure and function as well as the release of reactive
oxygen species, which are active in both planktonic and biofilm-embedded cells [11,13].

Although the VULCAN study highlighted the lack of therapeutic superiority of silver
dressings in the treatment of venous ulcers compared to other dressings, and that they
are also more expensive, other studies have demonstrate the cost-effectiveness of silver-
containing dressings because by using them: the healing time of wounds is reduced [31,32]
and thus the duration of hospitalization drops [33,34]; the frequency of changing dressings
and the need for analgesics, as well as bacteremia secondary to MRSA-infected wounds are
decreased [8,35–37]. The most commonly used modern dressings in clinical practice are
hydrogels, hydrocolloid, alginates, foams, and films [38].
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Different studies have evaluated the efficiency of silver dressings. Huang C et al.
designed a silver-ion dressing that is composed of a grid structure of sodium carboxymethyl
cellulose and 1.2% silver ions, which has broad-spectrum antibacterial properties [8]. Due to
these highly optimized properties, nano-silver dressings have more advantages in diabetic
foot therapy [21]. Adding epidermal growth factor to the nano-silver material can lead to
wound healing [39]. Another clinical study evaluated the combination of alginate fibers,
prontosan gel, and silver ions. Alginate fibers can form a gel in combination with the wound
moisture, thus ensuring a microacidic environment to promote wound healing. Prontosan
gel is compatible with silver ions. The use of combination therapy is more effective at
removing necrotic tissue, preventing biofilm formation, and removing exudate [40]. The
silver-releasing foam dressing has proven to be more effective than silver sulfadiazine in
the wound healing of diabetic foot ulcers [41].

Although silver is usually considered a benign material, it can also produce secondary
effects such as: the formation of ulcers in burns treated with silver, the staining or destruc-
tion of skin cells when directly applied to the treatment of vulgar warts, and sometimes
increased serum levels of silver, even argiria and argirosis in self-medicated patients with
colloidal silver solutions. There is also a concern about the toxicity of silver nanoparticles
to other organisms (especially aquatic organisms) [42].

One of the problems raised by the large use of silver-based antiseptics is the emergence
of silver resistance. The endogenous resistance has been described mostly in Gram-negative
bacteria and involves multiple mechanisms, such as: derepression of the chromosomal
Cus system or of the silver-resistance genes (sil genes) [43]; loss of outer-membrane porins
(OmpF or OmpF/C), leading to reduced outer-membrane permeability; active efflux of
silver out of the cell (transporter CusCFBA) [44]. CHASRI is a copper-homeostasis and
silver-resistance island that is involved in silver resistance after mutation in CusS and/or
silS genes of members of Enterobacteriaceae family [45]. Components of the cus operon (CusF
and CusB) are overexpressed in E. coli silver-resistant strains [45]. In 1975, an outbreak
of Salmonella enterica serovar Typhimurium that was resistant to silver was recorded in a
burn unit. The epidemic strain proved to have an exogenous silver resistance due to the
acquisition of a plasmid harboring the sil system [43,44]. Later, it was shown that plasmid
gene-mediated resistance to silver can be conferred by sil and the related gene operon
present in the copper-resistant operon (pco) [37]. The plasmid pMG101 is 180 kb and
provides resistance to silver, mercury, tellurite, and antibiotics (ampicillin, chloramphenicol,
tetracycline, streptomycin and sulfonamides). The silver-resistance gene cluster contains
nine genes, out of which seven are named, and two are lesser known with open reading
frames (ORFs): silP, ORF105, silA, silB, ORF96, silC, silS, silR and silE. Silver-resistance
gene box encodes two efflux pumps (silP-ATPase and silCBA-chemiosmotic), and two
periplasmic proteins that bind Ag+ (silE), regulatory genes (silS-membrane kinase sensor
and silR) [45]. These proteins are responsible for silver resistance through a combination of
mechanisms involving silver sequestration in the periplasm (via SilE and SilF binding) and
active efflux (via the resistance-nodulation-division (RND)-type efflux transporter SilCBA
and the putative P-type ATPase transporter SilP) [45].

As silver ions are widely used in treating leg ulcers, burns, plantar ulcers, the investi-
gation of silver susceptibility and resistance profiles of pathogenic strains isolated from
this type of wound is a topic of great interest. Therefore, in this study, 125 bacterial strains
isolated from 103 patients with venous ulcers were investigated to elucidate the susceptibil-
ity of the skin microbiome to silver-nitrate solutions and study the genetic determinants
for this resistance. These bacterial strains were previously characterized for their virulence
and antibiotic-resistance features at the phenotypic and genotypic level [46,47].

The isolated strains, both in the planktonic and biofilm growth phase, showed sensi-
tivity to the standard concentrations of 1/6000 silver-nitrate solution that is currently used
as an antiseptic substance in treating leg ulcers.

Regarding the genetic support of silver resistance, Sütterlin et al. studied silE, silP,
and silS genes in strains isolated from leg ulcers, observing their presence in strains of
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Enterobacter aerogenes, E. cloacae, Klebsiella pneumoniae, K. oxytoca, E. coli, Citrobacter, Proteus,
Providencia, Salmonella and P. aeruginosa [35,47]. Finley et al. analyzed 859 strains belonging
to Staphylococcus, Escherichia, Pseudomonas, Klebsiella, Enterococcus, and Enterobacter genera.
They concluded that 32 of the strains were positive for the tested sil genes (silA, silB, silCBA,
silE, silF, silP, silRS), 14 being positive for all 7 genes [48]. Woods et al. isolated 60 strains
from human and horse ulcers and tested them for the presence of sil genes (silA, silB,
silCBA, silE, silRS, silF, sil F), identifying 10 E. cloacae strains that were positive for all the
tested sil genes [49]. Other strains reported to be resistant to silver were A. baumannii,
S. typhimurium, and P. stutzeri [12].

In our study, the investigation of the genetic determinism of silver-ion resistance
allowed the identification of the following plasmid resistance markers from the sil operon:
the presence of silA, silB, silC genes encoding for efflux pumps, the silE gene encoding
periplasmic proteins that bind Ag+ and silR, and silS regulatory genes in Staphylococcus spp.
(MRSA, S. chromogenes, S. haemolyticus) strains, followed by E. coli and P. aeruginosa. How-
ever, all these strains harboring silver-resistance genetic determinants remained susceptible
to the silver-nitrate concentration currently used for treating leg ulcers.

4. Materials and Methods
4.1. Chronic Leg Wound Bacterial Strains Collection

The tested strains were isolated at the Dermatovenerology Department of the Central
Military University Emergency Hospital “Carol Davila” in Bucharest, between October 2014
and September 2015, from 103 hospitalized patients with skin ulcers (secondary to chronic
venous insufficiency, arterial insufficiency, type 1 and 2 diabetes, necrotizing vasculitis,
Kaposi’s disease, squamous-cell carcinoma, bone necrosis). The study protocol complied
with the ethical prerogatives of the 1975 Helsinki Declaration and the standards of Good
Clinical Practice (GCP). The Dermatovenerology Department obtained the approval of
the Ethics Commission of the Central Military University Emergency Hospital “Carol
Davila” from Bucharest. The strains were isolated from wound secretion. Harvesting was
performed before any antibiotic therapy or within the first 24 h using exudate swabs. The
cotton swab was collected from the most representative area of the ulcer, either the purulent
or exudative area. In the absence of representative areas, it was harvested from the edge of
the ulcer. One sample was taken from each ulcer if there were multiple ulcers. Two exudate
swabs were used for this study: an exudate swab was used to make a direct smear of the
pathological product “at the patient’s bed”, while the second swab was used to transfer the
pathological product (pp) in the storage and transport environment. Containers with sterile
culture medium (thioglycolate broth) were used to store and transport the pathological
product. To obtain isolated colonies, sowing was practiced in the “open pentagon” of the
solid-blood agar medium distributed in a Petri dish by depleting the inoculum with the
bacteriological loop. After sowing, the Petri dish was incubated at 35–37 ◦C, for 18–24 h.
The representative isolated colonies were further purified and identified by conventional
biochemical tests, Vitek-2 and MALDI-TOF.

4.2. Qualitative Screening of the Spectrum of Sensitivity of Different Microbial Strains to
Antiseptic Substances by the Adapted Version of the Diffusion Method

With the help of sterile forceps, sterilized filter-paper disks were distributed in solid-
blood agar medium distributed in Petri dishes previously seeded with the bacterial inocu-
lum of the test strain. Using the micropipette, 10 µL of pharmaceutical antiseptic solution
of silver nitrate 1% diluted 1/6000 in distilled water were distributed on the filter-paper
disk. The plates were left at room temperature for 20–30 min to ensure the diffusion of the
substance. Then the plates were incubated for 16–18 h at 37 ◦C, with the lid down. The
reading of the results involved observing and measuring the area of inhibition of microbial
growth around the discs impregnated with the compound.
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4.3. Quantitative Assay of the Antimicrobial Activity of Silver-Nitrate Solution on
Planktonic Cultures

It was performed by the binary-microdilution technique in a liquid medium (Mueller
Hinton), made in 96-well plates, to determine the minimum inhibitory concentration (MIC).
For this purpose, ten binary serial dilutions of the antiseptic stock solution were performed
in a volume of 150 µL of Mueller Hinton medium, and then the wells were seeded with
50 µL of microbial suspension with a MacFarland density of 0.5. Each test was performed
with a positive control (a series of wells exclusively containing culture medium inoculated
with microbial suspension) and a negative, sterility control.

After incubating the plates at 37 ◦C for 24 h, the absorbance of the obtained liquid
cultures was measured at 620 nm.

4.4. Quantitative Assay of the Antimicrobial Activity of Silver-Nitrate Solution on Biofilms
Developed on Plastic Wells

It was performed by the purple-crystal-microtitration technique. After reading the
absorbance of the liquid content of the well, the 96-well plates were emptied, washed
with saline phosphate buffer to remove non-adherent bacteria, fixed for 5 min with cold
methanol, stained for 15 min with violet-crystal alcohol solution, and washed to remove
the excess dye. The fixed and stained biofilms were subsequently resuspended with
33% acetic-acid solution, and the absorbance of the stained suspension was measured
spectrophotometrically at 490 nm.

4.5. Genotypic Highlighting of Silver Ion Resistance Markers in Isolated Strains

Genomic DNA was extracted from 45 strains of Staphylococcus spp., Streptococcus
spp., Enterococcus spp., Enterobacteriaceae and non-enteric Gram-negative bacilli, showing
susceptibility only to the highest tested concentration of silver-nitrate solution, using
the Wizard®® SV Genomic DNA Purification System kit (Promega, Woods Hollow Road,
Madison, WI, USA) according to the manufacturer’s recommendations. The obtained DNA
was used as a template in 4 multiplex PCR reactions and one simplex PCR to identify SilE,
SilS, and SilP carrier strains; SilB; SilCAB and SilF; SilE and SilRS; SilA and SilP.

The sequences of the primers used, their specificity, and the amplification programs used
are shown in Tables 1 and 2, and the components used in these reactions are shown below.

Table 1. Sequences of primers used and their specificity.

Gene Primers Primer Sequences Bp No.

silE silE-F silE-R 5′-GTACTCCCCCGGACATCACTAATT-3′

5′-GGCCAGACTGACCGTTATT-3′ 400

silP silP-F silP-R 5′-CATGACATATCCTGAAGACAGAAAATGC-3′

5′-CGGGCAGACCAGCAATAACAGATA-3′ 24

silS silS-F silS-R 5′-GGAGATCCCGGATGCATAGCAA-3′

5′-GTTTGCTGCATGACAGGCTAAAGACATC-3′ 1500

silRS silRS-F silRS-R 5′-GGCAATCGCAATCAGATTTT-3′

5′-GTGGAGGATACTGCGAGAGC-3′ 125

silCBA silCBA-F
silCBA-R

5′-CGGGAAACGCTGAAAAATTA-3
5′-GTACGTTCCCAGCACCAGTT-3′ 600

silF silF-F silF-R 5′-CGATATGAATGCTGCCAGTG-3′

5′-ATTGCCCTGCTGAATAAACG-3′ 20

silB silB-F silB-R 5′-CAAAGAACAGCGCGTGATTA-3′

5′-GCTCAGACATTGCTGGCATA-3′ 300

silA silA-F silA-R 5′-CTTGAGCATGCCAACAAGAA-3′

5′-CCTGCCAGTACAGGAACCAT-3′ 20
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Table 2. Components of the PCR reactions.

Gene/Genes
Concentration

Primer Mix Water DNA Final Volume

silE, silS, silP 0.5 µM 10 µL 6 µL 1 µL 20 µL

silB 0.5 µM 10 µL 8 µL 1 µL 20 µL

silE, sil RS
silA, silP 0.5 µM 10 µL 7 µL 1 µL 20 µL

silCBA, silF 0.5 µM 10 µL 7 µL 1 µL 20 µL

The amplification program was carried out according to the conditions shown in
Figure 8:
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5. Conclusions

The isolated strains, both in the planktonic and biofilm growth phase showed sensi-
tivity to the standard concentration of 1/6000 silver-nitrate solution). It was noticed that
even at concentrations lower than the clinical one (first two to four binary dilutions in the
case of planktonic cultures and first six to nine binary dilutions in the case of biofilms),
the antiseptic solution proved to maintain its antibacterial activity. This demonstrates
that despite its large use, this antiseptic remains a viable treatment alternative for the
management of chronic leg wounds. The phenotypic results were correlated with the
genetic analysis, highlighting the presence of resistance genes in only a few of the tested
strains. However, the strains harboring genetic resistance markers proved susceptible to the
silver-nitrate-solution concentrations that are used in the clinical settings. In conclusion, by
the phenotypic and genotypic characterization of silver-nitrate susceptibility and resistance
in a high number of bacterial strains isolated from leg ulcers, the results of this study
contributed significantly to the completion of the little-investigated local epidemiological
picture of this pathology, thus providing additional means of guiding clinicians in selecting
the appropriate therapy.
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