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Abstract: This paper presents an interesting hybrid solution to a challenging estimation and control
problem of the Permanent Magnet Synchronous Motor (PMSM). Apart from the inherently nonlinear
nature of the PMSM, which makes this problem particularly challenging, is the unavailability of the
measurements, rotor position, and speed. In an effort to efficiently cope with such issues along with
the random noise environment, the Unscented Kalman Filter (UKF) is chosen to estimate the states of
the PMSM dynamic system and the Model Predictive Control (MPC) is utilized to control the state
space vector in Pulse Width Modulation (PWM). Additionally, the MPC has also been implemented
in combination with the Extended Kalman Filter (EKF) and also with Sliding Mode Control (SMC), in
order to vigorously compare these hybrid approaches in terms of accuracy, robustness, and transient
response. The MPC-UKF, a combination that has never been implemented before, outperforms the
other two by efficiently dealing with the issues of high nonlinearities, by accurately estimating the
states while the measurements were practically unavailable, and coping with the fast dynamics of
the PMSM.

Keywords: Kalman filters; permanent magnet motors; predictive control; pulse width modulation;
sensorless control

1. Introduction

In recent years, power electronics and modern control designs are emerging widely
which boost the use of Permanent Magnet Synchronous Motors (PMSM). The PMSM is
extensively used in various fields due to multi-facet benefits, such as high dynamic speed,
high torque, good efficiency, low maintenance cost, reliable operation, and simple structure.
In motors, to achieve perfect commutation, signals after every 60 electrical degrees need to
be computed to estimate position and speed. For this purpose, sensors on the rotors are
used, such as photovoltaic and hall sensors [1]. However, sensors require additional space,
leading to an overall increase in size and cost with frequent maintenance. Therefore, to
eliminate such problems, sensorless control technology suddenly received great attention
from researchers [2].

In PMSM, for sensorless control, observers are designed to estimate such states/parameters
that cannot be measured directly or through other available states. There are many tech-
niques available for estimating the motor parameters to control the motor. Problems
associated with estimation techniques without sensors include inaccuracy at low speed,
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disturbance rejection, poor dynamic performance, constraint handling with safer starting
conditions, and switching losses of the inverter due to high switching frequency [3].

In PMSM, the sensorless estimation techniques are categorized as: (a) adaptive meth-
ods, (b) non-adaptive methods, (c) signal injection methods, and (d) artificial intelligence
methods [4–6]. The non-adaptive methods include stator current and stator voltage esti-
mators, flux-based estimators, back EMF estimators, and DC link methods [7]. Moreover,
there are several sub-groupings of adaptive methods, such as Luenberger-based observers,
Model Reference Adaptive (MRAS) estimators, Kalman-based stochastic filters, and sliding
mode observers [8]. All these techniques are mature enough to achieve the maximum
optimal results. Table 1 illustrates the limitations and benefits of all sensorless estima-
tion techniques.

Table 1. Comparative Literature Survey on State-of-the-Art Techniques.

Techniques Types Benefits Drawbacks

Direct calculation [4] Fast, dynamic, and Simple Parametric variation error

Open Loop
Determination of stator
inductance [5] Zero speed estimation

Inaccurate at high stator
current, valid for salient
motors

Back EMF integration [7] Fast, Robust, and accurate at
high frequency

Difficult to calculate back
EMF, not accurate at low
speeds

EKF [9] Reduced computation time
and noise rejection Low speed, poor performance

Closed Loop MRAS [10] Adaptation at high speed,
machine model not required Parametric sufferance

SMO [11] Robust, parametric invariance
and no steady state error

Stand still or zero speed
performance is poor

Low Frequency injection [12] Applicable even for
non-salient motors

Dynamic performance is poor,
saturation problem

Non-ideal
property-based High Frequency injection [13] Coordinate transformation

not required

Not applicable for higher
inertia motor, slow dynamic
response

INFORM [14] Parameter invariance Flux distortion and current
ripples cause estimation error

The Kalman Filter (KF) is an optimal state estimator but only for linear systems because
the update rule of the KF makes optimal decisions based only on the first two instants of
states viz. mean and covariance. Therefore, the cases where the system is nonlinear, the KF
does not provide optimal results because of non-Gaussian noise. However, a modified form
of the KF is the Extended Kalman Filter (EKF), in which transformation from nonlinear to
linear is done via the Jacobian matrix that makes the calculations simpler but less accurate.
In the case of highly nonlinear systems, linearization results in bad performance [15].

Approximation issues of the EKF are addressed in the Unscented Kalman Filter (UKF)
formulation. The Unscented Transformation (UT) is used in the UKF process instead of
linearization approach. Gaussian Random Variable (GRV) represents the state distribution
of both the algorithms; however, in UKF minimum sample points are carefully chosen.
The UT is used to calculate mean and covariance, which further helps find sigma points as
accuracy is proportional to the number of sigma points [16]. The sigma points propagated
through the true nonlinear function captures the true mean and covariance of the GRV. This
process accurately estimates the posterior mean and covariance for any nonlinearity up to
2nd order.

The Model Predictive Control (MPC) is one of the widely used predictive control
methods. In MPC, the optimal control and control instructions are obtained by a specific
objective function that is determined through the mathematical model of the controlled
object. In MPC, the cost function, system nonlinearities, and constraints can easily be
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considered and controlled by the Finite Control Set-Model Predictive Control (FCS-MPC).
Inverters switching states are used to optimize the observer states of the motors and
the FCS-MPC can efficiently handle the discrete nature of the switching states in the
microprocessor [17].

In modern state estimation techniques of the motors, hybrid methodologies are em-
ployed by combining any of the two previous matured techniques. Szabat et al. described
the application of UKF and Fuzzy UKF (FUKF) with an elastic connection for the estimation
of parameters and mechanical state variables of the AC drives [18]. A suitable adaptation
mechanism with IP controller reinforced by two supplementary feedbacks in the form of
a cascade control structure is inspected [18]. However, the control structure performance
degrades by the existing estimation error. Introduced hybrid modification improves the
quality of the estimation. A fuzzy system has been designed based on linguistic rules.
The authors reported better performance of the FUKF compared to the UKF; however, the
former one requires pre-feed data of motors’ nonlinear behavior.

Wang et al. introduced a novel technique for the surface-mounted type of PMSM
drives called Hybrid Dual-Mode Control (HDMC) that contains two control modes to find
appropriate performances of the steady-state and transient response [19]. The HDMC is a
hybrid combination of two techniques, which inherits the excellent steady-state routines of
the Field Oriented Control (FOC) and the quick responsibility of the Deadbeat Predictive
Control (DBPC).

The combination of MPC-EKF has been tested previously; however, Borsje et al.
suggested that UKF has a remarkable advantage over EKF [7]. The PMSM model is highly
nonlinear, and states’ estimation without sensors involves complexity in implementation
due to noisy signals of the PWM [20]. The MPC handles the selection of the proper sequence
of states for the inverter; therefore, the MPC increases efficiency and reduces time compared
to the FOC method. Moreover, the MPC has many advantages, such as easy modeling,
simple principle, constraints handling, and strong robustness [21]. Similarly, the UKF is very
robust against parametric variation and handles the measurement noise and system noise.
Optimal estimation of the states in Kalman filters is based on least-squares techniques.

In sensorless motor drive control, there is a significant impact of parametric variation,
inverter nonlinearities, and zero/low-speed operation on the stability of the control system.
Moreover, in a high-speed region, a high observer’s bandwidth is required. Various other
issues, such as parametric variation, low back EMF, saturation problem, flux distortion,
current ripples, and input constraint handling, create hindrance in the accurate estimation
of position and speed. Therefore, by keeping in view all the aforementioned attributes, a
novel MPC-UKF control scheme is proposed for the sensorless control of PMSM. In UKF,
the unscented transformation technique has many advantages over the other observers,
namely, finding the initial value and hassle-free tuning. The UKF is a derivative-free
approach and does not require any linearization steps, so no Jacobean is needed. As the
error of the motor parameters is considered at the beginning, the UKF-based speed and
flux observation have strong robustness to motor parameters. The UKF acts as an observer
because of its simplicity of two-step procedures: prediction and correction. Moreover, it
estimates the parameters even at a relatively low speed that cannot be estimated with other
controllers. According to the operation frequency, there are two main types of sensorless
motor control: one is the model-based method that detects the fundamental component
of back EMF. The other injects an additional excitation signal to utilize the asymmetrical
effect of the inductance in PMSM. The first method works well in the high-speed range
but fails at low speed when the signal-to-noise ratio (SNR) of the EMF is too small for
observation. On the contrary, the second method can derive position at low and even zero
speed but performs poorly at high speed due to the limitation of observer bandwidth. To
achieve a whole-speed-range of sensorless operation, a hybrid position estimation strategy
combining both methods at middle speed is adopted. Two variables describe the UKF
states: an estimate of the current state’s derivative is based on the knowledge of observation
and error covariance matrix, that is, the uncertainty of the observation in the estimation
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process. The benefit of using MPC can be justified since in UKF, there are small errors
during dynamical working caused by inaccurate modeling of the inverter, which is non-
linear, and MPC also handles the gates switching very efficiently within defined constraints.
The main contributions of the paper are:

• A hybrid approach, MPC-UKF, is tuned to a challenging PMSM control and estimation
problem in order to efficiently deal with the issues of fastly varying dynamics, severe
nonlinearities, random uncertainties, and unavailability of measurements [22].

• The MPC and the UKF are efficient control and estimation algorithms, respectively,
and extension of these as a combination creates a novel solution to the challenges.
Parametric invariance, disturbance rejection, and improved accuracy and estimates
are the advantages of our proposed novel hybrid technique [23].

• In an effort to closely replicate the practical PMSM dynamics and to have more realistic
findings with respect to the actual experimental setup, the practical factors, such as
disturbances and uncertainties, process and measurement noise, have been taken into
account. Such efforts certainly allow the observer, the UKF, to provide more accurate
estimates that are otherwise sacrificed due to inappropriate, inaccurate, or incomplete
system information. The UKF is successfully tuned to estimate speed and position of
PMSM based on the direct available states, currents, and voltages.

• The MPC-UKF approach is compared with the combination of the MPC with state-of-
the-art observer technique, the Sliding Mode Observer (SMO), and also with the more
traditional approach, the EKF, in terms of robustness and reliability.

The remainder of the paper is organized as follows: Section 2 describes the math-
ematical modeling of the PMSM and discrete version of the model. Description of the
control structure in the proposed scheme is presented in Section 3. Simulation results and
discussions are presented in Section 4. The paper is concluded in Section 5 along with
future directions.

2. Modeling of Permanent Magnet Synchronous Motor

A discrete model of the PMSM is necessary for the application of the proposed scheme.
The synchronous dq-reference frame fixed to the rotor flux is derived for the said model
since this scheme is more suitable than the αβ-reference frame. The major disadvantage
of using the αβ-reference frame is that the UKF may converge to the wrong solution. The
prediction steps might maintain the wrong solution and constantly update the estimation
difference between actual and estimated voltages and currents. Wrong convergence of
the solution may be avoided by a dedicated algorithm or by the hit-and-trial method [24].
However, dq-frame reference voltage equations avoid the wrong convergence solution
because the equations do not fit. Therefore, using the dq-frame reference, a wrong startup
is avoided. However, in the dq-frame reference, the coordinate transformation uses an
estimated position. If the estimated position is wrong, then it may generate a constant error,
which is a disadvantage of the dq-reference model. The PMSM has magnetic saliency with
axial inductances Ld and Lq. The notations used in the paper are listed in Table 2 where
boldface letters show the vectors and matrices while lightface letters represent the scalar
values. The PMSM’s mathematical model in continuous time frame is given as [25]:

did
dt

=
1
Ld

(−Rsid +
1
2

ρωmLqiq + vd) (1a)

diq
dt

=
1
Lq

(−Rsiq −
1
2

ρωmLdid + vq −
1
2

ρωmφ f ) (1b)

dωm

dt
=

1
J
(Te − Bωωm − Tl) (1c)
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dθ

dt
= ωm (1d)

where dTl
dt ≈ 0 and electromechanical torque, Te = 3

2 ρ
[
φ f iq + (Ld − Lq)idiq

]
. Simplified

assumptions are made to quickly evaluate the system performance, such as hysteresis
and eddy currents losses are neglected, electromagnetically induced forces are sinusoidal,
a saturation of magnetic material is zero, and airgap with no dynamical dependencies.
In electromechanical torque, the 3

2 is the frame conversion constant, and the change in
load torque for the given sample time is zero. The Taylor series expansion is used for the
discretization of each state variable given in the mathematical model of PMSM as [26]:

xk+1
j = xk

j +
Nj

∑
l=0

Tl
s

l!
dl xj

dtl

∣∣∣∣∣
tk

(2)

where Nj is the number of expansion elements in the series normally used up to 1st order,
and j is the number of state variables. Inputs of the system that appear in the discrete
model affect the state variables, and each state is updated by the successive iteration that
improves the accuracy. The discretization of the PMSM model is as follows [27]:

ik+1
d = ik

d +
1
Ld

(
−Rsik

d + ωk
e Lqik

q + vk
d

)
Ts (3a)

ik+1
q = ik

q +
1
Ld

(
−Rsik

q −ωk
e Ldik

d + vk
q −ωk

e φ f

)
Ts (3b)

Tk+1
e =

3
2

P
(

φ f ik+1
q +

(
Ld − Lq

)
ik+1
d ik+1

q

)
(3c)

The matrix representation of the nonlinear discrete-time PMSM model used in the
proposed scheme is [5]:

xk+1 = Fkxk + Bkuk + wk (4a)

yk = Hkxk+1 + vk (4b)

with

Fk(xk) =


1− Ts. Rs

Ld
Ts.ωm

Lq
Ld

0 0

−Ts.ωm
Lq
Ld

1− Ts. Rs
Lq
−Ts.

φ f
Lq

0
0 T1 0 0
0 0 Ts 1

,

T1 =
3
2

Ts.
ρ

J

[
φ f −

(
Lq − Ld

)
id
]
,

Hk(xk) =

[
1 0 0 0
0 1 0 0

]
,

and Bk(xk) =


Ts. 1

Ld
Ts. 1

Ld
−Ts. 1

Lq
Ts. 1

Lq

0 0
0 0
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Table 2. Notations used in the System Model.

Notation Description Notation Description

Bω Damping coefficient f (θ) Normalized trapezoidal function
εa,b,c RMS value of phase back EMF _

ωr, ω∗r Estimated speed and reference speed

ia,b,c, va,b,c
Phase armature current and Phase
Terminal Voltages i∗d,q,

_

θ Updated currents and Estimated position

id, iq Direct-axis and Quadrature-axis currents us
Synchronous rotating frame stator
voltage

vd, vq Direct axis and Quadrature axis voltages Sa,b,c State space vectors

vn Neutral voltage is
Synchronous rotating frame stator
current vector

ism, usm Current and voltage constraints es, ism
Current predictive error and Current
predictive vector value

J, ρ Inertia of the rotor and number of poles h, χ Correction factor and Sigma point matrix

La,b,c, M Phase self-inductance and Mutual
Inductance λ, P Scaling parameter and Covariance matrix

Ld, Lq
d-axis and q-axis magnetizing
inductances α Spread of sigma points around the mean

Rs, Ts Phase resistance and Sampling Time k Secondary scaling parameter

Te, T Motor electromagnetic and loading
torques Wm

i , Wc
i Weights for mean and covariance

θ Rotor position angle or position _x
k
,
_

P
k Predicted mean and predicted covariance

φ f
Amplitude of stator permanent magnet
flux linkage Yk

i
Transformed sigma points in
measurement space

ωe, µ0
Electrical velocity and Permeability in air
gap

_y
k Mean in measurement space

QMPC,
RMPC

Error and control weighting coefficient
matrics φk, Kk Jacobian of the matrix and Kalman gain

Qk, Rk Covariance matrices for process and
measurement noises Pk

yy Predicted covariance matrix

wk, vk Process noise vector and Measurement
noise vector Pk

xy
Cross-correlation matrix between actual
and predicted spaces

Im Maximum rotor current Pk
yy

Function that maps our sigma points to
measurement space

Kτ , Kε Torque constant and Back EMF constant Pk
yy Covariance in measurement space

The iq is the torque-producing component of the stator current and id is flux-producing
component of the stator current. When iq = Im, then id = 0, which is a condition for
maximum torque. The angle α between iq and id determines the minimum and maximum

torque computed as α = tan−1
(

iq
id

)
. The α is the angle that determines the rotor position to

compute the torque. Non-Gaussian noise as measurement noise vk and process noise wk

are also added in the mathematical model for the real-time realization of the mathematical
model. Moreover, it is also assumed to have very slow change in load torque compared
to the sampling time. The state variables vector, input vector, and output vectors are as
follows, respectively [5]:

xk =
[

ik
d ik

q ωk
m θk

]T
(5a)

uk =
[

vk
d vk

q

]T
(5b)

yk =
[

ik+1
d ik+1

q

]T
(5c)
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3. Description of Control Schemes

In this section, first, the mathematical model for the MPC is derived, then the MPC-
SMO hybrid combination is derived, followed by the combination of the MPC-EKF and,
finally, the proposed MPC-UKF hybrid combination. The PMSM is operated through 3-
phase Voltage Source Inverter (VSI) that is controlled through Space Vector PWM (SVPWM).
The 3-phase current and voltage of the motor are converted into the dq-reference framework
for the input of any one of the following observers, such as SMO, EKF, and UKF. One of
the outputs (speed) of the UKF/EKF/SMO acts as feedback for the PI controller that
proportionally provides the reference current iq to the MPC. The reference current is
calculated based on the difference in reference speed and estimated speed. The schematic
diagram of the proposed technique is given in Figure 1. The UKF or EKF can be selected by
a selector switch. Therefore, both combinations, such as MPC-UKF and MPC-EKF, can be
evaluated and analyzed. Similarly, the SMO is also implemented and acts as an observer to
achieve a wider range of comparison. The UKF/EKF/SMO act as observers in the feedback
form and estimate those states that are not directly measurable without sensors. The Park
transformation is used for abc to dq coordinates conversion. The estimated speed _

ωr from
the UKF/EKF/SMO is used as feedback for the PI controller. The error between estimated
speed and reference speed is reduced by the PI controller that proportionally increases or
decreases the value of reference current iq [9]. The objective function of the MPC decides the
voltage levels for the PWM. Moreover, the measured stator currents after transformation
are also given as feedback currents to the MPC for comparison with the reference currents.
Then, the MPC within constraints decides the input voltages amplitude. Furthermore,
the MPC regulates the switching of the IGBTs in VSI efficiently and quickly [28]. All the
measured currents and voltages given to UKF/EKF/SMO block are passed through zero-
order holds (ZOH) to avoid zero-crossings problem. The following state-space equations
are used in the Clarke and Park transformation for αβ and dq conversion, respectively [29]:

[
iα
iβ

]
=

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] ia
ib
ic

 (6)

[
id
iq

]
=

[
cos θ sin θ
− sin θ cos θ

][
iα

iβ

]
(7)

Figure 1. Schematic diagram of the proposed scheme.

3.1. Modeling of Model Predictive Control

In this paper, the MPC is used due to multiple advantages, such as (a) MPC can
equally handle both linear and nonlinear functions, (b) applicability on univariate and
multivariate systems, (c) constraints handling and cost minimization, and (d) intuitive
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tuning parameters [30]. The discretized mathematical model of the PMSM in the dq-
reference frame using the Taylor series for the MPC implementation is given as [26]:

ik+1
d = ik

d −
(

Rs

Ld
ik
d +

ωeLq

Ld
ik
q +

1
Ld

vd

)
Ts (8a)

ik+1
q = ik

q −
(

ωeLd
Lq

ik
d −

Rs

Lq
ik
q +

1
Lq

vq −
ωe

Lq
φ f

)
Ts (8b)

The discretized model of the PMSM is summed up as state-space representation in
Equation (9) which is used in the MPC block of Figure 1, where id and iq currents are
compared with reference currents. Three-phase currents are measured from the stator of
the PMSM, converted into dq transformation, and fed back to the MPC for comparison
with the reference currents. All the parameters are constants in AMPC matrix except for the
electrical speed ωe which is increased or decreased as defined by the error vector of the
objective function.

ik+1
s = AMPCik

s + BMPCus (9)

where AMPC =

[
− Rs

Ld

ωe Lq
Ld

−ωe Ld
Lq

− Rs
Lq

]
, BMPC =

[
Ld 0
0 Lq

]
, and us =

[
vd

vq −ωeφ f

]
. The

main objective is to compute the input vector for the MPC. For the modeling of the MPC al-
gorithm, we initialize the current prediction value with i0

sm = 0 for k = 0, 1, 2, 3, . . . , ∞. The
iterative process will continue till the error reduces to the optimum level [11]. The predictive
error vector is computed as:

ek+1
s = ik+1

s − ik+1|k
sm (10a)

 ik+1|k
sp

ik+2|k
sp

ik+3|k
sp

 =

 ik+1|k
sm

ik+2|k
sm

ik+3|k
sm

+ h.ek+1
s (10b)

where h =
[

h1 h2 h3
]T . Equation (10a) is the synchronous rotating frame stator

current predictive error vector, which is calculated by the vector difference of current
predictive values at time k + 1 and k, respectively. According to the required reference
speed, a correction factor h is used to correct the predictive values and the corrected current
predictive value vector isp is updated. Equation (10a) is used in Equation (10b) to update
the predictive vector. The time-shifting is done by following equations in state-space
while subscripts 0 shows the time-shifted vectors of the corrected predictive vector for the
current values.  ik+1|k

s0

ik+2|k
s0

ik+3|k
s0

 =

 0 1 0
0 0 1
0 0 1


 ik+1|k

sp

ik+2|k
sp

ik+3|k
sp

 (11)

Control inputs having incremental change ∆u in stator voltage vector at time k and
k + 1 are defined within the constraints in the objective function as [29]:

uk+1
s = uk

s − ∆uk
s (12)
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where

∆uk
s =

(
GT

MPCQMPCGMPC + RMPC

)−1

GT
MPCQMPC

 i∗k+1|k
s − ik+1|k

sp

i∗k+2|k
s − ik+2|k

sp

i∗k+3|k
s − ik+3|k

sp

,

QMPC = diag(q1, q2, q3), and RMPC = diag(r1, r2, r3)

All the components involved in ∆uk
s are defined in Table 2. In the final step, the current

predictive value vector is updated using Equation (13). ik+1|k
sm

ik+2|k
sm

ik+3|k
sm

 =

 ik+1|k
s0

ik+1|k
s0

ik+1|k
s0

+ GMPC

 ∆uk
s

∆uk
s

∆uk
s

 (13)

The process repeats until the error reduces to the minimum preset defined in the
algorithm. Equation (12) is continuously being updated at each iteration, and then, this
input is used in Equation (9). The switching state pattern is determined on the basis of error
between reference currents and estimated currents. Using such a method, the MPC replaces
the Field Oriented Control (FOC) technique previously used to determine switching state
patterns for the PWM. Moreover, the MPC works in the feedforward mode to control the
switching states of the IGBT that drives the PMSM. The block diagram of the MPC is
illustrated in Figure 2.

Figure 2. Finite Control Set-Model Predictive Control (FCS-MPC) internal modeling.

3.2. Integrating SMO with MPC

This section presents the mathematical formulation of the SMO that is used in feedback
mode to estimate the states of the system, as illustrated in Figure 1. There are two main
stages of SMO, namely the sliding phase and the reachability phase. The stator voltages
and currents are being utilized as inputs, and the SMO estimates the unknown Back EMF.
The voltages are extracted from the switching states of the pulses as: va

vb
vc

 =
vdc
3

 2Sa −Sb −Sc
−Sa 2Sb −Sc
−Sa −Sb 2Sc

 (14)

A sliding surface is designed by the error difference equation between the estimated
currents and measured currents to reach the sliding phase and the resulting error reduces
to zero. A reaching phase control law is designed as follows [11]:

u =
[

Kswsgn(ĩd) Kswsgn(ĩq)
]T (15)
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The signum function is used to reduce error when the sliding phase condition is met.
The observer dynamics for currents are expressed as:

dĩdq

dt
= −Rs

Ls
ĩdq +

1
Ls

vdq −
Ksw

Ls
sgn(ĩdq) (16)

where ĩdq =
_

i d− idq. A positive definite Lyapunov candidate function is chosen as V = 1
2 S2

and Ksw = max
(
|vd|,

∣∣vq
∣∣) is derived as the reachability condition for the SMO. Both

conditions are called Lyapunov asymptotic stability conditions. Currents obtained through
Equation (16) are used as feedback reference currents for the MPC to compare with the
measured currents.

3.3. Integrating EKF with MPC

The EKF, in reality, is an extension of a simple Kalman filter for nonlinear systems and
works on the principle of the least square technique. It is based on successive linearization
of the nonlinear state space model at each time instant around the previous estimate
called Jacobian which is the linearized version of the nonlinear system. The Jacobians are
calculated at each iteration using Equation (17a,b) [26].

φk =
∂ f
∂x

∣∣∣∣
xk ,uk

(17a)

Hk =
∂h
∂x

∣∣∣∣
xk

(17b)

Equation (17a) is the linearized version of the system matrix while Equation (17b)
represents the linearized version for the output of the PMSM. Linearized function φk and
output function Hk of the nonlinear mathematical model are calculated. In the analysis of
EKF, online computation of Jacobian matrices of both functions is necessary to predict the
states and covariances [31]. Prediction and updating are the two major steps used for the
estimation of the states. Integrating the EKF as an observer with the MPC, the following
changes are to be made so that the simulation results can be compared with the proposed
MPC-UKF scheme.

Step 1: Prediction

x̄k = F
(

x̄k−1
)

x̄k−1 + Buk−1 (18a)

Pk = φk−1Pk−1(φk−1)T + Qk (18b)

Equation (18a) estimates the mean of next values for state-space vector x̄k in terms
of the previous values of the states vector x̄k−1 and the input vector uk−1 at instant k− 1.
The input vector is directly calculated from the stator voltages and converted into dq
transformation framework. Equation (18b) represents the estimation of covariance Pk in
terms of Jacobian of the system matrix φk−1, initial assumption of covariance Pk−1, and
addition of process noise Qk in the system.

Step 2: Measurement

x̄k = x̄k−1 + Kk
(

yk −Hx̄k−1
)

(19a)

Pk = Pk−1 −KkHPk (19b)
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Kk = Pk−1HT
(

HPk−1HT + RT
)−1

(19c)

Pk =
(

1−KkHk−1
)

Pk−1(1−KkHk−1)−1+

KkRk(Kk)T (19d)

Similarly, in the measurement phase, Equation (19a) updates the mean in stepwise
process, such as (a) by measuring the direct, measurable states (stator currents) of the
system that are in vector yk, (b) the term Hx̄k−1 singles out the estimated states from the
mean vector x̄k−1, and (c) the difference between Equation (19a,b) is multiplied by Kalman
Gain Kk, which is calculated using Equation (19c). In Kalman gain, measurement noise
RT is added. Finally, Equation (19d) updates the covariance. This iterative process repeats
itself until the specified number of iterations is achieved in the algorithm [3].

3.4. Integrating UKF with MPC

In this paper, we proposed a novel hybrid combination of UKF with MPC as a robust
control algorithm for PMSM. The UKF algorithm consists of the following steps:

Step 1: Initialization

_x0 = E[x0] (20a)

Equation (20a) computes the mean (expected) values of the states. Initially, the mean
states are chosen as zero vector. In the next iteration, sigma points generate nonzero states
which are compared with the measured values. Similarly, the covariances are initialized in
Equation (20b) at time instant 0.

P0 = E
[(

x0 −
_x0

)(
x0 −

_x0

)T
]

(20b)

Equation (20c) adds the process noise E
(

wk
)T

and measurement noise E
(

vk
)T

vectors
in the estimation process to check the disturbance rejection of the UKF observer.

_x
a
0 = E[xa] =

[
_x

T
0 E

(
wk
)T

E
(

vk
)T

]T
(20c)

Equation (20b) can be rewritten in matrix form as:

Pa
0 = E

[(
xa

0 −
_x

a
0

)(
xa

0 −
_x

a
0

)T
]
=

 P0 0 0
0 Qk 0
0 0 Rk

 (20d)

where Qk = E
(
wwT) and Rk = E

(
vvT) [29]. Equation (20d) is the calculation process of

the successive covariances.

Step 2: Calculation of Sigma Points

χk−1
0 =

_x
k−1

(21a)
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where _x
k−1

is mean of a Gaussian. The mean value is initially set to a zero vector, and the
value will be updated in every iteration. Sigma points are computed as follows [32]:

χk−1
i =

_x
k−1

+
√
(n + λ)Pk−1

i (21b)

χk−1
i+1 =

_x
k−1

+
√
(n + λ)Pk−1

i (21c)

where λ = α2(n + k)− n is a scaling parameter, and α value will be selected in the range
of 1 ≤ α ≤ 10−4, which determines the spread of sigma points around the mean value of
the state vector. Equation (21b,c) computes the upper and lower spread of sigma points to
cover the estimated values, respectively.

χk−1
a =

[
χk−1

0 χk−1
i χk−1

i+1

]
(21d)

where the spread of sigma points is usually set to a small positive value, the constant

k = (3− n) is a secondary scaling parameter, and
√
(n + λ)Pk−1

i is the ith column of the
matrix square root (lower triangular Cholesky factorization) [32].

Step 3: Propagation of Sigma Points through nonlinear function

The computed sigma points from step 2 are propagated through nonlinear function f,
which is the mathematical model of PMSM given in Equation (4).

χk
i = f (χk−1

a ), i = 0, . . . , 2n (22)

The mean and covariance for χk
i are approximated using a weighted sample mean,

and covariance of the posterior sigma points, weights for mean and weights for covariance
are calculated using Equations (23a,b) and (24a,b), respectively [33]:

Wm
0 =

λ

n + λ
(23a)

Wm
i =

1
2(n + λ)

, i = 1, . . . , 2n (23b)

Wc
0 =

λ

n + λ
+ (1− α2 + β‘) (24a)

Wc
i = Wm

i =
1

2(n + λ)
, i = 1, . . . , 2n (24b)

In Equations (23) and (24), the subscripts m and c describe the weights for mean and
covariance. The constant β‘ is the value of the distribution parameter whose optimal value
is selected as 2 for a Gaussian distribution [33].

Step 4: Prediction mean and covariance

Equation (25a) calculates the estimated mean of the states by averaging the sigma
points through the multiplication of the weighted means. Similarly, Equation (25b) cal-
culates the updated covariances by first computing the difference between estimated
and measured values and then multiplying the resultant with the weighted covariance.
Moreover, in step 4, the process noise Qk is added in the covariance matrix to check the
disturbance rejection of the observer.
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_x
k
=

2n

∑
i=0

Wm
i

_
χ

k
i (25a)

_

P
k
=

2n

∑
i=0

Wc
i

(
_
χ

k
i −

_x
k
)(

_
χ

k
i −

_x
k
)T

+ Qk (25b)

Step 5: Measurement update

Equation (26a) passes the sigma points through a function h that excludes the unob-
servable states, such as speed and angle from the observable states. In Equation (26a), the
Yk

i is the vector output of the estimated speed and angle. The average of the vectors is calcu-
lated by multiplying Equation (26a) with the weighted mean, as shown in Equation (26b).
Similarly, in Equation (26c,d), the covariances are estimated on the same pattern in the
measurement step as calculated in the prediction step (step 4). However, the output vectors
are utilized instead of the state vectors. Measurement noise Rk is added in the measurement
covariance matrix.

Yk
i = h(χk

i ), i = 1, . . . , 2n (26a)

_y
k
=

2n

∑
i=0

Wm
i Yk

i (26b)

Pk
yy =

2n

∑
i=0

Wc
i

(
Yk

i −
_y

k
)(

Yk
i −

_y
k
)T

+ Rk (26c)

Pk
xy =

2n

∑
i=0

Wc
i

(
χk

i −
_x

k
)(

Yk
i −

_y
k
)T

(26d)

Kk = Pk
xy

(
Pk

yy

)−1
(26e)

_x
k
=

_x
k
+ Kk(yk − _y

k
) (26f)

Pk = Pk − (Kk)Pk
yy(K

k)T (26g)

The iterative process of UKF is similar to the EKF algorithm until the optimized
value is achieved except for the sigma point evaluation process. Equation (26e) estimates
the Kalman gain while Equation (26f,g) calculate the estimated mean and covariance,
respectively [34]. Equation (24f) is the final output of the UKF block in which two states,
estimated speed, and angle, are extracted, and the speed is fed back to the PI controller,
which proportionally converts it into reference current iq for the comparison with the
measured current, as shown in Figure 1. The block diagram of UKF is illustrated in
Figure 3.

Figure 3. UKF nonlinear modeling for PMSM.



Appl. Sci. 2022, 12, 4958 14 of 22

4. Results and Discussions

To validate the performance of the proposed MPC-UKF technique, detailed simulation-
based analysis and through comparisons are performed in MATLAB/Simulink. Every
aspect of the simulation results is analyzed and visually obtained in graphs. Real-time
PMSM parameters are selected for the PMSM system simulations to replicate the actual
setup, as shown in Table 3.

Table 3. Parameters Selected for PMSM System.

Symbol Description Value

φ f amplitude of flux linkages 7.8× 10−2 Wb −t
Bω viscous friction coefficient 3.023× 10−3 Nms/rad
Bω col2 text col3 text
Ld direct axis inductance 1.68× 10−2 H
Lq quadrature axis inductance 3.48× 10−2 H
ρ number of poles 4
Rs resistance of the stator 5 Ω
Ts sampling time 2× 10−4 s
J moment of inertia 2.3× 10−5 kg cm2

4.1. Stator Current and Voltage Comparison

The three-phase stator currents of the PMSM are plotted in Figure 4, the current
spike in the start shows the inherent nature of the motor’s inrush current. However, the
current stabilizes in less than 1 millisecond. A second spike occurs when the speed changes
from 300 rad/s to 600 rad/s. The second spike is less aggressive because high-speed
performance is more accurate compared to starting/low speed performance. Ripples in
stator current waveforms are not so deviating due to the accurate prediction behavior of
the UKF. Similarly, the three-phase voltages of the PMSM are plotted in Figure 5. Similar
behavior is observed in three-phase voltages as observed in three-phase stator currents.
The switching states signal of the inverter’s IGBTs are generated by the MPC, as shown in
Figure 5. When the PWM signals are concentrated, it represents very low duty cycle that
is adjusted based on harmonics and disturbances involved in the system. When process
noise or measurement noise is low, the duty cycle considerably increases. The state space
vectors controlled by the MPC generate the currents and voltages shown in Figures 4 and 5,
respectively. Park’s transformation is used to convert three-phase abc to dq axis coordinates,
and the resultant plots of currents and voltages are shown in Figures 6 and 7, respectively.
The back EMF generated by the PMSM is sinusoidal; therefore, after conversion from
three-phase abc to dq, switching states of the PWM are converted to sinusoidal waveforms.
Moreover, the currents after transformation remain the same. Current peaks are the same
in dq coordinates as they are in three-phase coordinates. The MPC-UKF shows promising
results because of less ripples in currents and voltages.
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Figure 4. Three-phase stator currents for MPC-UKF.

Figure 5. Three-phase stator voltages for MPC-UKF.

Figure 6. dq-reference stator currents for MPC-UKF.
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Figure 7. dq-reference stator voltages for MPC-UKF.

Stator voltages are sinusoidal because the PMSM has sinusoidal back EMF. Stator
voltages are stable and do not have peak values because VSI converts from current switching
states to voltage switching states to be measured and used for the estimation of the states
(speed/position) directly using UKF algorithm. In Figure 1, the error between the predicted
speed from UKF observer and reference speed acts as an input for the PI controller, and
the PI controller generates a proportional current for the MPC so that the states can be
generated according to the difference between the reference speed and the estimated speed.
It is represented in Figure 8 that the reference current generated by the PI controller is very
smooth except at the starting and where the input reference step changes. In Figure 8, the
peaks are generated to counter the effect of inrush current behavior.

Figure 8. Reference current for MPC-UKF.

Similarly, Figure 9 shows the measured current after dq transformation, and this
current is compared with the reference current for the PI controller. The difference of
both currents determines the frequency of switching states accordingly. The proposed
hybrid MPC-UKF scheme is more robust for parametric variation and noise. However, an
overshoot is observed due to aggressive achievement of steady-state. The receding horizon
in the MPC is chosen as one step because the feedback-estimated values through the UKF
constantly determine the change in the input for the MPC. Finally, the MPC predicts the
constant values from the observer (UKF) when the reference values become constant. In the
steady-state, no ripples arise since the UKF rejects the noise and is resilient to parametric
invariance. Therefore, a steady state level can be achieved by the advantages of the UKF.
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Figure 9. Feedback current for MPC-UKF.

For comparative analysis, every aspect of the simulation results is analyzed and
visualized graphically compared to MPC-EKF and MPC-SMO. For MPC-EKF, three-phase
motor currents are obtained and plotted in Figure 10. In Figure 10, the ripples in stator
current waveforms are abrupt due to the linearization-based behavior of the system matrix,
which is called Jacobian of the EKF algorithm. Similarly, Figure 11 illustrates the observed
voltage vectors for MPC-EKF. In the MPC-EKF, combination performance degrades because
the EKF cannot tackle nonlinearities efficiently. Therefore, where the noise/disturbance
level increases, variation in voltage also increases, as shown in Figure 11. Similar distorted
behavior is observed in the stator current and voltage in the dq-framework because the EKF
is a linearization approach. Therefore, the estimation of states is not accurate, and noise
prevails in the system.

Figure 10. Three-phase stator currents for MPC-EKF.
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Figure 11. Three-phase stator voltages for MPC-EKF.

4.2. Speed and Position Comparison

To further elaborate the performance of the proposed hybrid MPC-UKF technique, we
compare the estimation of speed and position under multiple-step change in the reference
values. To check the robustness, five-speed references are imposed, such as 150 rad/s,
300 rad/s, 450 rad/s, 600 rad/s, and 225 rad/s. The comparative analysis of speed esti-
mation under the control algorithm of MPC-UKF and MPC-EKF is shown in Figure 12.
The graph in Figure 12 shows the accuracy of MPC-UKF as PWM manipulation is better
compared to MPC-EKF. In Figure 12, the MPC with the EKF achieves a steady state speed
in less than 1.5 milliseconds; however, the ripples remain constant during the whole step.
Moreover, an overshoot is observed for every reference speed change due to aggressive
achievement of steady-state, and ripples also propagate in the steady-state behavior be-
cause of the highly nonlinear system of the PMSM. The EKF could not handle the highly
nonlinear systems since it approximates the mathematical model of the PMSM up to 1st or-
der by using a Taylor series expansion. However, no overshoot and ripples are observed for
MPC-UKF. Therefore, in MPC-EKF, speed estimation is not accurate compared to MPC-UKF.
Moreover, the parametric invariance of the EKF is not robust enough to remove the har-
monics or internal disturbances. Furthermore, the receding horizon in the MPC is chosen as
one step ahead because the feedback-estimated values through the UKF or EKF constantly
determine the change in the input for the MPC. The MPC predicts the constant values from
the observer when the reference value becomes steady. In the steady-state, ripples arise
since the EKF could not reject the noise and is resilient to parametric invariance.

Figure 12. Speed estimation comparison of MPC-UKF and MPC-EKF.
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Another combination is analyzed by replacing the EKF with the SMO, and results are
depicted in Figure 13. For MPC-SMO, the estimation is not stable due to the chattering effect
of the SMO. Moreover, the percentage overshoot and settling time are greater compared
to MPC-UKF and MPC-EKF. However, the noise level/ripples are negligible compared
to MPC-EKF, while comparative to MPC-UKF. Therefore, MPC-SMO is very robust to
parametric variation. A similar observation is noted for position estimation. The graphical
comparison of MPC-UKF with MPC-EKF and MPC-SMO is illustrated in Figures 14 and 15.

Figure 13. Speed estimation with MPC-SMO.

Figure 14. Position estimation comparison for MPC-UKF and MPC-EKF.

Figure 15. Position estimation with MPC-SMO.
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A detailed quantitative analysis of the proposed MPC-UKF technique with MPC-
EKF and MPC-SMO is presented in Table 4. The results clearly indicate that MPC-UKF
outperforms the other two techniques. Therefore, it is evident that the MPC with UKF
produces smoother and more accurate results as EKF linearizes the system model and
therefore develops inaccuracy. After the transient period, steady-state error in MPC-UKF
reduces to zero while the error persists in MPC-EKF. The complexity level of MPC-UKF
and MPC-EKF is almost similar, but under noisy conditions; MPC-UKF is more promising
for highly nonlinear and complex systems, and it is robust and indifferent to parametric
variation. However, the execution time of the MPC-UKF is higher compared to MPC-EKF
and MPC-SMO because the UKF must compute sigma points at each sampling interval.

Table 4. PMSM parameters used in the Simulations.

Dynamic Property MPC-UKF MPC-EKF MPC-SMO
Percentage
Improvement
for UKF

Step 1 (0–25% of rated speed)

Speed peak time 0.75 ms 1.07 ms 1.59 ms 29.90%
Speed settling time 0.97 ms 1.15 ms 3.50 ms 15.65%
Speed overshoot 1.26% 1.78% 24.9% 29.21%

Step 2 (25–50% of rated speed)

Speed peak time 0.68 ms 1 ms 1.48 ms 32%
Speed settling time 0.67 ms 0.87 ms 3.06 ms 22.98%
Speed overshoot 0.92% 1.43% 19.6% 35.66%

Step 3 (50–75% of rated speed)

Speed peak time 0.65 ms 0.91 ms 2.05 ms 28.57%
Speed settling time 0.34 ms 0.52 ms 2.59 ms 34.61%
Speed overshoot 0.56% 0.99% 15.4% 43.43%

Step 4 (75–100% of rated speed)

Speed peak time 0.42 ms 0.61 ms 2.60 ms 31.14%
Speed settling time 0.26 ms 0.35 ms 2.36 ms 25.71%
Speed overshoot 0.29% 0.78% 11.56% 62.82%

Step 5 (40% of rated speed)

Speed peak time 1.21 ms 1.36 ms 4.89 ms 11.03%
Speed settling time 0.97 ms 1.15 ms 3.50 ms 15.65%
Speed overshoot 1.26% 1.78% 24.9% 29.21%

5. Conclusions and Future Work

The highly nonlinear behavior, rapidly varying dynamics, and practically unavailable
measurements make PMSM a challenging estimation and control problem. In order to
cope with such challenges, a novel hybrid strategy of MPC-UKF is proposed that provides
advantages over the previously used algorithms in the shape of fewer current ripples, short
peak time, improved settling time, controlled overshoot regarding speed variations, and
an overall improved estimation. Therefore, the MPC-UKF hybrid approach, as a whole,
is less susceptible to speed variations. In an effort to present an insightful discussion, the
MPC-UKF has been compared with the MPC-EKF and MPC-SMO and it has been shown
that the MPC-UKF has a good dynamic response even in a wide range with safer starting
procedures. The superiority of the MPC-UKF over the other two approaches particularly
originates from the fact that the UKF copes with the high nonlinearities, uncertainties, and
unobservability more efficiently as compared to the EKF and SMO. It can be concluded from
the presented results that the combination of MPC and the UKF is comparatively an efficient
and better choice for high-performance AC drives. The proposed method seems amenable
to highly nonlinear AC drives based on Doubly Fed Induction Motor (DFIM) and would
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potentially prove advantageous. In the future, we will intend to validate the proposed
hybrid MPC-UKF technique through practical experimentation [35,36]. Moreover, state-of-
the-art observers, such as the improved non-singular fast terminal SMC and second-order
SMC, will be implemented and compared in a hybrid combination with MPC.
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18. Szabat, K.; Wróbel, K.; Dróżdż, K.; Janiszewski, D.; Pajchrowski, T.; Wójcik, A. A fuzzy unscented Kalman filter in the adaptive

control system of a drive system with a flexible joint. Energies 2020, 13, 2056. [CrossRef]
19. Wang, W.; Lu, Z.; Hua, W.; Wang, Z.; Cheng, M. A Hybrid Dual-Mode Control for Permanent-Magnet Synchronous Motor Drives.

IEEE Access 2020, 8, 105864–105873. [CrossRef]
20. Zawirski, K.; Janiszewski, D.; Muszynski, R. Unscented and extended Kalman filters study for sensorless control of PM

synchronous motors with load torque estimation. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 793–801. [CrossRef]
21. Zhang, X.; Zhao, Z. Multi-stage Series Model Predictive Control for PMSM Drives. IEEE Trans. Veh. Technol. 2021, 70, 6591–6600.

[CrossRef]
22. Jafarzadeh, S.; Lascu, C.; Fadali, M.S. State estimation of induction motor drives using the unscented Kalman filter. IEEE Trans.

Ind. Electron. 2011, 59, 4207–4216. [CrossRef]
23. Li, J.; Zhang, L.H.; Niu, Y.; Ren, H.P. Model predictive control for extended Kalman filter based speed sensorless induction motor

drives. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA,
20–24 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2770–2775.

24. Zhang, X.; Zhao, Z. Model Predictive Control for PMSM Drives with Variable Dead-Zone Time. IEEE Trans. Power Electron. 2021,
36, 10514–10525. [CrossRef]

25. Maanani, Y.; Menacer, A.; Harzelli, I. Comparative Study Between Sensorless Vector Control and Nonlinear Control for PMSM
Based on Extended Kalman Filter (EKF). In Proceedings of the International Conference on Engineering Technologies (ICENTE’17),
Konya, Turkey, 20–24 December 2017; pp. 173–185.

26. Martin, C.; Arahal, M.R.; Barrero, F.; Durán, M.J. Five-phase induction motor rotor current observer for finite control set model
predictive control of stator current. IEEE Trans. Ind. Electron. 2016, 63, 4527–4538. [CrossRef]

27. Toso, F.; Da Ru, D.; Alotto, P.; Bolognani, S. A moving horizon estimator for the speed and rotor position of a sensorless pmsm
drive. IEEE Trans. Power Electron. 2018, 34, 580–587. [CrossRef]

28. Wei, Y.; Wei, Y.; Gao, Y.; Qi, H.; Guo, X.; Li, M.; Zhang, D. A Variable Prediction Horizon Self-tuning Method for Nonlinear Model
Predictive Speed Control on PMSM Rotor Position System. IEEE Access 2021, 9, 78812–78822. [CrossRef]

29. Yang, C.; Shi, W.; Chen, W. Comparison of unscented and extended Kalman filters with application in vehicle navigation. J. Navig.
2017, 70, 411–431. [CrossRef]

30. Guzman, H.; Duran, M.J.; Barrero, F.; Zarri, L.; Bogado, B.; Prieto, I.G.; Arahal, M.R. Comparative study of predictive and
resonant controllers in fault-tolerant five-phase induction motor drives. IEEE Trans. Ind. Electron. 2015, 63, 606–617. [CrossRef]

31. Moon, C.; Kwon, Y.A. Sensorless speed control of a permanent magnet synchronous motor using an unscented Kalman filter
with compensated covariances. J. Adv. Mar. Eng. Technol. 2020, 44, 42–47. [CrossRef]
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