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Abstract: Accurate estimation of soil temperature (Ts) at a national scale under different climatic
conditions is important for soil–plant–atmosphere interactions. This study estimated daily Ts at the
0 cm depth for 689 meteorological stations in seven different climate zones of China for the period
1966–2015 with the M5P model tree (M5P), random forests (RF), and the extreme gradient boosting
(XGBoost). The results showed that the XGBoost model (averaged coefficient of determination
(R2) = 0.964 and root mean square error (RMSE) = 2.066 ◦C) overall performed better than the RF
(averaged R2 = 0.959 and RMSE = 2.130 ◦C) and M5P (averaged R2 = 0.954 and RMSE = 2.280 ◦C)
models for estimating Ts with higher computational efficiency. With the combination of mean air
temperature (Tmean) and global solar radiation (Rs) as inputs, the estimating accuracy of the models
was considerably high (averaged R2 = 0.96–0.97 and RMSE = 1.73–1.99 ◦C). On the basis of Tmean,
adding Rs to the model input had a greater degree of influence on model estimating accuracy than
adding other climatic factors to the input. Principal component analysis indicated that soil organic
matter, soil water content, Tmean, relative humidity (RH), Rs, and wind speed (U2) are the main
factors that cause errors in estimating Ts, and the total error interpretation rate was 97.9%. Overall,
XGBoost would be a suitable algorithm for estimating Ts in different climate zones of China, and the
combination of Tmean and Rs as model inputs would be more practical than other input combinations.

Keywords: soil temperature; machine learning models; climatic zones; extreme gradient boosting;
principal components analysis

1. Introduction

Soil temperature (Ts), as a consequence of the combined effect of hydrothermal circu-
lation in both the atmosphere and the land surface, is an important factor in atmospheric–
ecological–environmental systems [1–3]. Ts has significant impacts on the energy balance of
global atmospheric–ecological–environmental systems [4,5], thereby directly affecting the
growth and development of plants [6]. Under natural conditions, Ts is influenced by other
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environmental factors such as atmospheric temperature, vegetation type, soil moisture,
and topography, which together cause the spatial and temporal variations in Ts [7]. Given
its importance and complexity, accurate prediction of Ts is of substantial value in both
scientific research and practical applications [8,9]. However, the current approaches for
measuring Ts are generally complicated, costly, and time consuming [1], which make the
wide range monitoring of Ts inaccessible in many countries, especially for undeveloped
countries. The incomplete Ts data caused by this predicament presents an obstacle to the
estimation and analysis of Ts conditions and poses a significant challenge for accurate Ts
prediction on a large scale [10].

The prevailing approaches for Ts measurements can be divided into three major cat-
egories, each of which has its own advantages and disadvantages. The first category is
the in situ monitoring of Ts with equipment installed in meteorological stations, which
allows the actual Ts to be recorded in real-time [11,12]. However, considering the geo-
graphical limitation and the economic cost of constructing meteorological stations and
the potential data deficiencies due to equipment problems, this approach is not suitable
for studies covering various regions [13]. The second category is the estimation of Ts,
which consists of the interpolation method, the Newhorl model estimation, and direct
estimation. The interpolation method estimates Ts at any depth based on known Ts at
similar depths through certain formulas [14]. The Newhorl model estimation method uses
air temperature plus a fixed value to roughly estimate Ts at a certain depth. For instance,
Deboer [15] obtained the Ts values at a depth of 50 cm indirectly by adding 2.5 ◦C to the
mean yearly temperature. The direct estimation method simply uses the Ts from known
depths to represent Ts at unknown depths [16]. Although approaches in the second cate-
gory can solve certain problems in Ts measurements to some extent, differences in several
factors such as soil depth, elevation, and environment are not considered during estimation,
which certainly have impacts on Ts. Therefore, these methods may be suitable for the local
scale, but results obtained from them are not universally applicable and cannot be gener-
alized [17]. Therefore, it is necessary to find methods that are applicable to a large-scale
range. The third category is to establish a regression equation for Ts calculation. Research
has verified similar patterns in the variations between Ts and air temperature [18,19], and
therefore relationships between the two temperatures can be used for Ts calculation at
various depths through regression equations [20]. Some studies even consider the impacts
of geographical factors (e.g., longitude, latitude, and elevation) on Ts and build a multiple
linear regression equation to quantify the impact of each geographical factor on Ts [21].
Although approaches in this category overcome the deficiencies of the methods in the other
two categories, there are still disadvantages in these approaches as Ts are not necessarily
linearly related to geographical factors [22], which might lead to significant biases during
calculation [23]. Therefore, it is necessary to explore a more efficient method to perform
the calculation.

In recent years, machine learning algorithms have been widely used in studies for
estimating hydrological and meteorological indicators, such as air temperature [24], dew
point temperature [25], precipitation [26], solar radiation [27], diffuse solar radiation [28],
and evapotranspiration [29,30], among which an artificial neural network (ANN) is proba-
bly the most common machine learning algorithm used for modeling. For Ts estimation,
ANN has been applied in different areas of the world by scholars. The first study on record
for estimating Ts with machine learning algorithms was carried out by Yang et al. [31],
in which Ts at three depths (i.e., 10, 50, and 150 cm) were estimated with ANN models.
Mihalakakou [32] evaluated the potential of ANN in daily and yearly Ts estimation in
Athens and Dublin, and the research concluded that the ANN model had an adequate
performance in estimating Ts. Bilgili [33] applied an ANN model to estimate monthly Ts at
multiple depths in Adana, Turkey, and the result showed that ANN was a suitable model
for estimating Ts. Tabari et al. [34] utilized ANN and multiple linear regression model
to estimate daily Ts at six soil depths, in which they found that temperature and relative
humidity (RH) were the most influential parameters affecting Ts estimation among mete-
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orological factors. Although the ANN model is widely used by everyone for estimating
Ts, as scholars continue their research, it was found that the ANN model is not necessarily
better than other machine learning algorithms in estimating Ts. Therefore, it becomes more
meaningful to keep investigating new models to improve the estimation performance.

Recent advances of newly developed machine learning algorithms have enabled schol-
ars to evaluate and compare the capabilities of various algorithms in estimating Ts, e.g.,
M5 model tree (M5 Tree), random forests (RF), M5P model tree (M5P), multiple linear
regression (MLR) model, support vector machine (SVM) model, and extreme learning
machine (ELM) model, etc. Sanikhani et al. [2] compared the capabilities of ELM, ANN,
and M5 Tree in modeling monthly Ts at 5, 50, and 100 cm depths, and they found that the
ELM model would be a more desirable tool for estimating Ts at a wide range of depths.
Mehdizadeh et al. [35] reported that the adaptive neuro-fuzzy inference system (ANFIS)
provided superior results in monthly Ts estimation than ANN and gene expression pro-
gramming (GEP) with data from 31 stations in Iran. Bilgili et al. [36] estimated monthly
Ts at different soil depths (i.e., 5, 10, 20, 50, and 100 cm) using nonlinear regression and
MLR models, and obtained the most accurate results at the depth of 5 cm. Feng et al. [37]
evaluated the capabilities of ELM and RF models in estimating half-hourly Ts for maize
fields, and they concluded that the ELM model had better estimated performance. Si-
hag et al. [38] utilized M5P, MLP, and RF models to estimate daily Ts in arid regions, the
results of which showed that MLP outperformed other models with better performance
metrics. Kisi et al. [39] also compared the modeling capabilities of MLP, MLR, and radial
basis neural networks (RBNN) for monthly Ts estimation at different soil depths, with
inconsistent results obtained depending on depth. At depths of 5 and 10 cm, the RBNN
model had the best estimating accuracy among all models used, while at other soil depths
(50 and 100 cm), MLR performed better. Mehdizadeh et al. [40] applied SVM and multi-
variate adaptive regression splines (MARS) to estimate month-by-month Ts for 30 stations
in Iran, and it was found that MARS outperformed the SVM model.

Overall, according to the literature, machine learning algorithms have been extensively
used in the research of Ts estimation, with the scopes of such studies generally covering
various time scales, study regions, and/or soil depths. However, to our best knowledge,
the performance of machine learning algorithms on Ts estimation has rarely been reported
in the different climatic zones of China, especially for studies with large spatial scales
(such as the whole country). Accurate estimation of Ts in different climatic zones would
be beneficial to studies of crop modeling, hydrological patterns, and soil properties under
large-scale conditions, and may also provide theoretical support for better crop production
in different regions [2,41,42]. Recently, extreme gradient boosting (XGBoost) is considered
as a promising machine learning algorithm, and has been widely applied in many fields
such as meteorology [28,43], hydrology [44,45], and agronomy [46,47]. However, to date
no study has been conducted on a national wide estimation of Ts with XGBoost. Therefore,
in this study we utilize six different combinations of meteorological variables as inputs to
develop XGBoost models for estimating daily Ts at the 0 cm depth, with records from th
eperiod 1966–2015 from 689 meteorological stations that covers seven different climatic
zones in China. To better evaluate the estimating performance of XGBoost, the M5P and RF
algorithms that have applied for Ts estimation in previous studies are added for comparison.
The primary purpose of this research is to evaluate the performance of tree-based models to
estimate daily Ts in seven different climatic zones (large-scale) of China and its applicability.
The effects of different climatic and environmental factors on the performance of each
model for estimating Ts are then explored.

2. Materials and Methods
2.1. Study Area

According to previous studies, there are seven different climatic zones in China
based on geographical and meteorological data [48,49], which are the arid desert of north-
west China (NWC), the semi-arid steppe of Inner Mongolia (IM), the (semi-) humid cold-
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temperate northeast China (NEC), the semi-humid warm-temperate north China (NC),
the humid subtropical central China (CC), the humid tropical south China (SC), and the
Qinghai-Tibetan Plateau (QTP) [50] (Figure 1). Among these climatic zones, the QTP has
the highest average elevation (up to 4000 m), with considerably high UV intensity and
relatively low vegetation coverage. The region is mainly composed of mountains, plateaus,
river valleys, and basins. The geology is mainly schist, millstone, sandstone, shale, and
volcanic rocks, The QTP region has a variety of ecosystem types and mainly grows barley.
The NWC generally has longer daylight hours than other climatic zones. The landscape
is dominated by mountains, basins, and deserts. The area is sparsely vegetated, and the
desert covers a large area. The crops and fruits are of high yield with excellent quality
in places where water is relatively abundant. The IM region receives less rainfalls than
other regions. The altitude is generally between 1000 and 1200 m. The terrain is high in the
south and low in the north, with 80% of the plateau covered by grassland, which is mainly
clumped with grasses. The thickness of the grass layer is between 10 and 60 cm. There are
seven main lake areas in the region, including the Hetao and Hulunbuir Lakes. The NEC
region has long winters and short summers, with a significant amount of snow and a wet
climate. The region is dominated by plains and mountains. There are many marshes and
thick mounds of earth. The proximity to the Bohai Sea leads to a long rainy season in the
NEC region. The region has large areas of coniferous and mixed coniferous forests and rich
black soils. Forestry accounts for 14.7% of the country’s land. The main food crop is wheat.
The NC is a relatively small region of China with less than 1000 m3 of water resources per
capita. Summers are hot and rainy. Winters are cold and dry. Rainfall varies between 400
and 800 mm. The land type is dominated by the great plains and plateaus, with the terrain
decreasing from west to east. The soil type is mainly brown loam. The CC and SC regions
generally receive heavy rainfalls in spring, where flooding tend to occur during that time
period. The CC region has red loamy soils of low fertility. The hills, plains, basins, rivers
and lakes dominate. The main crops grown are rice and oilseed rape. The topography
of the SC region is mainly hilly and plain. The average annual temperature is 18–24 ◦C.
Moreover, the area has a large variety of plants, mainly tropical scrub, grassy slopes, and
secondary forests. The soil types are mainly brick red loam and russet red loam.
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2.2. Case Study and Data

In this study, daily meteorological data from 1966 to 2015 from 689 meteorological
stations located in the seven climatic zones of China were collected. Meteorological data
consisted of mean air temperature (Tmean), maximum air temperature (Tmax), minimum air
temperature (Tmin), relative humidity (RH), global solar radiation (Rs), and wind speed (U2).
The selected data were quality controlled. All weather-related variables were measured at a
2 m height. However, it should be noted that Rs was not recorded in all the 689 stations. To
fix this problem, the extraterrestrial solar radiation (Ra) was used for interpolation through
modelling, if the Rs data were absent. Ts at a depth of 0 cm were measured through probes
on the soil surface. Six input combinations were utilized for training the M5P, RF, and
XGBoost models. Table 1 showed the types of input combinations. Raw meteorological
data used in the study were provided and quality inspected by the National Meteorological
Information Center (NMIC) of the China Meteorological Administration (CMA). A further
examination was applied to datasets before computing. A number of data were deleted
from the original data because they were missing or the ratio between measured Ts and
theoretical Ts was greater than one. Tmean was converted from Tmax and Tmin. The M5P,
RF, and XGBoost programs were written in R software (version 3.2.3; The R Project for
Statistical Computing). All the simulations were performed in a computer with a single
Intel Core i7-6700 at 3.4–4.0 GHz and 16 GB of random-access memory (RAM).

Table 1. The input combinations of meteorological variables for various machine learning models.

Models
Input Combinations

M5P RF XGBoost

M5P1 RF1 XGBoost1 Tmean, RH, Rs, U2
M5P2 RF2 XGBoost2 Tmean
M5P3 RF3 XGBoost3 Tmean, RH
M5P4 RF4 XGBoost4 Tmean, Rs
M5P5 RF5 XGBoost5 Tmax, Tmin
M5P6 RF6 XGBoost6 Tmean, U2

2.3. Methodology
2.3.1. M5P Model Tree (M5P)

The M5P model tree (M5P) is a regression tree algorithm that develops conventional
decision trees with the addition of linear regression functions to the nodes [51]. This
technique has been successful in predicting continuous values, which can be achieved
by employing the conversion of the classification problem into a functional optimization
problem [52]. The M5 Tree denotes a segmented linear function, testing the value of a
specific property at each internal node and predicting the class value at each leaf node.
To predict the class value of a new sample, the tree is interpreted starting from the root
node. At each internal node, the left or the right branch is selected based on the value of a
particular attribute of the sample. The advantage of model trees over regression trees is
that regression trees’ computational load increases rapidly as the dimensionality increases,
while model trees are significantly less than conventional models. Therefore, model trees are
more efficient when handling with high-dimensional data as leaf nodes use linear functions
rather than constants, leading to more accurate predictions. All enumerated attributes in
the M5P algorithm are converted into binary variables before the tree is constructed. This
algorithm can efficiently handle missing values. There are three main steps in the M5P
tree algorithm, which are tree construction, tree pruning, and tree smoothing [53]. The
basic tree is constructed with the splitting criterion, which takes the standard deviation of
the class values reaching a node as the error of that node. It computes the expected error
reduction resulting from testing each property at that node. The property that maximizes
the expected error reduction is then selected.
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2.3.2. Random Forests (RF)

The random forests (RF) algorithm, proposed by Breiman [54], was developed using
classification and regression trees (CART) and the concept of “bagging”. As a machine
learning algorithm that can effectively solve high-dimensional regression problems, RF
has been used extensively in research of regression and estimation, which uses subsets of
data through bootstrap to process random binary trees. By repeatedly selecting random T
(T < N) sample sets, a new training sample set is generated from the N original training
samples. In the whole process of selecting samples, the same part of the samples may
be collected repeatedly. A random subset of the training dataset needs to be randomly
extracted from the original dataset for the development and training of the model (see the
flowchart in Figure 2). Datasets that are not used in the model training are often called
out-of-bag (OOB) data. These OOB datasets will not be used for model fitting, but in turn
will be used for testing the estimation ability of the model [25].

The RF algorithm is a feature selection based on the Gini coefficient. The criterion for
selecting the Gini coefficient is that each child node needs to achieve the highest purity.
The smaller the Gini coefficient, the higher the stability of the model and the higher the
purity. CART is a binary tree, which means that each non-leaf node can only produce
two branches. If multiple (taller than two) discrete variables are generated on a non-leaf
node, the variable may be reused multiple times. Each feature selected from the RF tree is
randomly produced from all the features, which reduces the risk of overfitting. In contrast
to other decision trees, each RF tree is part of the selected feature [25]. Among the selected
features in this part, the best feature is picked to partition the left and right subtrees of
the decision tree, thereby providing more randomness and further improving the model’s
inductive power [25]. In short, the final estimation of the RF algorithm is the average of all
factors. Breiman’s research has more details about the RF algorithm [54].
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2.3.3. Extreme Gradient Boosting (XGBoost)

Extreme gradient boosting (XGBoost) is a new paradigm for Gradient Boosting Ma-
chines (GBMs), which improves the processing of databases through the optimization
of decision tree algorithms [55]. The XGBoost algorithm solves the overfitting problem
through regularization and built-in cross-validation, which improve the computational
accuracy and allow for optimum speed. Furthermore, functions in the XGBoost algorithm
are operated and computed automatically, and therefore XGBoost is extensively applied
in applications such as classification [56] and estimation [57]. The XGBoost algorithm is
derived from the concept of “boosting”, which combines the forecasts of all “weak” learners
with special training to foster “strong” learners. The expressions are as follows:

f (t)i =
t

∑
k=1

fk(xi) = f t−1
i + ft(xi) (1)

where fk(xi) and ft(xi) are the predicted values for the k-th and t-th iterations of the
XGBoost model, respectively; f (t)i and f t−1

i are the predicted values for the t and t−1
iterations of the i-th sample; xi is the input variable; k = [1, 2, . . . , t], i = [1, 2, . . . , n].

To prevent overfitting problems without compromising the speed of the algorithm,
the XGBoost algorithm can be derived as follows:

Obj(t) =
n

∑
i=1

l
(

f (t)i , f (t)i

)
+

n

∑
i=1

Ω( fi) (2)

where Obj(t) is the objective function; l is the loss function; f (t)i is the true value of the t-th
iteration of the i-th sample; and Ω( fi) is the canonical term of the objective function, which
is given by:

Ω( f ) = βT +
1
2

λ‖ω‖2 (3)

where β and λ are regularization parameters and T is the number of leaf nodes.

2.3.4. Model Evaluation

In this study, three statistical indicators, including coefficient of determination (R2),
root mean square error (RMSE), and mean absolute error (MAE), were chosen to analyze
and compare the accuracy and stability of different models for estimating Ts [50,58]. The
corresponding formulas are:

R2 =

[
n
∑

i=1
(Yi,m −Yi,m)(Yi,e −Yi,e)

]2

n
∑

i=1
(Yi,m −Yi,m)

2 n
∑

i=1
(Yi,e −Yi,e)

2
(4)

RMSE =

√
1
n

n

∑
i=1

(Yi,m −Yi,e)
2 (5)

MAE =
1
n

n

∑
i=1
|Yi,m −Yi,e| (6)

where Yi,m, Yi,e, Yi,m, Yi,e, and n are the measured daily Ts, the estimated daily Ts, the
measured average value of daily Ts, the estimated average value of daily Ts, and the
number of observations, respectively. Higher R2 values (closer to 1) and lower RMSE and
MAE values indicate better estimation performance of the model.
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3. Results and Discussion
3.1. Comparison of the Accuracy of Various Machine Learning Models

The overall and average performance of each data-driven model in the seven different
climatic zones is shown in Tables 2 and 3, respectively. As listed in Table 2, averaged across
the six input combinations and the seven climatic zones, the XGBoost model (on average
R2 = 0.964, RMSE = 2.066 ◦C, MAE = 1.597 ◦C) overall performed better in Ts estimation than
the RF (on average R2 = 0.959, RMSE = 2.130 ◦C, MAE = 1.647 ◦C) and M5P models (on aver-
age R2 = 0.954, RMSE = 2.280 ◦C, MAE = 1.742 ◦C). Among the six input combinations, mod-
els with the complete combination of meteorological variables as inputs (i.e., the input com-
bination 1) had the greatest estimating accuracy in each of the seven climatic zones (Table 3).
Under this input combination, averaged across the meteorological stations in each climatic
zone, the ranges of the mean statistical indicator values for M5P1, RF1, and XGBoost1 at
different climatic zones were 1.722–2.875 ◦C, 1.354–2.257 ◦C, and 1.342–2.208 ◦C for RMSE,
0.928–0.975, 0.956–0.984, and 0.959–0.985 for R2, and 1.245–2.106 ◦C, 1.028–1.702 ◦C, and
0.992–1.651 ◦C for MAE, respectively. The second best estimating accuracy among input
combinations was observed in models with the combination of Tmean and Rs (i.e., the input
combination 4) as inputs, which were M5P4, RF4, and XGBoost4 (with corresponding ranges
of 1.658–2.830 ◦C, 1.506–2.556 ◦C, and 1.446–2.435 ◦C for RMSE, 0.929–0.975, 0.941–0.980,
and 0.9494–0.983 for R2, and 1.214–2.093 ◦C, 1.119–1.915 ◦C, and 1.084–1.840 ◦C for MAE,
respectively). Although input combination 4 yielded slightly worse model accuracy than
the complete combination, it required less input variables and a much smaller dataset.
It was noted that models with Tmean as inputs all achieved relatively good performance
in estimation, including models with the complete input combination (M5P1, RF1, and
XGBoost1) and the combinations of Tmean and RH (M5P3, RF3, and XGBoost3), Tmean and
Rs (M5P4, RF4, and XGBoost4) and Tmean and U2 (M5P6, RF6, and XGBoost6). These
results confirm the argument that temperature is the most fundamental meteorological
factor for data-driven models in estimating Ts. Among the other three meteorological
factors, Rs had the highest degree of influence on estimating accuracy, followed by RH,
and then U2. Therefore, considering the model estimating accuracy and the size of input
data jointly, models using the input combination of Tmean and Rs would have a higher
potential in Ts estimation across different climatic zones in China than models with other
input combinations. For the three algorithms in this study, the overall model performance
was generally ranked as XGBoost > RF > M5P with any of the input combinations in any of
the climatic zones, with the exception that M5P2 was always better than RF2 in all climatic
zones and even better than XGBoost2 in some climatic zones (e.g., NWC, IM, and QTP).

Table 2. Summary of the performance of data-driven models for soil temperature in different climate
zones of China.

Different
Zone

M5P RF XGBoost

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE

NWC 2.358 0.971 1.800 2.213 0.974 1.709 2.175 0.976 1.694
IM 2.679 0.967 2.071 2.486 0.971 1.944 2.417 0.974 1.907

NEC 2.912 0.957 2.211 2.700 0.963 2.075 2.584 0.967 1.988
NC 2.197 0.966 1.688 2.042 0.970 1.588 1.984 0.973 1.539
CC 1.748 0.961 1.302 1.643 0.965 1.239 1.608 0.970 1.202
SC 1.735 0.925 1.330 1.645 0.931 1.274 1.604 0.941 1.226

QTP 2.330 0.930 1.794 2.181 0.938 1.697 2.090 0.945 1.625

Mean 2.280 0.954 1.742 2.130 0.959 1.647 2.066 0.964 1.597
Note: RMSE and MAE are in ◦C.
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Table 3. Performance of data-driven models for the estimation of soil temperature in the different climatic zones of China.

Model
NWC IM NEC NC CC SC QTP

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE

M5P1 2.155 0.975 1.601 2.515 0.971 1.878 2.875 0.958 2.106 2.077 0.969 1.552 1.722 0.962 1.245 1.728 0.928 1.283 2.239 0.934 1.688
RF1 1.738 0.984 1.319 1.996 0.981 1.533 2.257 0.974 1.702 1.642 0.981 1.257 1.374 0.975 1.028 1.354 0.956 1.035 1.760 0.959 1.352

XGBoost1 1.656 0.985 1.258 1.904 0.985 1.453 2.208 0.976 1.651 1.580 0.983 1.200 1.342 0.979 0.992 1.367 0.959 1.036 1.671 0.963 1.274
M5P2 2.212 0.974 1.723 2.506 0.972 1.994 2.737 0.962 2.146 2.103 0.969 1.673 1.709 0.963 1.321 1.713 0.925 1.365 2.219 0.936 1.748
RF2 2.301 0.972 1.795 2.607 0.969 2.070 2.851 0.959 2.228 2.162 0.967 1.719 1.745 0.962 1.349 1.736 0.923 1.384 2.271 0.933 1.788

XGBoost2 2.474 0.970 1.937 2.710 0.968 2.154 2.719 0.964 2.114 2.166 0.969 1.684 1.673 0.968 1.267 1.626 0.940 1.250 2.304 0.935 1.806
M5P3 2.364 0.971 1.810 2.656 0.968 2.054 2.877 0.958 2.191 2.183 0.966 1.668 1.698 0.963 1.254 1.695 0.927 1.290 2.261 0.935 1.735
RF3 2.273 0.973 1.756 2.515 0.971 1.962 2.729 0.962 2.099 2.073 0.969 1.601 1.655 0.965 1.233 1.694 0.927 1.296 2.187 0.938 1.697

XGBoost3 2.212 0.975 1.735 2.455 0.974 1.952 2.651 0.966 2.057 2.039 0.972 1.597 1.639 0.969 1.223 1.664 0.937 1.274 2.111 0.945 1.647
M5P4 2.153 0.975 1.623 2.438 0.973 1.847 2.830 0.960 2.093 2.006 0.972 1.520 1.658 0.965 1.214 1.678 0.929 1.262 2.234 0.935 1.707
RF4 1.951 0.980 1.489 2.203 0.978 1.684 2.556 0.967 1.915 1.811 0.977 1.389 1.506 0.971 1.119 1.532 0.941 1.168 2.035 0.946 1.571

XGBoost4 1.870 0.983 1.440 2.118 0.980 1.640 2.435 0.971 1.840 1.759 0.978 1.356 1.448 0.974 1.084 1.446 0.949 1.105 1.896 0.954 1.465
M5P5 2.849 0.958 2.185 3.176 0.955 2.474 3.154 0.950 2.414 2.490 0.957 1.906 1.858 0.957 1.375 1.774 0.921 1.351 2.632 0.913 2.025
RF5 2.658 0.963 2.057 2.926 0.961 2.304 2.921 0.957 2.258 2.303 0.963 1.780 1.746 0.962 1.302 1.716 0.925 1.312 2.458 0.923 1.913

XGBoost5 2.520 0.968 1.973 2.737 0.967 2.176 2.730 0.963 2.124 2.166 0.968 1.681 1.697 0.967 1.277 1.645 0.938 1.259 2.302 0.934 1.797
M5P6 2.416 0.969 1.855 2.781 0.965 2.182 2.999 0.955 2.316 2.322 0.962 1.812 1.844 0.957 1.401 1.821 0.916 1.430 2.397 0.927 1.860
RF6 2.360 0.971 1.834 2.671 0.967 2.114 2.884 0.958 2.249 2.261 0.964 1.780 1.834 0.957 1.405 1.838 0.914 1.448 2.377 0.927 1.864

XGBoost6 2.317 0.974 1.822 2.580 0.972 2.067 2.758 0.963 2.145 2.196 0.969 1.715 1.849 0.963 1.369 1.875 0.927 1.432 2.255 0.938 1.758
Note: RMSE and MAE are in ◦C. The bolded numbers are the best values for model estimation performance.
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The box plots of the RMSE values of the three data-driven models (i.e., M5P, RF, and
XGBoost models) for estimating Ts with the six input combinations at the 689 stations
of China are shown in Figure 3. The RMSE values of the XGBoost model under the six
input combinations were 1.001–2.823 ◦C, 1.272–3.480 ◦C, 1.121–3.259 ◦C, 1.050–2.981 ◦C,
1.173–3.540 ◦C, and 1.231–3.422 ◦C, respectively, which overall were lower than the cor-
responding values of the M5P model (1.241–3.618 ◦C, 1.056–3.447 ◦C, 1.133–3.638 ◦C,
1.174–3.478 ◦C, 1.250–4.059 ◦C, and 1.107–3.758 ◦C, respectively) or the RF model
(1.051–2.873 ◦C, 1.082–3.611 ◦C, 1.111–3.431 ◦C, 1.090–3.123 ◦C, 1.170–3.761 ◦C, and
1.153–3.619 ◦C, respectively). Averaged across all stations, the mean RMSE values for
the XGBoost model under the six input combinations decreased by 23.1%, −1.4%, 5.5%,
13.2%, 11.2%, and 3.4% when compared with the M5P model, and by 3.0%, 1.4%, 1.9%,
4.3%, 4.5%, and 1.7% when compared with the RF model. The median RMSE values of the
three models showed a similar pattern to the mean RMSE values. These results together
indicated that, among the three models in this study, the XGBoost model had the highest
overall performance, followed by the RF model and then the M5P model.
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3.2. Comparison of the Spatial Distribution of Errors in Estimating Soil Temperature

Spatial distributions of the performance in estimating Ts for the data-driven models
with all climatic variables as inputs (M5P1, RF1, and XGBoost1 models) are shown in
Figure 4. Generally, the models all performed well in estimating Ts at the majority of
stations, with the values of RMSE less than 2.0 ◦C and the values of MAE less than
1.50 ◦C at 76.8% of all stations studied. Overall, there was some spatial variation in model
performance between climatic zones. The accuracy of the model was relatively better in the
CC and SC regions than in other regions, while the model performance was relatively poor
in the NEC region, especially in the northeast provinces of China. Among the three models,
M5P1 had the worst performance in estimation, with RMSE values greater than 2.01 ◦C
and MAE values greater than 1.50 ◦C in up to 47.7% of the stations in all regions, except for
the CC region where only a small fraction of stations had similar poor performance. On
the contrary, the XGBoost1 model had the most satisfactory in estimating Ts, with RMSE
values less than 1.51 ◦C and MAE values less than 1.25 ◦C in most stations of all regions,
except for the NEC region.
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The performance of the M5P2, RF2, and XGBoost2 models for estimating Ts are
illustrated in Figure S1. The three models were trained using Tmean as the only input
available. The three models generally had a positive performance in estimating Ts at the
majority of stations, with RMSE values greater than 2.01 ◦C and MAE values greater than
1.50 ◦C at 48.8% of the stations. Although there was still relatively good estimating accuracy
in some stations of the CC and SC regions, the overall performance of the three models
was poor in other regions of this study. In particular, the IM and NEC regions had up
to 71.9% of the stations with model RMSE values greater than 2.51 ◦C and MAE values
greater than 2.00 ◦C. Overall, the estimation accuracy of the XGBoost2 model was slightly
greater than both other models. These results suggest that there is space for improvement
in the estimation accuracy of the three models when using Tmean as the only input. Our
findings also confirm the conclusion of Talaee’s study that the appropriate addition of
other meteorological factors to Tmean could effectively improve model performance in
estimating Ts [59].

The spatial distribution of the performance for the data-driven models (M5P3, RF3,
and XGBoost3 models) on Ts estimation with Tmean and RH as inputs is illustrated in
Figure S2. The models generally had positive performance in estimating Ts at the majority
of stations, with RMSE values less than 2.0 ◦C and MAE values less than 1.50 ◦C at
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56.2% of the stations. Among the climatic zones, the three models performed relatively
better in the CC region than other regions, while the poorest model performance was
observed in the NEC region, where the RMSE and MAE values in 78.5% of the stations
were greater than 2.51 ◦C and 2.00 ◦C, respectively. Models showed very similar estimating
performance between the NWC and the QTP regions. Compared with the M5P1, RF1, and
XGBoost1 models, the accuracy of models with only Tmean and RH as inputs was slightly
worse. Therefore, reducing the number of meteorological factors as inputs would lower the
estimation performance of each model, which is consistent with findings obtained by Feng
et al. [60]. This result suggests that using a complete set of relevant meteorological factors
as inputs in studies of Ts estimation could effectively improve the estimating performance
of models, which confirms the findings from previous studies [61].

The spatial distribution of estimating performance for M5P4, RF4, and XGBoost4
models that were trained with Tmean and Rs as inputs are illustrated in Figure S3. The
models all showed positive performance in modeling Ts for a large proportion of stations,
with RMSE values less than 2.0 ◦C and MAE value less than 1.50 ◦C at up to 71.6% of
the stations. Among the climatic zones, the estimating accuracy of the three models was
relatively excellent in the CC and SC regions, with RMSE values less than 1.50 ◦C and MAE
values less than 1.25 ◦C at 45.5% of the stations, while in contact the model performance
in the NEC region was relatively poor, with up to 64.9% of the stations showing values
of RMSE and MAE greater than 2.51 ◦C and 1.75 ◦C, respectively. Among the three
models, the estimating performance of XGBoost4 was slighter better than RF4, but both of
them obviously outperformed M5P4. Overall, patterns of the spatial variability in model
performance for this input combination (i.e., Tmean and Rs) were very similar to patterns
shown in models with the complete combination of meteorological variables as inputs,
indicating that the removal of RH and U2 from the inputs did not noticeably decrease the
estimation accuracy of models in this study. Moreover, the input combination of Tmean and
Rs required far less meteorological data than the complete input combination. Therefore, it
can be concluded that Tmean and Rs are key input variables for estimating Ts in different
climate zones, consistent with findings obtained by Talaee [59] and Bilgili [21].

For the data-driven models with Tmax and Tmin as inputs (i.e., M5P5, RF5, and
XGBoost5), the spatial distribution of their estimating performance is demonstrated in
Figure S4. Overall, the three models performed poorly in estimating Ts at most stations,
with 55.8% of the stations showing the values of RMSE and MAE above 2.01 ◦C and 1.50 ◦C,
respectively. Models with Tmax and Tmin as input variables performed worse than the
M5P1, RF1, and XGBoost1 models, indicating that using temperature as the only input
climatic variable would not be sufficient enough to obtain satisfactory model performance.

The spatial distributions of the estimating performance for the M5P6, RF6, and XG-
Boost6 models that were trained using Tmean and U2 as inputs are shown in Figure S5.
The three models showed poor performance in modeling Ts at most stations, with RMSE
values greater than 2.01 ◦C and MAE values greater than 1.50 ◦C at 58.7% of the stations.
Although the estimating accuracy of the three models was relatively good in the CC region,
their estimating performance was poor in other regions. For instance, in the IM and NEC
regions, up to 78.4% of the stations showed values of RMSE and MAE greater than 2.51 ◦C
and 2.00 ◦C, respectively.

A combined comparison of Figures S2–S5 indicates that the models showed an overall
trend of decreasing accuracy from south to north. This would lead us to think that it
is related to latitude, whereas latitude could affect Ts due to the angle of incidence by
solar radiation [62]. Regarding the effect of latitude on Ts, scholars have reached similar
conclusions in studies from other countries. In a study conducted by Fitton and Brooks [63]
in the USA, it was concluded that Ts decreased with increasing latitude. The model with
inputs Tmean and Rs would be slightly more accurate in estimation than under several other
combinations of inputs, which was very close to the performance of each model at full
input of the parameter variables. Based on Tmean, the factor Rs had a greater influence
on the accuracy of each model than several other meteorological factors, followed by RH
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and U2. Because this research estimated Ts at 0 cm depth, the air temperature was most
closely related to Ts [64]. However, the greater degree of influence of Rs might be due to the
source of soil heat. Ts is one of the components of soil heat. However, soil heat is mainly
formed by solar radiation, heat emitted from the Earth’s interior, and heat generated by
the decomposition of microorganisms in the soil [65]. Of these, solar radiation dominates.
Therefore, Rs had a greater degree of influence in estimating Ts. Nahvi et al. [66] and
Huang et al. [67] also concluded that Tmean was significantly relevant in estimating Ts.
It suggested that the input combination of Tmean and Rs was the most generalizable for
studies estimating Ts in the different climatic zones of China.

3.3. Analysis of Factors Affecting the Model’s Estimation of Soil Temperature

To compare the level of linearity between the estimated and the measured values of
Ts for each model, we randomly selected one meteorological station per region (including
stations 51,477, 50,618, 50,353, 52,986, 56,188, 59,287, and 52,984, respectively) out of
the 689 stations in the seven different climatic zones across the country as examples for
description. Outputs from models with input combinations 1, 5, and 6 were plotted for
comparison (Figure 5, Figures S6 and S7). It is clear from Figure 5, Figures S6 and S7 that
the three types of models (i.e., the M5P, RF, and XGBoost models) all performed very well
in estimating Ts. For any of the models constructed with the selected input combinations
in the randomly selected stations, there was a significant positive correlation between the
estimated and the measured Ts values, with R2 values at least higher than 0.92.

For models with the complete combination of climatic variables (i.e., combination 1) as
inputs, XGBoost outperformed both M5P and RF at each of the randomly selected stations
(Figure 5). Across the stations, the average R2 values of XGBoost models were 0.981, higher
than RF (averaged R2 = 0.978) and M5P (averaged R2 = 0.966) models. For each type
of model, the estimating accuracy differed among stations, suggesting that variations in
geographical and environmental factors among different climatic zones could affect the
model performance in Ts estimation to some extent, as suggested by Kassaye et al. [68].
Taking XGBoost as an example, except for station 59,287 (R2 = 0.966), the model accuracy
was considerably high at all stations (all R2 values no less than 0.980; averaged R2 = 0.983),
with the highest accuracy observed at station 51,477 (R2 = 0.989). The significant difference
in model estimating accuracy between station 51,477 and station 59,287 could be attributed
to the differences in climatic factors (e.g., temperature) between climatic zones. Station
51,477 is located in the NWC region, with sufficient light, low soil water contents, and low
variation of Ts. In contrast, station 59,287 is within the SC region, where the soil moisture is
sufficient and the variation in Ts is high. First of all, we selected stations that are all weather
stations. The terrain of the station measurement points is short grass and flat, so the slope
and some human factors are not considered to influence Ts. However, soil characteristics
differ between climatic zones. For example, the soil in the CC area is mainly red loam. The
main characteristic of red loam soil is strong clay and little organic matter. Therefore, the
soil heat transfer is faster, which means that Ts does not change much. Thus, the model
estimated Ts with high accuracy. However, the soil in the NEC area is mainly black soil.
It is characterized by fertile land and high organic matter content. However, as we know,
high organic matter content means higher heat requirements for microbial decomposition.
Therefore, the variation in Ts varied widely, leading to a decrease in the accuracy of model
estimation. Zhang et al. [69] concluded that the variation of Ts in different climatic zones
was influenced by a combination of air temperature and precipitation. More precipitation
occurs in humid areas and less in arid regions. These findings are consistent with the
conclusion made by Knight et al. [70], where they suggested that Ts could be directly
affected by air temperature and indirectly impacted by soil moisture. In addition, other
factors such as soil depth, soil characteristics, irrigation levels, and precipitation could
also affect the estimation of Ts to some extent, as described in the literature [9,37,71–73].
For example, the variability of Ts at different soil depths generally vary, with greater
variability between measured and estimated values observed in deeper soils. The literature



Appl. Sci. 2022, 12, 5088 14 of 26

indicates that the thermal conductivity of soil decreases with increasing soil porosity but
increases with increasing soil water content [74]. Therefore, both enhanced rainfall and
reduced porosity could improve the thermal conductivity of the soil, which could make
Ts less variable [75]. In addition, the increase in the organic matter content of the soil also
reduces the thermal conductivity [76]. The degree of irrigation, similar to precipitation, can
indirectly affect the soil water content. The increase in soil water content increases the heat
capacity in the soil, which results in a smaller range of variation in Ts [74].
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With combination 5 (i.e., including Tmax and Tmin) as inputs (Figure S6), the accuracy
of each model at each station was lower than the accuracy of its corresponding model
with the complete input combination, indirectly suggesting that adding more relevant
meteorological factors to the inputs would improve the model performance in estimating
Ts. This result is consistent with the conclusion made by Sanikhani et al. [2] and Kim
and Singh [6]. Among the selected stations, the best-performing models were observed
at station 56,188, where the R2 values of the M5P, RF, and XGBoost models were 0.969,
0.971, and 0.976, respectively (Figure S6). For station 56,188 (within the CC region) and
station 59,287 (within the SC region), the range of variations in Ts was smaller than other
stations within other climatic zones, resulting in the scatters of the regression at the two
stations being denser than at other stations. This outcome might be due to the fact that
these two stations are located at regions where the climatic difference between them is
similar, but they are distinct from other stations in terms of climate. Similar patterns were
found by other studies, in which the estimation of reference crop evapotranspiration (ET0)
in different climatic zones was conducted [50].
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For combination 6 (i.e., including Tmean and U2 as inputs), XGBoost models outper-
formed both RF and M5P models in terms of estimating accuracy, similar to other input
combinations (Figure S7). Across the selected stations, the R2 values of XGBoost models
averaged 0.966, slightly higher than the RF and M5P models, which had the same estimat-
ing accuracy on average (both averaged R2 = 0.960). Under this input combination, the
accuracies of the M5P and RF models were very close at each of the stations. At some of
the stations (e.g., stations 56,188 and 59,287), the M5P model even slightly outperformed
the RF model. Among these stations, the best model performance in estimating Ts was
observed in station 51,744, where the XGBoost model had the highest accuracy (R2 = 0.976).
Compared to models with input combination 5, there were improvements to some extent
in the estimating accuracy of models with input combination 6 at all selected stations,
except for station 59,287. The estimating accuracies of the M5P, RF, and XGBoost models at
station 59,287 decreased by 2.0%, 2.5%, and 2.1%, respectively, when comparing the input
combinations. This result might be due to the high variability of wind speeds in the region
where station 59,287 was located, which could impair the model accuracy in estimation. A
previous study by Kim and Singh [6] had similar findings, which confirmed that U2 could
significantly affect the performance of estimated Ts.

To quantify the effects of soil water content, soil organic matter content, and other me-
teorological factors on Ts estimation by models in different climatic zones, the relationships
between these factors and the RMSE values of XGBoost1 were analyzed (Figure 6). The
spatial distribution of soil organic matter content and soil water content for the selected sta-
tions are plotted in Figure 7. Data from different climatic zones were fitted separately. For
each of the soil texture factors or the meteorological factors, its correlation with the RMSE
of Ts differed between climatic zones, suggesting that the model accuracy in estimating
Ts was related to the soil texture and the climate of the region where the meteorological
stations were located. Different soil textures have different permeability and nutrient
contents, which partially leads to differences of Ts variability and consequently affects the
model accuracy for Ts estimation. This pattern is consistent with results described in the
previous section.

As shown in Figure 6a, the most significant correlation between soil organic matter
content and model estimating accuracy was found in the NC region (R2 = 0.255), followed
in order by the IM, the NWC, and the CC regions. In other regions, including NEC, SC, and
QTP, no significant correlation was found. In regions where the correlation was significant,
the model accuracy for estimating Ts decreased with the increasing soil organic matter
content. This is due to the fact that the specific heat capacity of soil organic matter is less
than the soil specific heat capacity. Under certain conditions, the higher the organic matter
content is, the more heat absorption should be required for decomposition, leading to
more variable and unstable Ts. Wang et al. [77] also concluded that soil organic matter
could significantly affect the variation of Ts. According to the results, the NEC, SC, and
QTP regions had relatively high soil organic matter contents, indicating that too much soil
organic matter may lead to other types of reactions within the soil and make the model
estimation of Ts less stable [78,79].
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The correlation between soil water content and model estimating accuracy was most
significant in the IM region (R2 = 0.175; Figure 6b), followed by the CC region, and then
the QTP and the NC regions. Soil water content was not significantly correlated with the
accuracy of estimating Ts in the NWC, NEC, and SC regions. In most regions where the
correlation was significant, the model estimating accuracy increased with the increasing soil
water content. This might be attributed to the fact that the specific heat capacity of water
is about four times higher than that of soil. The temperature change of the soil water is
much smaller than the soil itself when equally heated or cooled, suggesting that soil water
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can indirectly regulate Ts and reduce the range of Ts variation. Yuan [80] also concluded
that soil water content had an important influence on soil thermal properties and could
effectively regulate Ts. Therefore, under certain conditions, the higher the soil water content
is, the smaller is the expected range of Ts variation, leading to higher model accuracy in
Ts estimation. This finding is consistent with conclusions from previous studies [81,82]. It
should be noted that a contrasting pattern was observed in the IM region, where the model
estimating accuracy decreased with the increasing soil water content. This phenomenon
might be attributed to the relatively low soil water content in this region. For most stations
in the IM region, their soil water contents were lower than 10%, which was distinct from
the other six regions in the study. Therefore, soil water content might not play an important
role in determining the pattern of model estimating accuracy in the IM region, in which
other factors such as soil organic matter might be more influential.

RH was highly significantly correlated with the accuracy of model-estimated Ts in
the CC region, which might be due to the fact that the region is in a humid area with high
perennial air humidity (Figure 6c). When the relative humidity is high, there is considerable
moisture in the air. Given the fact that the specific heat capacity of water is larger than
air, the heat transferred by the air temperature and solar radiation to soils is partially
absorbed by the moisture in the air, thus reaching the amount of heat to the surface of the
soil. Sawan [83] also suggested that RH had a strong influence on air temperature variation
and indirectly affected the heat absorbed by the soil.

Solar radiation is one of the main sources of soil heat. In our study, Rs showed
significant correlation with model accuracy for estimating Ts in the NWC and CC regions,
which might be caused by the longer insolation time in the NWC region and the higher
insolation intensity in the low-latitude CC region (Figure 6d). Solar radiation can be
directed to the surface, allowing the surface to absorb heat and thus increase the Ts. High
latitudes have a high tilt of solar irradiation, so that less solar radiation energy is absorbed
on the soil per unit area. This results in lower Ts. In contrast, the Ts is higher at low
latitudes because the solar radiation absorbed per unit area of soil is higher due to direct
sunlight to the ground [62]. Olchev et al. [84] also confirmed the important role of solar
radiation in the conversion of Ts.

Wind speed affects the flow of air. As shown Figure 6e, U2 was highly significantly
correlated with the accuracy of model-estimated Ts in the NEC region, which might be due
to the fact that the NEC is in a cold-temperate region with frequent cold air and high wind
speed all year round. When the U2 is low, heat exchange between soil and air is reduced,
thus reducing the variation in Ts. Conversely, the heat loss from air is generally fast when
U2 is high, resulting in significant variation in Ts. Kong et al. [85] studied the effect of
seasonal variation in U2 on Ts and suggested that U2 affects the heat uptake by soils to
some extent, thus causing changes in Ts.

We also explored the extent of the contribution of these factors to the estimating error of
the model and the relationship between them through principal component analysis (PCA)
and correlation coefficients (Figure 8). PCA was used to explain the degree of influence
of the factors on the model error. As shown in Figure 8a, the total model error explained
by each factor was 97.9%. Among them, PC1 accounted for 96.2% and PC2 accounted
for 1.7%. Soil water content, Tmean, Rs, and U2 were all located in the same quadrant.
These factors, illustrated in Figure 8a, are shown to be the main factors contributing to
the error in estimating Ts. Zhang [86], when he studied the effect of snow cover on Ts,
also proposed that air temperature alone does not fully explain the variation in Ts. The
Rs, soil water content, and RH can also combine to influence the variation of Ts, whereas
soil organic matter content and U2 were additionally proposed to explain the Ts variation
in this study. For each of the factors, there was a significant relationship between it and
the estimated RMSE values of Ts (Figure 8b). Among these factors, U2 had the lowest
correlation (R = 0.14), whereas RH had the highest correlation (R = −0.48) and soil water
content had the second highest correlation (R = 0.38), indicating that the heat absorption
capacity of water had a more obvious effect on Ts than other factors such as Tmean, Rs, and
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soil organic matter content. To summarize, soil organic matter, soil water content, Tmean,
RH, Rs, and U2 are the main factors that cause errors in estimating Ts, all of which would
have, to some extent, a critical impact on the model estimation of Ts.
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3.4. Comparison of Estimation Performance in Different Climate Zones

To compare the estimating performance for each of the 18 models (3 machine learning
algorithms × 6 input combinations) at each of the stations within each of the climatic zones
in this study, a combined metric based on the RMSE and MAE values of each model was
calculated. The value of the combined metric ranged from 0 to 1, in which the closer the
value to 0, the better the model performance was, while on the contrary the closer the value
to 1, the worse the model performance was. Values of the combined metric at different
stations for each climate zone are illustrated with heatmaps (see Figure 9 and Figures
S8–S13). Overall, under the same input combination, the estimation performance of the
XGBoost model was generally better than that of the RF and M5P models at most stations
(Figure 9 and Figures S8–S13). Among all the 18 models with different input combinations,
the XGBoost1 and RF1 models generally performed best at most stations in the seven
climate zones, of which XGBoost1 had better performance than RF1. Among the incomplete
input combinations, models with combination 4 (i.e., including Tmean and Rs) generally
performed better than models with other combinations, of which the models could be
ranked as XGBoost4 > RF4 > M5P4 in terms of estimation performance. It is noted that the
performance of the XGBoost4 model was relatively close to that of the XGBoost1 model,
while the former required fewer input datasets than the latter. Therefore, the XGBoost4
model would be more generalizable than the XGBoost1 model for estimating Ts across
different climatic zones. Overall, the model performance differed between different climatic
zones. For example, the M5P5 and RF5 models had relatively poor estimating performance
in the NWC, IM, NEC, NC, and QTP regions, while the estimation performance of the
M5P6, RF6, and XGBoost6 models was poor in the SC and CC regions. These results
confirmed that the model estimating performance would be impacted by variations among
different climatic zones.
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RF4, XGBoost4, M5P5, RF5, XGBoost5, M5P6, RF6, and XGBoost6, respectively, which also applies for
Figures S8–S13).

3.5. Comparison of Stability of Various Machine Learning Models

To further compare the performance of different machine learning models, the absolute
errors (AE) for each model was also adopted as a statistical metric. The frequency distri-
bution of AE between measured and estimated daily Ts derived from the three machine
learning models under various input combinations during the testing stage was plotted
(Figure 10). As shown in the histograms, the AE of the three models mainly distributed
at the ranks of <0.3 ◦C, while the proportions of AE greater than 0.5 ◦C for the models
only ranged from 1.0% to 3.9%, which together suggested that the three types of models all
performed well in Ts estimation. The proportions of AE less than 0.3 ◦C differed among
model types and input combinations. For the input combination of Tmean and Rs (i.e., com-
bination 4), the proportions of M5P and XGBoost models with AE less than 0.3 ◦C ranged
from 87.4% to 90.9%, higher than the proportions of their corresponding counterparts with
the input combination of Tmax and Tmin (ranging from 81.6% to 85.1%). Kisi et al. [39] also
concluded that the input combination of Tmean and Rs provided a more effective estimation
of Ts in the Turkish region. For the complete input combination, the proportions of M5P
and XGBoost models with AE less than 0.3 ◦C ranged from 87.0% to 93.1%. Moreover,
the XGBoost model had the highest proportion of AE less than 0.1 (up to 55.2%) with this
input combination among all models, indicating that the XGBoost model had stronger
overall estimating performance than both other models. In addition, the XGBoost model
outperformed the RF and M5P models in data processing speed, with less computing time
required, consistent with results obtained by former research [29,87,88].
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obtained by three machine learning models under various input combinations (a–f) during testing.

Taking all the previous results together, it can be concluded that, among the different
climate zones of China in this study, the best-performed Ts estimations were observed
in the CC region, followed by the SC region. In contrast, models constructed in the
study generally showed poor performance in the NEC and IM regions. Models with
the combination of Tmean and Rs as inputs could archive relatively high performance in
estimation, approaching the performance of models in the fully parametric input pattern.
Moreover, the former required fewer datasets and was more generalizable. In terms of
different types of models, the XGBoost model would outperform the other two models.
Moreover, soil organic matter content, soil water content, Tmean, RH, Rs, and U2 were
significantly related to the accuracy of the model estimation of Ts and were the main factors
that caused errors in the model estimation of Ts.

4. Conclusions

Soil temperature (Ts) has an important influence on the energy conversion between
the atmosphere and the soil. In this study, three data-driven algorithms (i.e., M5P, RF,
and XGBoost) were selected to model Ts at a 0 cm depth using different combinations of
meteorological factors (including Tmax, Tmin, Tmean, RH, Rs, and U2) as inputs. The three
types of tree-based models were evaluated and compared at 689 meteorological stations
in seven different climate zones of China. The results showed that the XGBoost model
performed better and was more computationally efficient for estimating Ts compared to
the M5P and RF models in different climate zones. With the inputs of Tmean and Rs, the
models exhibited similar performance to that of models with the complete combination
of meteorological factors as inputs, both of which had good estimation performance, but
the former required fewer meteorological factors and datasets. On the basis of Tmean,
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adding Rs to the model input had more significant influence and importance on model
estimating accuracy than adding other climatic factors such as RH and U2 to the input.
There was diversity in the estimating performance of the models across climate zones for
the same combination of inputs. Comparing different climatic zones, the lower variability
of temperature and radiation in the CC and SC regions resulted in a better model estimating
accuracy, while the larger variability of radiation in the IM and NEC regions led to poorer
model performance for estimating Ts. Soil organic matter content, soil water content, Tmean,
RH, Rs, and U2 were significantly related to model accuracy for estimating Ts, suggesting
that these factors all contributed to model errors during the estimation of Ts. Overall,
for estimating Ts at the 0 cm depth, the XGBoost model is highly recommended, and
if the study area covers different climatic zones of China, the XGBoost model with the
combination of Tmean and Rs as inputs would obtain satisfactory results for Ts estimation
across different regions. However, it is to be noted that there is variability in Ts at different
soil depths, and other meteorological factors (e.g., precipitation) would also impact Ts.
Therefore, for further studies of Ts estimation, the use of different soil depths as well as
additional meteorological and environmental factors should be considered.
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