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Narutowicza 11/12, 80-392 Gdańsk, Poland
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Abstract: Nowadays Internet of Things is gaining more and more focus all over the world. As a
concept it gives many opportunities for applications for society and it is expected that the number of
software services deployed in this area will still grow fast. Especially important in this context are
properties connected with deployment such as portability, scalability and balance between software
requirements and hardware capabilities. In this article, we present results of practical tests with
multiple clients representing sensors sending notifications to an IoT middleware—DeviceHive. Firstly,
we investigate performance using two deployment configurations—containerized and bare-metal
showing small overhead of the former under different loads by various numbers of IoT clients. We
present scaling of the middleware on the server side using various numbers of cores as well as
HyperThreading for all aforementioned configurations. Furthermore, we also investigated how
containarization affects performance when the system is scaled with various numbers of nodes each
using a predefined number of cores, considering memory usage of various configurations. The latter
could be found useful when assigning cores to Docker nodes in cloud environments.

Keywords: application development for scalable architectures; IoT deployment; containerization;
IoT middleware performance; large-scale HPC application containerization

1. Introduction

Deployment of a computer system is an important step of whole project execution.
Thorough description and overview of this phase can be found in [1]. Its goal is to properly
launch software in a production environment. Successful deployment is characterized by:

• proper design of infrastructure (server, network, storage) so that performance and
scalability as well as availability requirements can be met—we can call it a good
balance between hardware capacity and software requirements [2],

• portability—in terms of possibility to move the deployment to another environment
easily (also considering time) [3],

• scalability—in terms of possibility to scale the system to allow successful and efficient
handling of more requests. This can be considered both in terms of server scaling as
well as scaling versus the number of clients (threads) [4].

Taking into account the aforementioned characteristics, the first point can be realized
in many ways one of which is assignment of as much resources as is needed. This approach
can be fulfilled with CPU affinity. The other two can be assured in production environments
using virtual machines or containerization. In this paper, we decided to use containerization
as this technology has much lower footprint compared to the virtual machine [5,6]. It
is also better suited for HPC servers than virtualization. In [7] authors showed that
containerization offers much better results compared to KVM. In [8] authors compared
two different containerization tools—LXC and Docker and demonstrated similar results.
Once prepared, a container can be used many times with no additional time spent on
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configuration from scratch. There are various tools allowing containerization one of which
is Docker. As could be found in [9] Docker has gained much popularity in this context. In
article [10] authors list current Docker usage in various IoT scenarios, including edge/fog
computing, MQTT broker running in the Docker container within the Raspberry Pis,
IoT analytics, Vehicle-to-Everything (V2X) applications, Industrial IoT (IIoT), precision
agriculture, smart cities etc. Docker, typically offering flexibility and ease of management
at a small performance cost compared to native solutions, is used for containerization
at various levels [11]: sensor/edge [12], gateway/fog [13] and server/cloud [14]. In
paper [15] authors propose an edge cloud architecture for devices which is based on
containers that allow for a packaging and distribution mechanism. There can be several
edge clouds communicating with a data center cloud. From the hardware point of view,
several Raspberry Pis are formed into an edge cluster.

This paper is divided into two parts. In the first one we decided to investigate how
the above solutions affect a real system and what the impact of containerization and CPU
affinity on its scalability are. In the second part we compared how different configurations
with containers affect performance and stability. The main goal was to find benefits and
drawbacks of deployment setups with different numbers of nodes (represented as Docker
containers within same physical machine) running the IoT middleware using, in total,
the same number of cores responding to clients’ requests through a load balancer. This
way we can gain a perspective on containerization and recommendations for middleware
configuration also considering memory usage of these deployments. Consideration of
performance vs resource usage can be of interest in optimizing deployment of applications
using high performance multi-core servers.

2. Related Work

As the number of IoT devices is still rapidly growing and is expected to reach the size
of human population by 2030 [16], IoT middlewares are key components of a distributed
system. In this context, in the literature performance investigation of IoT middlewares
has been conducted such as considering scalability and stability of ThingsBoard and
SiteWhere platforms [17]—ThingsBoard offering better performance for REST, SiteWhere
record better performance for MQTT but with a high error rate compared to lower and
stable ThingsBoard results. Another comparison of platforms [18] includes InatelPlat,
Konker, Linksmart, Orion+STH as well as SiteWhere (assessed as the best one overall)
studying up to 10,000 concurrent users, various numbers of parameters passed (1, 15, 100)
and evaluating packet sizes, error percentages, response times. Sensitivity analysis has
been performed for particular use cases, such as IoT based flood alerting system [19] as
well as in the context of more general strategies for mitigation of vulnerabilities in hybrid
networks, including IoT devices [20].

To help with the ease and flexibility of deployment in a real environment, virtualization
technologies can be considered provided that the performance overhead is acceptable. In
paper [6] authors provided comparison of performance of Docker containers vs virtual
machines (KVM) using tools including Sysbench, Phoronix and Apache. Specific tests
run included computing maximum prime number, zip compression, RAM speed test,
disk I/O, the number of requests per second handled by a server, eight queen test, t-test
analysis showing superior performance of Docker containers in all tests. There are also
comparisons of container technologies such as [21]. In the latter, Docker, LXC, and LXD
are compared in terms of: IOZone read (74–85%), write (77–83%), RAM speed (97–99%),
CPU intensive code (73–95%) with average Docker performance of 81.7%, LXC 86.5% and
LXD 90.5%, following with performance of Web and FTP servers confirming the above
findings. Another interesting comparison between KVM and Docker is presented in [22].
Authors conclude that Docker has significantly less overhead than KVM and as such it is
much better suited for latency-sensitive or workloads with high I/O rates.

Virtualization has been widely used in various contexts in IoT systems and within
various layers of a typical IoT system, as described next.
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In paper [23] authors propose a container-based virtual client architecture for interac-
tive digital signage. This is done such that several digital signage clients and IoT devices
are virtualized and managed by a container-based middleware. This solution allows to
manage a cluster of IoT devices and clients and reduce load in a server and correspondingly
improve performance as well as ease deployment in the system.

In work [24] authors propose design, implementation and tests of IoTDoc that forms a
mobile cloud that is composed of containers running on distributed IoT devices. System
architecture, image distribution, installation as well as scenarios for device migration
in a distributed system are described. Finally, the authors present results of selected
performance tests of Swarm Managers (SM) and Node Managers (NM) running in IoTDoc
(using Raspberry Pis with microSD cards) compared to EC2-t2-micro instance—including
for a computational CPU, Data Definition (DD) read/write and memory test. While the
Amazon EC2 solution is generally better, the authors argue that IoTDoc in some cases offers
comparable values in a much cheaper environment.

In paper [25] authors presented design of a solution and feasibility study for deploying
virtualized (Docker) nanoservices locally within a three tier IoT network (local+edge+core
network–data center). The authors showed how the solution can be optimized in terms of
required space with container size down to few tens of MBs and deployment and initiation
times per nanoservice to less than a minute and service initiation times to a few seconds.

In paper [26] container technology is proposed to improve load balancing at the gate-
way layer and flexibility of deployment in an IoT system. As a typical IoT system consists
of three layers: sensor, gateway and cloud, of interest in the paper is the traffic between
the sensors which are traditionally linked to one gateway in a cluster (of gateways). The
authors proposed an architecture in which in each gateway there are three services (reading,
processing and gateway-cloud transfer service) running as containers and load balancing
allowing load balancing of sensor requests among gateways, demonstrating actual dis-
tribution of load. In work [27] authors investigated two operational scenarios/ways of
communication between devices in an IoT system: CPIS for direct interactions between
devices, and CEMC with management functions at the edge of the network. In the latter
Container-oriented Edge Manager (CEM) controls a cluster of Container-based IoT Workers
(CIWs) and selects nodes for deployment of containerized services. A CIW then processes
tasks following CoAP requests from clients. The authors demonstrate small overhead of
the solution allowing easier and more flexible management. Specifically, times for native vs
Docker are presented for averaging, merge and bubble sort, CPU utilization are presented
for these configurations as well as activation times and power consumption of nodes, also
for activation of several sensors (laser, buzzer, flame sensor etc.).

In paper [28] the author benchmarked Docker vs native configuration on Raspberry
Pi 2 for several synthetic as well as actual server workloads. In general, we can observe
a measurable but reasonably small difference of Docker vs native with overheads of the
former as follows: sysbench: 2.7% for CPU, up to 6% in memory tests, disk I/O up to 13%
for reads. For MySQL db query tests for 1–100 clients performance results were very similar,
for Apache2 server tests with 100–300 clients the native configuration outperformed Docker
(by up to approx. 15%) at the cost of larger power consumption. A similar example and
tests were shown in paper [29] where the author demonstrated performance benchmarking
of Docker versus native configuration on Raspberry Pi 3 with Docker introducing overhead
for CPU, memory (mbw, up to 1.4%) and disk I/O (sysbench, 24.4% worse transfer).

As there is lack of research works focused on investigation of containerization over-
heads for IoT middlewares, we decided to analyze relevant research papers based on
server applications deployed in containerized environment which focus on performance
evaluation of virtualization technologies per se. In paper [14], a comparison of Docker,
KVM, Podman, VMWare Workstation, VirtualBox, and Xen was performed considering
Dhrystone, Whetstone, Kcbench, RAMspeed, and Iperf3, Bonnie, DBENCH as well as a
real life application was presented serving content of a digital dictionary, under various
loads. For the latter, best in terms of successful HTTP 200 messages were OpenStack and
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Docker. For actual demanding computations, overheads of container technologies have
been studied in the context of high performance computing applications [30–32]. For
instance, in paper [31] authors concluded that for KMI Hash (queries/second) and MiniFE
(MFLOPS) benchmarks run on 72 and 96 MPI ranks the overhead of Docker over bare metal
was only 8.5% and 0.4% respectively.

In the context of the existing works, our research focuses on assessment of potential
overheads of using Docker on the middleware side as well as on investigation of perfor-
mance of configurations with a cluster with containers also considering resource such as
memory usage. Such perspective in the context of the IoT area has not been previously
investigated and thus it contributes to the knowledge and practical experiences in this field.

3. Investigation of Scalability and Impact of Virtualization on Performance of
the System

In this section we describe our test setup, proposed metrics and obtained results. We
also measure how core affinity affects scalability of the system. This provides us with
foundation for further analysis how we can divide cores among Docker nodes within a
cluster defined within one physical machine.

3.1. Testbed Description

We investigate an application model similar to the one described in [33], in which sen-
sors send notifications (small data packets) continuously and periodically to a middleware
server. Such a solution may be applicable to many use cases where each device collects data
which is gathered and processed by a centralized server. This scenario may be found in a
grid of sensors for data collection e.g., weather stations or water quality measurement. The
same middleware as proposed in our scenario was successfully used in a smart metering
electrical power system as shown in [34] as well as in its further continuation presented
in [35]. In Figure 1 we can see an overview of the proposed model.

Figure 1. Testbed application model.

3.1.1. Server Software and Hardware

For our experiments we aimed at finding a middleware which is open source and thus
can be widely used, with many forks available, designed using the principle of microservice
architecture. Such an approach is most popular for the state of the art design backend
solutions [36]. In-depth analysis of available solutions led us to a selection out of three of
the following:
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1. SiteWhere,
2. ThingsBoard,
3. DeviceHive.

SiteWhere addresses all of our requirements. Out of the box it allows to communi-
cate over HTTP with the REST API. Its architecture contains 4 global microservices and
15 multitenant microservices [37]. ThingsBoard meets all of our requirements as well. It
differs from SiteWhere that it also supports other protocols such as MQTT, CoAP and
LwM2M. It is built out of 5 microservices—Core, Transport, WebUI, RuleEnging and
JavaScript Executor [38]. DeviceHive also fulfills the aforementioned requirements. Out of
the box it supports communication over Websocket, HTTP and MQTT and contains 3 main
microservices—Backend, Frontend and Authorization [39]. As all of the aforementioned
solutions present a similar approach in terms of design, use similar third party software
e.g., runtime cache or queue like Redis or Kafka and finally each has been implemented
with Java and runs on an JVM, we decided to conduct in-depth analysis of one. Conse-
quently, within future work, research using the other solutions can be performed. We
chose DeviceHive for conducting tests—while all of the considered solutions present a
similar architecture, for the selected one start time, measured from the start of all mi-
croservices until being ready for receiving requests, can be on the shorter side since it is
built using the smallest number of services. As microservices are built of applications
embedded with an application server the total start time is not insignificant since between
tests we need to shutdown the whole system, archive results and perform a start-up of the
components again.

As stated before DeviceHive is built out of 3 microservices: Frontend, Backend and
Authorization. The Frontend microservice is responsible for communication. It exposes
REST API and Websocket to the world and grabs all incoming requests to other microser-
vices. Communication over MQTT mentioned before is realized with an additional plugin
running with JS—it receives data with MQTT and proxies it to the REST API of the Frontend
service. The Authorization service is responsible for authentication and authorization. It
provides users with JWT tokens assigned to a user defined in the system. These tokens
are subsequently used in all requests to the system. The last one—Backend service is
responsible for realizing whole application logic. The platform also relies on a database.
Database contains platform configuration and user (device) repositories. All load generated
by users i.e., the messages running through the system are served with a queue using
Kafka. In order to provide low latency in getting information sent between users the system
collects all messages in runtime databases—Redis.

The selected IoT middleware platform was deployed on a high performance server
with 2 Intel Xeon CPUs E5-2680 v2 @2.8 GHz with a total of 40 logical processors (with HT),
with 128 GB of RAM, running Ubuntu. Same hardware was used for containerized test
suite. Containerization was performed with Docker. A basic image of Ubuntu with same
environment software as physical machine—JVM, DeviceHive and all supporting software
(like Kafka, Hazelcast and other [39]) were used within the container.

3.1.2. Device Simulator Software and Hardware

In the proposed model devices send notifications to the middleware server. These
devices were represented as actual software clients running in a cluster composed of
29 physical machines. Each has an Intel Xeon CPU E5345 @2.33 GHz and 8 GB RAM,
running CentOS 6. Stations were connected with Gigabit Ethernet. Client software was
written in Java as a multithreaded application. In total we simulated as many devices as 29
(number of machines in cluster) multiplied by the requested number of threads per machine.
We began with 870 devices with a step of 290 devices to simulate load. Detailed overview
of the client application model can be found in [33]. The main application loop performs:

• access check—authorization,
• send notification periodically—randomly generated 36 bytes of data,
• random decision to disconnect (connection problem simulator).
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3.1.3. Benchmarking Process

The test suite process begins with starting a middleware server, then 3 requests are sent
to “warm-up” the middleware (to allow JVM load all classes used in the process)—register
client request, notification insert request and client deletion request. These messages are not
taken into account in result analysis. Afterwards the devices send requests in a predefined
time frame periodically. All devices work in parallel and are started at the same time. After
the time frame has elapsed device simulators end its application execution, the middleware
is stopped and results are collected.

One test suite provides us with one set of results which is composed of entries contain-
ing the following details:

• request send and related response received timestamps—client (device) side,
• request processing begin timestamp—server side,
• request processing end timestamp—server side,
• request processed with or without errors—server side.

Each test suite was repeated 7 times and took 10 min per suite. These provided us
with 7 result data sets—including processing time (calculated as a difference between
timestamps of request and response events on the client side). In order to minimize any
external factors (eq. OS cron or update services) we rejected the highest and the lowest
values over these 7 sets of data. The remaining results were merged together to calculate a
median, first quartile and third quartile values of processing times. Such data was used
for calculating all metrics. Restricting cores used by the server was achieved using taskset
command. The following configurations were tested:

• taskset -c 0-1—two physical cores of CPU 0,
• taskset -c 0-3—four physical cores of CPU 0,
• taskset -c 0-19—10 physical cores of CPU 0 and 10 physical cores of CPU 1,
• taskset -c 0-39—all logical cores in the system (including HyperThreading tech-

nology).

3.1.4. Evaluation Metrics

Our goal at this point was to investigate how various numbers of cores used by the
middleware affect the performance and scalability [40] of an IoT system. Subsequently, we
also aimed to check if containerization influences the performance of the platform and if so,
to what degree.

Consequently, we decided to test various conditions reflected by various numbers of:

1. cores used by the middleware,
2. IoT devices.

Taking into account the obtained results, for a given number of cores used, we identi-
fied the load giving the largest number of successfully processed messages served within
the test time frame. This is considered as the optimum load point. Such points will be
different for various configurations because of the various numbers of cores involved in
processing. Larger numbers of CPU cores used by a middleware will allow increasing
the optimum load point in terms of the number of devices served. We took into account
measures beginning with small load and ending at the aforementioned optimum load point.
For such analysis we investigated the influence of:

• number of cores on scalability,
• containerization on scalability,
• containerization on performance.

3.2. Results Analysis

The following subsections include analysis of results in terms of the aforementioned
scalability and performance related impacts.
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3.2.1. Influence of Server Core Number on Scalability

In our tests load was simulated by increasing the number of clients–IoT devices.
Selected load defined as the number of clients in a given test stems from the fact that we
would like to assess characteristics from small load until system overload. Particular values
start with the number of client nodes multiplied by 30, followed by multiplication by 40,
50 etc. Total number of clients correspond to the values considered in research works
analyzed in Section 2. Experiments were repeated for various number of cores available on
the server. It is expected that both numbers of requests handled by the server will increase
and request-response times will decrease in the function of core count.

Figures 2 and 3 present numbers of successfully processed requests by bare-metal and
containerized environments respectively. Four continuous lines represent four different
configurations used on the middleware side, as follows:

• C0–1—2 CPU cores,
• C0–3—4 CPU cores,
• C0–19—20 CPU cores,
• C0–39—40 CPU cores (including HyperThreading).
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The dashed, vertical lines correspond to the points of optimal load introduced in
Section 3.1.4. For a given optimal load point, the color of a vertical line is the same as the
color of a plot which the given optimal point refers to. As we can see, for the configuration
with 4 cores (C0–3) the optimal load is at 1450 devices, the 20 cores setup (C0–19) has
the optimal load at 2030 devices and the most powerful configuration of 40 cores (C0–39)
achieves the optimal load of 2320 devices. For configuration with 2 cores (C0–1) the system
is overloaded and increasing the number of IoT devices results even in a slight drop
of the number of successfully processed messages. It has no optimal load point in the
measurements and as such is not analyzed further in terms of times. It is apparent that
the system is scalable—a higher core count results in moving the optimum load point to
the right side of the X axis and being able to serve more requests successfully during the
test. This means that more cores involved in processing result in better availability of the
service—more devices can be served in the same time frame. This also shows that the
middleware platform benefits from a multicore environment.

Figures 4 and 5 present request-response times measured on the client side for bare-
metal and containerized cases. Based on the numbers of successfully processed requests
we focused our attention on the configurations with respective optimal points for C0–3,
C0–19 and C0–39 because loads above the optimal points correspond to the scenarios of
significant drops in the number of successfully processed messages. The optimal load for a
certain configuration (e.g., C0–3) is also handled by a larger configuration (such as C0–19
and C0–39). Bars represent median times while whiskers visualize first and third quartiles.
We can see that processing times grow with a growing load for a given configuration.
Moreover, we can see that processing time is significantly lower for configurations C0–19
and C0–39 versus C0–3. Comparing the configurations with 20 cores and 40 cores we
can see that while median processing times are very close, C0–39 (obtained with the HT
technology) has visibly narrower quartiles for the same number of devices and can serve
efficiently one larger tested load i.e., that of 2320 devices instead of 2030 with the 20 core
configuration.
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Figure 4. Processing time of request-response process from client side—bare-metal, bars denote
medians and whiskers Q1 and Q3 quartiles.
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3.2.2. Influence of Containerization on Scalability

It is expected that launching a container with same core affinity as same configuration
on bare-metal results in quite similar results, based on performance overheads identified
in the literature described in Section 2. In Figure 6 we presented normalized difference of
successfully processed requests N on bare-metal and same metric on the container. The

value is calculated as
NprocessedPhysical−NprocessedDocker

NprocessedPhysical
. These results and also the observation

from previous charts in Figures 4 and 5 also Figures 2 and 3 may indicate that system
has very similar characteristics with and without containerization. That clearly shows
that containerization has no visible impact on scalability achieved with different server
core counts.

3.2.3. Influence of Containerization on Performance

Subsequently we investigated the influence of containerization on performance. For
this comparison we used only two strongest configurations. One was using cores 0–19
and the second one was running on all available cores 0–39. In Figures 7 and 8 we can
see differences in processing times measured on the server side and same measured on
the client side. We notice that there is no significant difference between the containerized
and bare-metal environments. We can conclude that under small load there is quite better
performance on bare-metal but with growing load this difference diminishes (Figure 7).
Times measured on the client side (Figure 8) indicate that even though small differences
were found on the server side, the whole request processing time including communication,
network load made the difference much less significant.
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Figure 6. Difference of successfully processed requests—bare-metal and container.
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3.3. Observations and Conclusions

We can conclude with two observations. Firstly, using more physical cores as well
as HyperThreading gives a noticeable increase in server processing performance. Typical
gains from HyperThreading [40] are observed in the range of 0+ up to 40%, with examples
from the high performance computing field such as 20–25% for numerical integration,
10–11% for image recognition applications [41]. In our case we observe an increase of
about 11% for results shown in Figure 3 which is in line with expectations. Secondly, even
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though we see small differences in favor of bare-metal, considering times from the client
perspective with network delays, Docker appears as a viable alternative.

4. Investigation of Scalable Configurations Using Containerization

In this section we investigated two architectures in several configurations. We tested
architectures either with or without a load balancer. Proposed configurations differ in
the number of available nodes and core affinity but overall all of them run on the same
physical machine. It is important to emphasize the difference between the architecture
and the configuration. A system which uses different components and/or links among
those than another can be described as one having a different architecture e.g., contains
a load balancer versus one that does not. On the other hand, a system with a different
number of nodes than another (e.g., scaled up) is just another configuration of the same
architecture. We believe that such setup may be of interest on an HPC hardware e.g., in a
cloud system where a part of available resources like CPU cores may be assigned to one
application while another part made available to other applications. More Docker nodes
are considered in the context of performance versus memory utilization. Different CPU
affinity and also impact of load balancer stated at the beginning of processing pipeline can
also be considered in this respect.

4.1. Testbed Description

Our test case was set up using the same hardware as described in Section 3.1.1 along
with the application model and software. However, the proposed architecture is different.
In Section 3, clients were directly sending notifications to one instance of the middleware
server. In the new scenarios we are changing the number of nodes running the middleware
server, all of them connected through a load balancer which is built upon an nginx Docker
image. Load balancing uses the round-robin algorithm and the nginx configuration is
organized as follows:

• two server elements—one for a front-end service and one for an authorization service,
• SSL enabled on the server side,
• worker connections and backlog equal to 9000,
• n application nodes defined,
• connection between the load balancer and application nodes is plain HTTP (without SSL).

The load balancer is running on another machine with 24 cores (including HT) of
2 Intel Xeon E5-2640 CPUs and 64 GB of RAM. It is important to notice that setting SSL
connections also between the load balancer and application nodes will significantly decrease
the performance [42] but in a typical environment load balancer and nodes can be assumed
to be located in a safe network so there is no need to set up SSL there.

The middleware server side is built upon n Docker nodes running within one physical
machine. Each node is running a Docker container with the DeviceHive middleware—
backend, front-end and authorization services. Containers share resources within a physical
machine. There were no limits concerning RAM usage. No CPU limits are set per container
but core affinity is controlled using taskset inside a Docker container. Common data services
as Kafka, Hazelcast and Postgres database are located outside of the tested environment.
It is also important to notice that configuration of databases differs between the two test
cases (Sections 3 and 4) so the results should not be compared directly between them. In
Figure 9 we provide an overview of the proposed architecture.
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Figure 9. Testbed architecture.

4.2. Benchmarking Process

The benchmarking process is the same on each node as described in Section 3.1.3.
Docker containers running nodes are started at the beginning of each test, after a test case
has ended all logs are copied from containers and containers are stopped. Gathered results
contain data structures analogous to the previous experiment. Time frames and test counts
are also the same.

This experiment provides us with information how different configurations of deploy-
ment on same hardware might affect scalability and stability of the assumed scenario. We
investigate the following scenarios:

• 1 node with 20 cores assigned without load balancer,
• 1 node with 20 cores assigned with load balancer,
• 2 nodes with 10 cores each with load balancer,
• 5 nodes with 4 cores each with load balancer,
• 10 nodes with 2 cores each with load balancer,
• 7 nodes with 3 cores each with load balancer.

All the above configurations except the last one use 20 cores in total. It differs from
the first configuration analyzed in Section 3 where we also compared engagement of all
cores (40 logical processors in total) because in this scenario we need to dedicate some CPU
resources for common parts of architecture as data bus as could be found in Section 4.1. It is
important to note that there are out-of-the-box solutions dedicated to automatic scalability
of the system like Docker Swarm and its possibility to add new nodes on runtime. Since
resource requirements of particular configurations are not known in advance, our approach
might help to narrow down the set of viable configurations which can be used for further
automation of the process of selecting an optimal configuration.

4.3. Evaluation Metrics

In this part we focused on CPU affinity between many nodes while keeping total
CPU allocation the same. Nodes are built with Docker containers and running within one
physical machine. We would like to investigate various configurations that can potentially
impact throughput of request handling at a potential cost of resource usage, such as memory
used by several Docker containers. Additionally, we aimed at checking if a load balancer
has significant influence on total processing performance.
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For these tests we measured the number of successfully processed messages within the
test time frame. Additionally, we consider stability of the system. This will be investigated
with two measures:

• percent of invalid messages processed within the test time frame,
• comparison of median and mean values of processing time on the client side.

4.4. Results Analysis
4.4.1. Performance of Different Set-Ups

Performance measured as the number of successfully processed messages within the
test time frame is shown in Figure 10. X axis values represent growing load defined as
the number of IoT devices and values on the Y axis represent the number of successfully
processed messages. Firstly, we observe that the versions with only one node, with and
without a load balancer, have similar results. This indicates that, in such a scenario, the
impact of the load balancer is really low and has practically no effect on total results.
The results for the configuration with 2 nodes and 10 cores each are visibly better and
configuration of 5 nodes with 4 cores each obtained the best results. It shows that it is
beneficial to use more nodes with fewer cores assigned. Figure 11 provides more detailed
view on differences between the configurations. It should be noted that increasing the
number of Docker nodes might potentially benefit from more resources allocated this way
(numbers of threads or preallocated memory buffers, depending on actual middleware
code) but is limited by the system resources. For instance, we failed to end a test with the
configuration of 10 nodes 2 cores each because of lack of RAM. It was possible to begin the
test but a growing size of data exceeded available memory before the test ended. We also
measured 7 nodes with 3 cores each and this configuration provided us with worse results
than 5 nodes with 4 cores. In Table 1 we present exact results of each configuration at
optimal load point (2030 clients) and also RAM usage of each configuration at the beginning
of the test—when the middleware was ready to receive data from IoT clients. It should
be noted that memory consumption is growing over the time of test. Table 2 contains the
percentage difference compared to the architecture with the best performance.

Table 1. Comparison of performance at optimal load point and memory usage.

Configuration Number of Successfully Processed Messages RAM Usage at Start of Test

1 node 20 cores without load balancer 916,281 6.49%
1 node 20 cores with load balancer 923,957 6.49%
2 nodes 10 cores with load balancer 1,143,067 12.83%
5 nodes 4 cores with load balancer 1,221,302 27.01%
7 nodes 3 cores with load balancer 1,086,165 36.55%

Table 2. Percentage difference at optimal load point.

Configuration Percentage Difference of Successfully Processed Messages to Best Setup

1 node 20 cores without load balancer −24.98%
1 node 20 cores with load balancer −24.35%
2 nodes 10 cores with load balancer −6.41%
7 nodes 3 cores with load balancer −11.06%
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Figure 10. Number of successfully processed requests.
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Figure 11. Number of successfully processed requests.

4.4.2. Stability of Different Configurations

In our test stability of the solution is measured on the server side through the per-
centage of improperly processed messages in the test time frame. Improperly processed
means any result to a request other than successful according to DeviceHive documenta-
tion [43]. If the value is really low (2% or less) we can say that stability is sufficient for
such an application model and scenario. A growing number of errors will be leading to
invalidation of the processed results. Based on the results presented in Figure 12 we can
see that each configuration is really stable until the optimal load point and also there are
no visible differences between these. Under high load the number of errors is smaller for
larger numbers of nodes with best values for the configuration with 5 nodes with 4 cores
each. Secondly, we observed mean values (Figure 13) and median values (Figure 14) of
request-response processing time on the client side. Cases for which the mean value is
visibly higher than median indicate a scenario for which some requests have taken much
longer than others to complete and this is generally what we observe in the tested cases.
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4.4.3. Impact of Load Balancer on Processing Time

For our purposes we used nginx software as a load balancer which is often used in
many multi-node architectures. As we stated before in the performance results overview—
there were insignificant differences between the solutions with and without the load
balancer. Using a load balancer improves results for multi-node middleware cases. We can
see that the architecture with the load balancer has a visibly smaller percentage error at
high load.

5. Conclusions and Future Work

Deployment is really an important phase before running new services. When properly
configured it can bring many profits in the context of costs as well as performance. In
this paper we investigated the impact of containerization using Docker containers for the
selected IoT middleware application—DeviceHive—with a model based on a network
of many devices sending notifications continuously. We found out that that from the
perspective of an end-device containerization has no important drawbacks in terms of
performance. Further research provided us with interesting insights. Increasing the number
of nodes in the cluster (while keeping the total number of CPU cores used within each
configuration) allows to identify a configuration which presents best performance albeit
this comes at the cost of increased memory usage consumed by each new node.

Moreover, taking into account our observations, and also results found in [29], we can
assume that using containerization in connection with a load balancer is recommended
in the proposed application model. Even if there is a minimal overhead stemming from
containerization obtained benefits are much more valuable. These benefits are:

• ease of scalability—using an additional container allows to scale up the system,
• ease of portability—once configured image of a platform environment may be simply

transferred and run on another machine i.e., a backup environment,
• good balance between hardware capacity and software requirements—having high-

end hardware may allow to run many containers possibly with different applications,
• isolation at application level—when running different containers on same bare-metal

using containerization each of these are fail-safe in terms of any software bugs i.e., an
application error in one container still allows other containers to run and respond to
user requests.

Future work will include investigation of other IoT middlewares, especially SiteWhere
and ThingsBoard mentioned in Section 3.1.1, in the context of performance against various
configurations. Additionally, we plan to perform tests with consideration of performance-
energy optimization under CPU power capping [44]. Additionally, it would also be valuable
to perform measurements of the system performance under client load generated either
randomly or using certain call frequencies corresponding to periodic reporting of data and
measurement of system’s reactions to it, possibly for a larger number of clients. Another
area of interest would be in-depth statistical analysis of results gathered based on the
proposed experiments which may provide us with additional observations concerning
system characteristics in a given testbed.
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