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Abstract: A high-speed centrifugal pump with a fully sealed structure has the advantages of a small
size, no external leakage, and being pollution-free. The inner leakage passage of a pump with a fully
sealed structure includes the tip clearance and the hub clearance. The hub clearance, the lubrication
passage of the bearing, and the clearance between the stator and the rotor of the built-in motor
constitute the internal flow channel. As a consequence of hub leakage, the complexity of the flow
field increases and performance of the pump is affected. However, hub leakage also lubricates the
bearing and cools the motor by flowing through the internal flow channel. To obtain the actual
flow field distribution and external characteristics of the pump, a coupling calculation based on a
conventional CFX simulation and MATLAB was carried out. The results show that hub leakage
promotes an increase in tip leakage and changes the distribution of the main flow field. Moreover,
hub leakage also significantly affects the efficiency of the pump. Compared with hub leakage, the
internal flow has a greater impact on the performance of the pump. The numerical simulation results
of the internal flow model are similar to the experimental results, with the maximum absolute error
of the head at 0.3 m and the maximum absolute error of the efficiency at 1.7%, indicating that the
internal flow model is effective at predicting the performance of the high-speed centrifugal pump
with a fully sealed structure.

Keywords: centrifugal pump; internal leakage; cfd simulation; coupling calculation

1. Introduction

A high-speed centrifugal pump with a fully sealed structure has the advantages of
being small, free of external leakage, and free of any rolling bearings and fans so that it
does not need lubricating oil and has no pollution. The inner leakage passage of a pump
with a fully sealed structure includes the tip clearance and the hub clearance. The hub
clearance, the lubrication passage of the bearing, and the clearance between the stator and
the rotor of the built-in motor constitute the internal flow channel. Hub leakage flows
through the internal flow channel as the internal flow to lubricate the sliding bearing and
cool the motor. This not only solves the problems of cooling the motor and preventing
sliding bearing failures caused by friction and the accumulated heat in the lubricant fluid,
but also effectively increases the upper speed limit, improving the working performance of
the pump [1,2]. Moreover, due to the changes in the liquid film and displacement of the
sliding bearing in the working process, the leakage channel is dynamic [3]. The internal
flow increases the tip leakage and complicates the flow field, which generally affect the
performance of the pump.

Many achievements have been made in the numerical simulation of pump character-
istics. Hamed et al. [4] conducted an unsteady numerical simulation and a performance
test of a centrifugal pump and analyzed the development of the tip leakage vortex and the
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principles affecting the performance of the pump. Through numerical simulation research,
Benjamin W. et al. [5] found that the tip leakage channel accounted for a relatively small
proportion compared with the mainstream area, but the impact of tip leakage on the pump
performance could not be ignored. Additionally, the increase in the impeller tip clearance
caused additional losses. Through visual experiments, Michael M. found that increasing
the tip clearance will reduce the pump performance [6]. Through numerical simulation re-
search, Baoling et al. [7] found that the leakage vortex formed by tip leakage is an important
factor interfering with the internal flow of the impeller. Georgios M. et al. verified though vi-
sual experiments the findings of a numerical simulation study (tip leakage affects the pump
performance by destroying the flow field and the degree of influence is related to the tip
clearance thickness) [8]. Through numerical simulation and experimental research, Yabin L.
found that tip leakage will promote the development of a leakage vortex and the separation
of the vortex, based on which they proposed a power function law to describe the intensity
of the primary tip leakage vortex core along the trajectory [9–11]. Jingling L. et al. [12,13]
performed a numerical simulation of the entire passage of a centrifugal pump and analyzed
the frequency spectrum characteristics, the external characteristics of the tip leakage vortex,
and the structural characteristics and their influence on the pump. Through a numerical
simulation, Beomjun K. et al. found that the existence of tip leakage and hub leakage caused
a loss of flow and promoted the growth of a vortex in the pump [14]. Dazhuan W. et al. [15]
numerically simulated the three-dimensional flow field of a centrifugal pump considering
tip leakage and hub leakage and put forward structural design suggestions by comparing
the influence of structural parameters on the performance of the centrifugal pump. Accord-
ing to the above analysis, the internal leakage in the centrifugal pump affects the pump
performance by interfering with the flow field distribution. The numerical simulation of
centrifugal pump performance in the above-mentioned studies was used to analyze the
influence of internal leakage on the performance of the pump. Most of the studies only
considered tip leakage and a few considered hub leakage. However, all of them ignored
the influence of the internal flow in the bearing lubrication and motor cooling channel. To
obtain a higher-precision simulation of the flow in a centrifugal pump with a fully sealed
structure, a model that fully considers the influence of the pump’s internal leakage needs
to be researched.

In this paper, a CFX–MATLAB coupling calculation was performed to simulate the flow
field of the pump and analyze the influence of internal flow on the flow field distribution.
The simulation results were compared with the experimental results to verify the accuracy
of the internal flow model and the calculation method.

2. Model and Methods
2.1. Structural Parameters of the Pump

A Xi’an Jiaotong University doctoral student named Xufeng F. [16] developed a new
type of high-speed centrifugal pump with a sealed structure. The design parameters of
the centrifugal pump are a flow rate Q = 3 m3·h−1, a head H = 30 m, and a rotational
speed n = 7500 rpm. Different from other pumps, sliding bearings are adopted in the pump
instead of ball bearings. The structural parameters of the pump are listed in Table 1, and
images of the pump are shown in Figure 1.
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Table 1. Structural parameters of the pump.

Parameters Symbol Value

Semi-open impeller

Number of blades Z1 6
Inlet diameter (mm) D1 27.2

Outlet diameter (mm) D2 64.0
Outlet blade width (mm) b2 3.8

Outlet angle (◦) β2 20

Vaned diffuser

Number of blades Z2 7
Inlet diameter (mm) D3 65.0

Outlet diameter (mm) D4 82.0
Outlet angle (◦) β3 5.8

Sliding bearing

Bearing radius (mm) Ro 12.5
Inner circle radius (mm) Ri 8

Number of grooves Z3 12
Groove width (mm) D8 3.54

Film thickness (µm) Hg 3.3
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Figure 1. (a) The components of the pump; (b) the assembled pump.

2.2. Physical Model

A model diagram and a flow passage diagram of the low-specific-speed high-speed
centrifugal pump with a fully sealed structure are shown in Figure 2. The model is
composed of an inlet section, an inducer, an impeller, a vaned diffuser, a vaneless diffuser,
a motor flow channel, an outlet section, and an internal flow channel. The internal leakage
channel is divided into two sections. The first section is the hub and head bearing channel,
which is composed of the hub clearance, the clearance between the head fixed bearing and
the head sliding bearing, and the connecting parts, as indicated by the part highlighted in
yellow and blue on the left side of Figure 2b. The other section is the tail bearing channel,
which is composed of the clearance between the tail fixed bearing and the tail sliding
bearing and the connecting parts, as indicated by the part highlighted in blue on the right
side of Figure 2b.
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Figure 2. Diagram of the centrifugal pump with a fully sealed structure. (a) Model diagram of the
pump (1, Inducer; 2, Impeller; 3, Diffuser; 4, Main axle; 5, Motor stator; 6, Tail end fixed bearing;
7, Front sliding bearing; 8, Front fixed bearing; 9, Tail end sliding bearing); and (b) flow passage
diagram of the pump.

2.3. Mesh Independence Study

The inducer, impeller, and diffuser of the pump were meshed by TurboGrid. The inlet
section, vaneless diffuser, motor flow channel, and outlet section were meshed by ICEM.
The internal flow channel was meshed by gambit. To perform the mesh independence
study, five groups of models with different grid numbers were simulated, taking the head
of the pump as the target parameter. When the number of model grids was 0.54 M, 2.26 M,
4.24 M, 7.58 M, and 10.07 M, the pump head corresponding to the design flow condition
was 26.98 m, 27.31 m, 27.50 m, 27.61 m, and 27.61 m, respectively. Therefore, the fourth
group of grids was selected for subsequent research.

2.4. Calculation Method

During the operation of the high-speed centrifugal pump, the axial displacement of
the rotor is 4 orders of magnitude different from the minimum scale of the centrifugal
pump, so the influence of the axial displacement on the flow field can be ignored. Therefore,
it is unnecessary to carry out a dynamic grid calculation considering the axial force balance.
As for a pump with an internal flow channel, its rotor is floating during operation. When
the working conditions change, both the balance position of the axial force and the bearing
capacity change continuously, and the rotor moves back and forth in the axial direction. In
addition, the liquid film thickness directly affects the flow field as well as the flow rate of
the internal flow. Therefore, a MATLAB–CFX coupling calculation method was adopted.

The clearance of the high-speed centrifugal pump with a fully sealed structure is
composed of four main parts, namely the front liquid film thickness, the tail liquid film
thickness, the tip clearance, and the hub clearance. When the pump operates in a stable
state, the axial resultant force is zero and the rotor is in the balance position. When the
working condition changes, the distribution of the flow field at the inlet of the sliding
bearing changes, and the axial force of the impeller becomes non-zero. Moreover, the
change in the working condition will also cause the motor to move, which will affect the
size of the tip clearance and the hub clearance in turn. As a result, the flow field distribution
of the impeller will change again. A flow chart of the calculation is shown in Figure 3.
The coupled steady-state calculation of the impeller and the bearing was simulated by
MATLAB and the ANSYS-CFX platform. In MATLAB, the axial force of the impeller and
the bearing capacity of the bearing are both calculated through the empirical formula, and
an approximate liquid film thickness is given in advance. Then, CFX is called through the
batch file to write the flow, speed, and axial displacement of the rotor into the intermediate
data file. In CFX, according to the displacement given by the data file, the grid of the flow
field is updated by using the moving grid method, and the information on the axial force is
transmitted to MATLAB after the calculation converges. Next, in MATLAB, the liquid film
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thickness is modified again according to the imbalance in the axial force, after which CFX
is called to perform a recalculation. The above-described steps repeat until the resultant
force reaches equilibrium.
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Figure 3. Coupled steady-state calculation of the impeller and the bearing of the high-speed centrifu-
gal pump.

Since the working medium in the pump, which is water, is an incompressible fluid,
governing equations of incompressible flow were adopted that ignore the change in tem-
perature. The equations for the pump head and efficiency are shown below.

H =
Pout

ρg
− Pin

ρg
+ ∆z (1)

η =
Pu

Pu + Ph + Pv + Pm
(2)

where Pout is the outlet pressure of the pump, Pin is the inlet pressure of the pump, ρ is the
density of water, g is a constant term, and ∆z is the height difference between the outlet
and the inlet. In Equation (2), Pu is the useful power, Ph is the hydraulic loss power, Pv is
the volume loss power of the internal flow and tip leakage, and Pm is the mechanical loss
power, which is mainly composed of the disc friction loss power.

3. Numerical Simulation Results
3.1. Impact of the Internal Flow on External Characteristics

To analyze the effect of internal flow on external characteristics of the pump, three
calculation models with different internal leakage channels were built for numerical simu-
lations, and the test-bed described in [10] was used for experiments under different flow
conditions. As with all open and semi-open impeller high-speed centrifugal pumps, tip
leakage is inevitable. The numerical simulation of a pump considering tip leakage can be
carried out by using a model whose impeller contains a fixed tip clearance, so tip leakage is
considered in most studies. Hub leakage refers to the flow of fluid into the hub clearance
from the gap between the impeller outlet and the diffuser inlet. The sealing structure is
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set in the hub clearance, which can reduce hub leakage to a certain extent, resulting in the
omission of hub leakage in most studies. However, the hub leakage in a pump with a sealed
structure is comprised of both the internal leakage and the internal flow. It flows through
the internal flow channel and rejoins the main stream, during which time it lubricates
the sliding bearing and cools the motor. As a consequence of hub leakage, the flow field
becomes more complicated and the performance of the pump is affected. Therefore, in
pumps with a fully sealed structure, hub leakage cannot be ignored, and a model that
considers the complete internal flow channel is required to accurately study the influence
of hub leakage on the pump.

The first model, the tip leakage model, contains the main flow channel and the tip
clearance, based on which the second model, the tip–hub leakage model, considers the hub
leakage. The third model, the internal flow model, takes into account all flow channels,
including the tip clearance channel and the internal flow channel. A comparison between
the calculated results of each model and the experimental values is shown in Table 2.
With the increase in the leakage channel, the following changes occur simultaneously: the
tip leakage flow continues to increase, the pump head first increases and then decreases,
and the efficiency shows a decreasing trend, which becomes increasingly similar to the
experimental values. This variation is consistent with [17]. Between the tip leakage model
and the tip–hub leakage model, the relative error of the head is 0.5% and the relative error
of the efficiency is 10%, indicating that hub leakage greatly affects the efficiency. Between
the tip–hub leakage model and the internal flow model, the relative error of the head is
2.9% and the relative error of the efficiency is 2.1%, indicating that the influence of leakage
from the bearing clearance on the external characteristics of the pump cannot be ignored.
Between the tip leakage model and the internal flow model, the relative error of the head
is 2.4% and the deviation in the efficiency is 12.1%. Moreover, compared with the tip
leakage model, the tip leakage of the internal flow model increases by 52%, indicating
that the internal flow greatly increases the tip leakage and significantly affects the external
characteristics of the pump. Since the internal flow lubricates the bearing, cools the motor,
and has a great impact on the external characteristics of the pump, the complete internal
flow channel must be adopted in order to build a model of a centrifugal pump with a fully
sealed structure.

Table 2. Comparison of the results of different models.

Head/m Head Relative
Error (%) Efficiency (%) Tip Leakage Flow

Relative Error (%)
Tip Leakage Flow

(kg·m−3)

Tip leakage model 28.28 2.5 38.5 16.0 0.0795
Tip–hub leakage model 28.42 3.0 35.2 6.0 0.1003

Internal flow model 27.61 0.1 34.5 3.9 0.1209
Experimental values 27.58 33.2

3.2. Impact of the Internal Flow on the Flow Field

A meridional velocity vector diagram of the impeller and the diffuser under design
conditions is shown in Figure 4. When the influence of internal leakage is not considered,
the main stream basically contains only the velocity vector along the flow direction. As
can be seen in Figure 4a, tip leakage disturbs the direction of the flow of the fluid that is on
the top of hydraulic components, leading to the appearance of backflow in the middle on
the top of the vaned diffuser. As can be seen in Figure 4b, the backflow generated in the
hub clearance damages the uniform flow field, resulting in a rapid increase in tip leakage
and the upward velocity vector component of the fluid near the interface between the
impeller and the vaned diffuser. At the same time, the upward velocity vector component
of the main flow in the vaned diffuser increases, shortening the length of the top backflow
section caused by tip leakage. As can be seen in Figure 4c, compared with hub leakage,
the internal flow has a greater impact on the flow field of the pump. The static pressure
of the main stream increases rapidly after it passes through the diffuser, then the partial
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flow, namely the internal flow, flows back from the internal flow channel into the junction
between the impeller and the vaned diffuser. As a consequence of the internal flow, both
the upward velocity vector component of the fluid in the vaned diffuser and the tip leakage
flow increase, and the flow disturbance exacerbates, resulting in the appearance of backflow.
Generally, the existence of an internal flow complicates the flow field distribution in the
impeller and the vaned diffuser, which further destroys the uniform flow field of the main
stream. As a result, the tip leakage flow increases and both the position and degree of the
backflow change.
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To convert the fluid from a radial flow to an axial flow and reduce the fluid diffusion
problem caused by the excessive cross-sectional area in the subsequent flow channel, the
vaneless diffuser is designed to have a bend, as shown in Figure 5. In the vaneless diffuser,
due to the change in the channel’s direction and the action of centripetal force, the velocity
vector component of the fluid that points to the center of the curve increases. According to
the law of flow at an elbow, the fluid at the top of the inlet of the vaneless diffuser diffuses
while the fluid at the bottom shrinks. Moreover, there is a concave wall vortex zone at
the top [18]. Such a flow field distribution is also affected by the flow field distribution
of the former hydraulic component, which is the vaned diffuser. The longer the length
of the backflow in the vaned diffuser, the smaller the disturbance at the top of the inlet
of the vaneless diffuser. When there is some backflow at the top of the vaned diffuser,
the upward velocity vector component of the nearby fluid is large, which cancels out the
velocity vector component towards the center of the curve caused by the centripetal force
so that the disturbance is reduced. The backflow and secondary flow at the outlet of the
vaneless diffuser are mainly caused by the drastic change in the flowing cross-sectional
area at the interface between the outlet and the motor flow channel. In conclusion, the
internal flow further affects the flow field distribution in the vaneless diffuser by affecting
the flow field of the vaned diffuser.

A diagram of the stream line of the motor flow channel and the outlet flow channel is
shown in Figure 6. In the motor flow channel, the fluid is divided into two streams due to
the existence of the motor stator. A stream flows along the outer wall of the stator and the
pump housing. There are some vortices that appear at the head of the flow channel due to
the disturbance caused by the structural change in the inlet, and the subsequent stream line
gradually becomes uniform. The other stream flows along the gap between the shaft wall
and the inner wall of the stator. Due to the disturbance of the shaft wall and the bearing
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channel, the stream line in the channel is always in a fluctuating state, and eddy currents
of varying degrees appear in the middle section. With the increase in the flow, the vortex
moves backward, and the number of vortices decreases. In the meantime, the area of the
single vortex expands.
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Figure 6. Stream line distribution of the internal flow passage of the motor and the outlet under
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Q = 3 m3·h−1; (c) stream line distribution at Q = 5 m3·h−1.

3.3. Comparison between Numerical Simulation Results and Experimental Results

A comparison of the experimental results and simulation results under different flow
conditions is shown in Figure 7. It can be seen that the results of the internal flow model
are very close to the experimental values, with the maximum absolute error of the head at
0.3 m and the maximum absolute error of the efficiency at 1.7%. Since some mechanical
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losses were ignored in the simulation calculation, the overall predicted value for efficiency
is larger than the experimental value.
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Generally, based on the CFX–MATLAB coupling calculation method, the prediction
performance of the internal flow model is sufficiently accurate and reliable for high-speed
centrifugal pumps with a fully sealed structure. Hence, the proposed method is of qualita-
tive and even quantitative significance to the numerical simulation of centrifugal pumps
with a fully sealed structure.

4. Conclusions

Three models of the centrifugal pump with a fully sealed structure referred to in [10]
were established, and a CFX–MATLAB coupling calculation method was proposed to
analyze them. Through a comparison of numerical simulation results and experimental
results, the following conclusions were drawn.

1. Hub leakage destroys the uniform flow field of the main stream and significantly
affects the pump’s efficiency. Hub leakage promotes an increase in the tip leakage
flow and the upward velocity vector component of the main stream, which affects the
distribution of the main stream field.

2. Compared with hub leakage, the internal flow further destroys the uniform flow field
of the main flow and has a great impact on the performance of the pump. Between
the tip leakage model and the internal flow model, the relative error of the head is
2.4% and the relative error of the efficiency is 12.1%.

3. Under the design conditions, the external characteristics of the internal flow model
are the closest to the experimental results, with the absolute error of the head at 0.03 m
and the absolute error of the efficiency at 1.3%.

4. In the actual flow in the pump, the axial displacement of the main shaft leads to a
change in the front liquid film thickness, the tail liquid film thickness, the tip clearance,
and the hub clearance, as a result of which the flow field is dynamic. Based on the CFX–
MATLAB coupling calculation method, the internal flow model can better simulate
the flow in a pump with a dynamic flow field and predict the performance of a pump
with a fully sealed structure. Under different flow conditions, the simulation results
were found to be very close to the experimental results, with the maximum absolute
error of the head at 0.3 m and the maximum absolute error of the efficiency at 1.7%.
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