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Abstract: Stuck pipe phenomena can have disastrous effects on drilling performance, with outcomes
that can range from time delays to loss of expensive machinery. In this work, we provide three
methods for the prediction of stuck pipe. The first method targets the detection of friction coefficient
which can represent the trend of stuck pipe. The second method targets the prediction of probability
for stuck pipe using ANN (artificial neural network). The last model establishes a comprehensive
indicator based on the first and the second method using fuzzy mathematics which can give more
accurate probability for stuck pipe. The results show that the best model is the last one which
can predict stuck pipe events with a F1 of 0.98 and a FAR (false alarm rate) of 1%. Preliminary
experimental results on the available dataset indicate that the use of the proposed model and can
help mitigate the stuck pipe issue.

Keywords: stuck pipe; drag coefficient; neural network; fuzzy mathematics

1. Introduction

Drilling is a key process to oil and gas exploration and development which is full
of randomness, uncertainty and concealment. It is necessary to place several thousand
meters of drill pipe in a narrow space with a diameter of only 200–500 mm. Unreasonable
design of engineering parameters and unclear understanding of the formation often lead to
complex downhole accidents (lost circulation, well collapse, stuck pipe, etc.), among which
stuck pipe is one of the most common accidents.

According to the statistics of complex accidents in the South China Sea during
2009–2018, about 45% of them were stuck pipe [1]. Mudlog data from Tarim Oilfield
in China shows that it takes about 3 months to deal with a serious stuck pipe accident
which increases non-productive times and seriously affects drilling efficiency. Therefore,
the timely prediction of stuck pipe events is considered a primary necessity to assist the
drilling team in the decision-making process, so that appropriate countermeasures can be
put in effect before the situation slips out of hand.

Mudlog data shows that the stuck pipe accidents occur in the process of tripping and
drilling with varying degrees of severity. For example, in some highly deviated wells and
horizontal wells, the stuck pipe accident is often accompanied in the process of tripping,
but it is usually not serious. On the contrary, more attention is paid to the stuck pipe during
drilling. Once the drill string is completely stuck, it can only be lifted by explosion and a
new side drilling scheme need to be redesigned, which seriously restricts the safety and
efficiency of drilling. Therefore, we focus on the real-time prediction of stuck pipe in the
process of drilling.
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Many approaches have been developed to predict and reduce the risk of stuck pipe.
In summary, the analysis and prediction of stuck pipe accidents can be divided into two
parts: data-driven and knowledge-driven.

For the knowledge-driven model, cuttings, wellbore tortuosity and other factors will
eventually lead to the increase of torque and drag which can lead to the occurrence of stuck
pipe accident. Therefore, researchers use the torque and drag model to invert the friction
coefficient to realize the qualitative analysis of stuck pipe trend in the view of mechanics.
However, this method is mainly used to analyze and deal with the stuck pipe after drilling
considering that the WOB (weight on bit) and TOB (torque on bit) cannot be transmitted in
real time.

For the data-driven model, researchers applied support vector machine, random
forest, neural network and other algorithms to the prediction of stuck pipe. However, the
generalization ability and reliability of the intelligent model need to be further improved
due to the quantity and quality of samples and the differences between blocks.

Based on previous research, we establish a comprehensive indicators based on the
knowledge-driven and data-driven model using fuzzy mathematics, which is expected to
realize accurate prediction of stuck pipe and ensure the safety and efficiency of drilling

The remaining of this paper is organized as follows: Section 2 discusses the literature
review of the prediction methods of stuck pipe. Section 3 introduces our proposed method.
Section 4 explains the experimental results and discusses the main findings and finally
Section 5 concludes this research and provides some plans for future work.

2. Related Research

This section introduces the related research on the analysis and prediction of stuck
pipe, including knowledge-driven and data-driven model.

For the knowledge-driven model, in [2], the paper shows how to estimate two friction
coefficients on a foot-by-foot basis at the wellsite with both measurement-while-drilling
(MWD) and surface values of weight on bit (WOB) and torque. A log of the coefficients
with depth can be used to diagnose drilling problems in directional wells. Field examples
are given that show how the technique detects incipient stuck pipe. Since downhole data
cannot be transmitted in real time, this method is mainly used after drilling. In [3], they
present the results of the application of torque and drag model to directional wells drilled
worldwide which was effectively used in these cases to aid in planning the directional
program before spudding, to monitor the wells during drilling, and to analyze particular
drilling problems after completion. In [4], the paper describes investigation of the friction
between the pipe and the mud cake. It was found that the apparent coefficient of friction,
or the “stuck pipe” coefficient, was not a constant; instead, it increased with increased
time of contact between plate and mud cake. They think that the friction factor and mud
cake quality are the factors that cannot be ignored. In [5], mud logging and daily reports
of 75 wells in one of Iranian Southwest oil fields were studied. Mud weight, yield point,
plastic viscosity and so on, a total of seven parameters were employed to introduce a new
parameter called Reducing Stuck Index (RSI). For this field, the comparison of RSI of the
current well with those of drilled wells predicted the probability of occurrence of stuck
pipe very well. In [6], Dunbar conducted a theoretical study on the bit stuck pipe caused by
borehole deformation. It is found that this phenomenon is related largely to the magnitude
of the lateral earth stresses, formation mechanical properties, and drilling-tool geometry.

For the data-driven models, Kingsborough [7] used the multivariate discriminant
analysis method to study stuck pipe for the first time. This method can be used to distin-
guish mechanical stuck, differential pressure stuck and non-stuck. Murillol [8] introduced
mathematical methods such as fuzzy comprehensive discrimination and neural networks
to predict stuck pipe, and proposed new methods for early warning and risk assessment of
stuck pipe. Multivariate statistical regression and a discrimination analysis were developed
for an Iranian field and presented by Shoraka [9] to predict and reduce the risks of stuck
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pipe. Biegler and Kuhn [10] used multivariate analysis to quantify the impact of design
variables on the overall stuck pipe.

Artificial Neural Network (ANN) has been extensively used in literature to solve
stuck pipe related issues. Some studies used ANN to predict a stuck pipe [11–13], using
different input parameters and data sizes, which were collected from several fields. They
concluded that ANN was capable of predicting stuck pipe events with varying model
accuracy. In [13], Siruvuri suggested coupling the ANN model output with a drilling log
viewer for monitoring. In [14], Elahi Naraghi applied several methods including ANN to
predict stuck pipe events. Their study showed that both ANN and adaptive neuro-fuzzy
inference systems are capable of predicting stuck pipe events with the same accuracy and
suggested using ANN for simplicity. In [15], Albaiyat used ANN along with the support
vector machine to predict stuck pipe events. In [16], Fuzzy logic and active learning were
used for stuck pipe prediction. In [17], Automated real-time modeling and data analysis
used to predict the risk of stuck pipe events were addressed by Salminen. In [18], Shahbazi
and Shahri developed a stuck pipe risk analysis prediction model by introducing a stuck
pipe index parameter. In [19], Zhigang Shan divided the drilling conditions into three
situations and use ANN to realize the prediction of stuck-pipe. In [20], Runqiao Yu selected
nine parameters and used the method of system dynamic cluster analysis to divide the
stuck pipe accidents into three categories: mechanical stuck pipe, differential pressure
stuck pipe and circulation stuck pipe. In [21], Jianming Liu have obtained the downhole
engineering parameters according to the downhole measuring tools and established an
intelligent model using stochastic forest algorithm. In [22], Brankovic have developed three
indicators based on mudlog data, which aim to detect three different physical phenomena
associated with the insurgence of stuck pipe. A statistical model that relates these features to
documented stuck-pipe events was then developed using advanced machine learning tools.

Through the analysis of the above related research, it is found that the stuck pipe
analysis method based on knowledge-driven model is mainly used for monitoring and
qualitative analysis of stuck pipe, but it is difficult to achieve prediction and quantitative
analysis. Meanwhile, the accuracy and reliability of data-driven stuck pipe analysis method
need to be further improved due to the number and quality of stuck pipe samples.

Therefore, on the basis of previous studies, we put forward a comprehensive evalu-
ation method which combines the knowledge-driven model with the data-driven model
through fuzzy mathematics theory.

3. Proposed Methodology

We provide three methods for the prediction of stuck pipe. The first method targets
the detection of friction coefficient which can represent the trend of stuck pipe. The second
method targets the prediction of probability for stuck pipe using ANN. The last model
establishes a comprehensive indicator based on the first and the second method using
fuzzy mathematics. Finally, we compare these three methods with the data from a well in
Tarim Oilfield, China.

3.1. Real-Time Analysis of Stuck Pipe Trend Based on Inversion of Friction Coefficient

The friction coefficient during drilling is a comprehensive resistance coefficient, which
includes not only the friction between string and wellbore, but also the additional resistance
caused by keyway, cuttings bed, mud viscous resistance and other factors. These factors
are closely related to stuck pipe phenomenon, so the friction coefficient of string can
characterize the stuck condition to a certain extent.

Four basic parameters are needed to realize the real-time inversion of friction coeffi-
cient, including hook tension, torque, WOB and TOB. The hook tension and torque can be
measured in real time. WOB and TOB can be measured by downhole measurement tools
which is usually stored in downhole tools and read after tripping out. So it is difficult to
realize the real-time transmission of WOB and TOB under the existing technical conditions,
which leads to the failure of real-time inversion of friction coefficient during drilling. There-
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fore, the neural network technology is used to realize the real-time calculation of WOB and
TOB [23].

3.1.1. Real-Time Intelligent Calculation of WOB and TOB
Mudlog Data Preprocessing
1© Feature selection

The WOB and TOB are related to many factors during drilling. Through the analysis
of physical problems, the following parameters are selected as input parameters. Among
them, the time sequence parameters are: WOB, TOB, depth, inclination, azimuth, torque,
rpm, stand pipe pressure, outlet flow, inlet density, outlet density, total pool volume, hook
tension, mud density, mud viscosity, mud plastic viscosity. Non-sequential parameters
include: mud system, BHA (bottom hole assembly) and bit type.

2© Normalization

For sequential parameters, considering that mudlog parameters rarely have extreme
maximum and minimum values and are restricted by drilling equipment capabilities,
the maximum and minimum parameters can be set in advance or obtained by statistical
analysis, so the minimax normalization method is used to normalize the time series data.

For non-sequential parameters, the mud system is divided into water-based, oil-based
and gas-based; Bit types are divided into PDC and cone; BHA is divided into pendulum,
eyeful and tower. The above parameters are digitized by one hot method.

Neural Network Optimization and Structure Design

According to the characteristics of mudlog data in sequence and non-sequence, the
adaptive neural networks, namely BP [24] and LSTM [25] networks, are selected.

The formula of BP neural network is as follows,

ht = f (whxt + bh) (1)

xt is the current input; wh is the weight matrix of hidden layer; bh is the offset vector of the
hidden layer; f is the activation function; ht is the current output.

The BP neural network with the unidirectional communication is a static network.
Although it can approximate arbitrarily complex functions, it cannot infer the subsequent
information based on the previous information which does not have the memory ability.

LSTM network with self-feedback can transfer the information of hidden layer neurons
to the next hidden layer neurons. It has certain memory ability and obvious advantages in
dealing with sequential problems.

The formula of LSTM neural network is as follows.
Forget gate:

ft = σ(Wf · [ht−1, xt] + bf) (2)

Input gate:
it = σ(Wi · [ht−1, xt] + bi) (3)

Output gate:
Ot = σ(Wo · [ht−1, xt] + bo) (4)

xt is the current input; ht−1 is the output at the previous moment; Wf is the weight matrix
of the forget gate neuron in LSTM; bf is the bias vector of the forget gate neuron in LSTM;
f t is the forget gate neuron in LSTM The output of the cell; Wi is the weight matrix of the
input gate neuron in LSTM; bi is the bias vector of the input gate neuron in LSTM; it is the
output of the input gate neuron in LSTM; Wo is the weight of the output gate neuron in
LSTM Matrix; bo is the bias vector of the output gate neuron in LSTM; Ot is the output of
the output gate neuron in LSTM; σ is the sigmoid activation function.
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The BP neural network in Figure 1 is used to input non-sequential data which are
digitized by one-hot and have a dimension of 8. An input sample of the BP network is a
one-dimensional vector.
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Figure 1. BP-LSTM dual input network structure.

The LSTM network in Figure 1 is used to input sequential data. The historical time
step is selected as 5, and a data sample input to the LSTM network is a 5 × 16 matrix.

Training, Testing and Optimization of BP-LSTM

The data from 74 wells in the same block of Tarim Oilfield is used to test and optimize
the BP-LSTM model. The data of 52 wells are used for training and the rest for testing.

The number of network layers, the number of neurons, dropout and activation function
are optimized and each model is trained 120 epochs. The three indexes of MAPE (mean
absolute percentage error), RMSE (root mean square error) and model complexity which
is the number of parameters to be trained are combined to optimize the model. The
experimental scheme of the BP-LSTM model is shown in Table 1.

RMSE =

√
1
N ∑N

i=1

(
ypre − ytrue

)2 (5)

MAPE =
∑N

i=1

∣∣∣ ypre−ytrue
ytrue

∣∣∣
N
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ytrue is the measured value; ypre is the predicted value; N is the number of samples.

Table 1. Test table of BP-LSTM network model.

Layers
(BP)

Neurons
(BP)

Layers
(LSTM)

Neurons
(LSTM)

Dropout Activation
Function

WOB (kN) TOB (kN·m)

RMSE
(kN)

MAPE
(%)

RMSE
(kN·m)

MAPE
(%)

1 1 32 1 16 0.1 sigmoid 77.3 39.5 6.2 29.0
2 1 64 1 32 0.3 tanh 23.8 13.0 2.8 12.8
3 1 128 1 64 0.2 relu 24.6 13.0 3.1 14.0
4 2 32 2 16 0.3 relu 35.3 18.9 3.6 16.1
5 2 64 2 32 0.2 sigmoid 76.7 39.2 5.5 25.7
6 2 128 2 64 0.1 tanh 23.9 12.8 2.9 13.3
7 3 32 3 16 0.2 tanh 28.5 16.3 3.2 14.7
8 3 64 3 32 0.1 relu 27.1 14.5 3.4 16.6
9 3 128 3 64 0.3 sigmoid 78.4 39.9 9.4 40.1
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Calculation Results of WOB and TOB

The results of WOB and TOB are shown in Figures 2 and 3, respectively. The RMSE
and MAPE of WOB is 23.8 kN and 13.0%, respectively. The RMSE and MAPE of TOB is
2.8 kN·m and 12.8%, respectively.
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The BP-LSTM neural network is used to realize the real-time prediction of WOB and
TOB, which lays a foundation for the real-time inversion of friction coefficient.

3.1.2. Real-Time Inversion of Friction Coefficient
Torque and Drag Model

The classical torque and drag models include soft string model [26] and stiff string
model [27]. The soft string model without any consideration for the string stiffness is simple
and applied earlier, but it is only suitable for vertical wells or wells with small inclination.
The stiff string model with considering the stiffness of string is more complex, but it is more
suitable for extended reach wells, horizontal wells and other non-straight wells. The stiff
string model is used for the real-time inversion of friction coefficient.

The stiff string model is as follows:

d(−F)
ds

= −EIkb
dkb
ds
− q cos α± µ1 · nt (7)



Appl. Sci. 2022, 12, 5282 7 of 16

dM
ds

= µ2 · nt ·
Dbi
2

(8)

“±”: Negative for lifting condition, positive for lowering condition; F: axial load on
the drill string, N; S: depth, m; q: Gravity per unit length of drill string, N/m; α: inclination
angle, rad; EI: bending stiffness of drill string, N m2; nt: Contact force between drill string
and wellbore, N/m; µ1: Axial friction coefficient; µ2 Circumferential friction coefficient;
kb: hole curvature, rad/m.

Calculation formula of borehole curvature kb:

kb =

√(
dα

ds

)2
+ sin2 α

(
dφ

ds

)2
(9)

Calculation formula of contact force nt on drill string:

nt =

√
A2 + B2

1 + µ2
2

(10)

A = EI
d2kb

ds2 + kbF− kn(−kbMT + EI · kbkn) +
q
kb

dα

ds
sin α (11)

B =
d
ds

(−kbMT + EI · kbkn) + EI · kn
dkb
ds
− q

kb

dφ

ds
sin2 α (12)

kn =
sin α

k2
b

(
dα

ds
d2φ

ds2 −
dφ

ds
d2α

ds2

)
+ cos α

(
1
k2

b

(
dα

ds

)2
+ 1

)
dφ

ds
(13)

φ: azimuth, rad; kn: borehole torsion, rad/m.

Real-Time Inversion of Friction Coefficient

Taking the above four basic parameters into the torque and drag model, the real-time
inversion of friction coefficient can be realized by dichotomy, as shown in Figure 4. The
inversion result of friction coefficient is shown in Section 3.3.
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3.2. Intelligent Prediction of Stuck Pipe Probability Based on LSTM
3.2.1. Establishment of Stuck Sample

Firstly, it is necessary to determine the stuck date and time according to the mudlog
data report, and then mark the normal sample and the stuck sample.

Figure 5 shows the changes in hook tension and torque throughout the day on 2 May
It can be seen that the time of stuck pipe is around 20:48:08 from the figure.
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As shown in Figure 6, it is the change of hook tension and torque from 20:11:28 to
21:21:28. During 20:50:28–20:51:28, the torque suddenly increases from 14.2 to 19.6 kN,
which is consistent with the mudlog data report. Therefore, the accurate time of stuck pipe
can be determined as 20:51:28.
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The stuck pipe is a sudden accident, that is, the time from the beginning of the stuck
pipe to the complete stuck pipe is very short, and sufficient time cannot be left to adjust
the drilling parameters in time to avoid the stuck pipe. Therefore, it is necessary to mark
the period before the stuck pipe as stuck pipe samples in order to achieve the purpose of
forecasting in advance. The data of 20:28:28–20:50:28 are labeled as stuck pipe samples, and
20:11:28–20:27:28 are labeled as normal samples.

3.2.2. Selection of Characteristic Parameters for Stuck Pipe

Based on the mudlog data and the analysis of the factors affecting the stuck, we use
15 parameters: bit depth, hook tension, stand pipe pressure, torque, weight on bit, rpm,
total pump stroke, inlet/outlet temperature, Inlet/outlet conductance, inlet/outlet density,
inlet/outlet flow.

3.2.3. Training, Testing and Optimization of Intelligent Prediction Model for Stuck Pipe

Generally, the optimal hyper-parameter combination is obtained through trial and
error. We optimize the following parameters: time-stepping of the input data, the learning
rate, the number of LSTM network layers, the number of LSTM neurons, and the activation
function. In order to reduce the number of tests, the orthogonal test method (L18.3.5) is
used to set the test plan [28].

The FAR (false alarm rate), MAR (missed alarm rate) and F1 are used to evaluate and
optimize the model. The evaluation indexes of classification problems are shown in Table 2,
The relevant calculation formulas are as follows.

Precison =
TP + TN
TP + FP

(14)

FAR = 1− Precison (15)

Recall =
TP

TP + FN
(16)

MAR = 1− Recall (17)

F1 =
2× Precison× Recall

Precison + Recall
(18)

Table 2. Evaluation indexes of classification problem.

Real Category
Forecast Category

Positive (Stuck) Negative (Non Stuck)

Positive (Stuck) True Positive False Negative
Negative (Non stuck) False Positive True Negative

We combine FAR, MAR, F1 and model complexity to optimize the model. The evalua-
tion indicators of each model are shown in Figure 7.

F1 has been widely employed in information retrieval which can well evaluate the
advantages and disadvantages of the classification model [29]. Therefore, our criterion
for model selection is to select a model with low complexity when F1 are not significantly
different. The larger the F1, the better the model. As shown in Figure 7a, the first, second,
fourth, seventh, ninth, tenth, thirteenth, fifteenth and seventeenth models have higher F1,
and the values are close to each other. Considering there are not many training samples, in
order to prevent over fitting and improve the generalization ability of the model, as shown
in Figure 7b, the first and the seventeenth model with lower complexity are selected.
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In the process of drilling, we pay more attention to the MAR, that is, we can accept a
certain FAR, but cannot accept the MAR (all stuck can be predicted, but some non-stuck
may be predicted as stuck). Therefore, when using the FAR and the MAR to optimize the
model, the model with the lower MAR should be selected. As shown in Figure 7d, the first
model with smaller MAR is selected as the best model.

The prediction results of the best model are shown in Section 3.3. The prediction
result is given by stuck pipe probability, and when the probability is greater than 0.4, it is
considered as stuck pipe, otherwise it is not.

3.3. Comprehensive Evaluation Method of Stuck Pipe Based on Fuzzy Mathematics

Through the analysis of Sections 3.1 and 3.2, two evaluation indicators of stuck pipe
are finally obtained. One is the evaluation index based on the torque and drag model, that
is, the friction coefficient, and the other is the evaluation index based on the data-driven
model, that is, the probability of stuck pipe.

The above two indicators can measure the possibility of stuck pipe to a certain extent.
Considering that there are many fuzziness and uncertainty in drilling process, fuzzy
mathematics theory is used to establish a comprehensive evaluation on the basis of the two
sub-indices to realize comprehensive evaluation of stuck pipe.
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3.3.1. Establishment of Fuzzy Set for Stuck Pipe

The American scientist Zadeh [30] extended the value of the ordinary set charac-
teristic function from {0, 1} to [0, 1], thus creating the fuzzy set theory, and has the
following definition:

Let X be a space of points (objects), with a generic element of X denoted by x. Thus,
X = {x}, if there is a real-valued function µA, such that,

µA : X → [0, 1] (19)

Then A is a fuzzy set on X. In order to distinguish it from ordinary sets, the charac-
teristic function µA(x) is called a membership function. This function describes that the
element x in the X belongs to the set A to the degree µA(x).

Different values of membership function µA(x) correspond to different membership
degrees of x to set A.

When µA(x) = 0, x does not belong to A at all; When µA(x)= 1, x belongs to A
completely; When 0 < µA(x) < 1, x belongs to A to the extent of µA(x).

Based on the above fuzzy mathematics theory, the following fuzzy set of stuck pipe,
S, can be established. The fuzzy set S indicates that “stuck pipe may occur”, Suppose
that the membership degree of each element in the P = {P1, P2, · · · , Pn} to the fuzzy set
S is µs(P1), µs(P2), · · · , µs(Pn), then the stuck pipe fuzzy set S can be expressed in the
following form:

S = (µs(P1), µs(P2), · · · , µs(Pn)) (20)

P1, P2, · · · , Pn are the various evaluation indexes of stuck pipe. Two evaluation indexes
were used, friction coefficient and probability of stuck pipe. µS(x) is the membership
function of stuck pipe, and the final fuzzy set S can be simplified into the following form,

S = (µs(P1), µs(P2)) (21)

3.3.2. Determination of Membership Function

For the stuck pipe fuzzy set, it is necessary to give the degree of membership of each
stuck evaluation index to the fuzzy set S. Therefore, when using fuzzy mathematics theory,
it is very important to find or design an appropriate membership function. The determi-
nation of membership function is subjective. Different people will give different results
for the same problem. Finally, the Sigmoid-type function is selected as the membership
function of the stuck pipe fuzzy set.

The range of the two sub-evaluation indexes in the {P1, P2} is between 0 and 1. Theo-
retically, when the two sub indexes are both small (between 0 and 0.5), it means that the
final possibility of stuck pipe is very small at this time, that is, the possibility of stuck pipe
obtained by the comprehensive evaluation index is also very small. However, when either
of the two indexes is larger (0.5–1), it indicates that the possibility of stuck pipe is greater,
that is, the probability of stuck pipe obtained by comprehensive evaluation index is greater.
As shown in Figure 8, it can be found that the sigmoid function can simulate a similar
situation, that is, when x is between 0 and 0.5, it can be simply considered that y increases
linearly with x, when x is between 0.5 and 1, y increases exponentially with x. When there
is basically no stuck pipe risk, the comprehensive evaluation index value for stuck pipe
will be small. When there is a certain stuck pipe risk, the sigmoid function will further
expand the possibility, that is, the comprehensive evaluation index will be larger.
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3.3.3. Establishment of Comprehensive Evaluation Index for Stuck Pipe

After determining the membership function of the fuzzy set, a comprehensive index
of stuck pipe can be constructed. The fuzzy set S is expressed as,

S = (µs(P1), µs(P2)) (22)

µS(x) =
1

1 + e−6(x−1)
(23)

The value range of the two indexes P1 and P2 after the membership function are
between 0 and 0.5, so the two elements in the stuck pipe fuzzy set can be simply linearly
added as the final comprehensive evaluation index,

Pstuck = µS(P1) + µS(P2) (24)

As shown in Figure 9, the blue surface represents the surface composed of values of
evaluation index 1 (friction coefficient,), evaluation index 2 (probability of stuck pipe) and
comprehensive index. The red plane represents the threshold value of the comprehensive
evaluation index.
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In order to reduce the rate of missing alarm, the threshold value of comprehensive
evaluation index of stuck pipe is set to 0.4, that is, when the comprehensive evaluation
index is less than 0.4, it is considered that there is basically no risk of stuck pipe. The
smaller the index is, the smaller the probability of stuck pipe is. When the comprehensive
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evaluation index is greater than 0.4, it is considered that there is a risk of stuck pipe. The
larger the index is, the greater the probability is.

4. Results and Discussion

The paper analyzes the stuck pipe case of well A in Tarim Oilfield, China. The stuck
pipe occurred at 6110.58 m. After various rescue measures, the accident was not successfully
resolved, so it was finally decided to sidetrack again. It took about 3 months from the
occurrence of the stuck pipe to the continuation of drilling, which seriously affected the
drilling efficiency.

Figure 10 shows the stuck pipe index 1 (friction coefficient), which is calculated by the
real-time inversion method of friction coefficient established in Section 3.1, and its change
can characterize the stuck pipe trend to a certain extent.
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Figure 11 shows the stuck pipe index 2 (stuck pipe probability), which is obtained from
the intelligent prediction model of stuck pipe probability based on the LSTM network in
Section 3.2, which can provide early warning of stuck pipe through the changes of mudlog
data. The red straight line indicates the predicted result of stuck (stuck/non stucking). Blue
scatter indicates the probability of stuck pipe. The blue straight line represents the real
sample of the site (0: no stuck, 1: stuck).
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Figure 12 shows the comprehensive prediction of stuck pipe by using the comprehen-
sive evaluation index established in Section 3.3.
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As shown in Figure 10, it is found that the friction coefficient increases gradually from
6000 m to 6110 m. The friction coefficient increases sharply from 0.35 to 0.75 around 6110 m,
which indicates the risk of stuck pipe. However, Real-time inversion of friction coefficient
can only achieve qualitative evaluation, and it is difficult to accurately predict stuck pipe.

It can be seen from Figure 11 that the evaluation indexes predicted by the intelligent
prediction model are: FAR: 0.3, MAR: 0, F1: 0.82. It can be found that although the MAR
is 0, the FAR is relatively high, reaching 30%. Although a certain FAR is allowed for the
prediction of stuck pipe, the FAR is too high, which will affect the drilling efficiency to a
certain extent.

It can be seen from Figure 12 that the comprehensive evaluation indexes for stuck
pipe are: FAR: 0.01, MAR: 0.04, F1: 0.98. Compared with the intelligent prediction model,
the FAR is lower, only 1%. However, there is a certain MAR, which is 4%. Although for
the prediction of stuck pipe, the existence of MAR will cause a certain risk to the site, this
paper has marked some normal samples as stuck samples when dividing stuck samples,
and it can be found from the figure that the 4% missed alarm rate is only the samples that
is artificially marked as stuck samples are missed, and the real stuck samples have not
been missed.

As shown in Table 3, the three prediction methods are compared and analyzed. First of
all, trend analysis method of friction coefficient has a long history. In this paper, the neural
network model is introduced to realize the real-time calculation of the WOB and TOB,
and further realize the real-time monitoring and trend analysis of the friction coefficient
during drilling, but it is still qualitative analysis, and it is difficult to give the accurate
quantitative index.

Table 3. Comparison of three prediction methods of stuck pipe.

Method FAR MAR F1

Qualitative Friction coefficient / / /

Quantitative
Intelligent prediction 0.3 0.0 0.82

Comprehensive evaluation 0.01 0.04 0.98

The intelligent prediction of stuck pipe based on LSTM network can give accurate
quantitative index of stuck pipe. However, through the analysis of FAR, MAR and F1, it is
found that the prediction of stuck pipe based on data-driven method has a high FAR of
30%, which will have a certain impact on the site.

The comprehensive evaluation index for stuck pipe is obtained by combining two
stuck sub-indexes through fuzzy mathematics. It realizes the prediction of stuck pipe based
on data-driven and knowledge-driven model. Through the analysis of evaluation indexes
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such as FAR, MAR, and F1, it is found that although the MAR is 4% (the missing is only the
artificially marked stuck sample, not the real stuck sample), the FAR is only 1%, compared
with the FAR obtained by intelligent method, the FAR is reduced by 96%, which greatly
reduces the false alarm of stuck pipe.

5. Conclusions

The prediction of stuck pipe is very challenging due to the hybrid nature of the drilling
process (which consists of different activities), the variability of geological conditions, the
combined occurrence of adverse events etc.

Three prediction methods of stuck pipe are established. In the first method, the neural
network technology is used to calculate WOB and TOB in real-time. Combined with the
torque and drag model, the real-time inversion of the friction coefficient is realized. The
analysis method of stuck pipe trend based on the friction coefficient is finally established.
In the second method, intelligent prediction of stuck pipe probability is realized by using
mudlog data and LSTM network. Finally, a comprehensive prediction model is established,
which combines knowledge-driven model (the first method) with data-driven model (the
second method) using fuzzy mathematics theory.

For future work, we plan to look for more stuck pipe samples. On the one hand, we
can increase the stability and generalization ability of the intelligent prediction model. On
the other hand, we will use more samples to determine a reasonable threshold of stuck
pipe instead of setting thresholds artificially.
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