
Citation: Kahraman, Y.; Durmuşoğlu,

A. Classification of Defective Fabrics

Using Capsule Networks. Appl. Sci.

2022, 12, 5285. https://doi.org/

10.3390/app12105285

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent

A. Cicirello

Received: 17 March 2022

Accepted: 10 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Classification of Defective Fabrics Using Capsule Networks
Yavuz Kahraman 1,* and Alptekin Durmuşoğlu 2

1 Industrial Engineering, Adiyaman University, Adiyaman 02040, Turkey
2 Industrial Engineering, Gaziantep University, Gaziantep 27410, Turkey; durmusoglu@gantep.edu.tr
* Correspondence: ykahraman@adiyaman.edu.tr

Abstract: Fabric quality has an important role in the textile sector. Fabric defect, which is a highly
important factor that influences the fabric quality, has become a concept that researchers are trying to
minimize. Due to the limited capacity of human resources, human-based defect detection results in
low performance and significant loss of time. To overcome human-based limited capacity, computer
vision-based methods have emerged. Thanks to new additions to these methods over time, fabric
defect detection methods have begun to show almost one hundred percent performance. Convo-
lutional Neural Networks (CNNs) play a leading role in this high-performance success. However,
Convolutional Neural Networks cause information loss in the pooling process. Capsule Networks
is a useful technique for minimizing information loss. This paper proposes Capsule Networks, a
new generation method that represents an alternative to Convolutional Neural Networks for deep
learning tasks. TILDA dataset as source data for training and testing phases are employed. The model
is trained for 100, 200, and 270 epoch times. Model performance is evaluated based on accuracy,
recall, and precision performance metrics. Compared to mainstream deep learning algorithms, this
method offers improved performance in terms of accuracy. This method has been performed under
different circumstances and has achieved a performance value of 98.7%. The main contributions
of this study are to use Capsule Networks in the fabric defect detection domain and to obtain a
significant performance result.

Keywords: fabric defect detection; capsule networks; deep learning; image processing

1. Introduction

Quality and inspection of the fabric in the textile sector is a particular phase in terms of
cost and time. The quality of the fabric requires the fabric to be flawless. In this connection,
defective fabrics significantly affect the quality. Fabric is fabricated from textile fibers, a
commonly used material in the textile industry. Over a hundred defect types can occur in
the manufactured respective fabric material [1]. Defective fabrics increase the cost price by
45–60% [2]. Due to increasing costs, textile industries are forced to create new solutions
such as automatic fabric defect inspection systems that reduce fabric defects to significantly
lower rates.

Traditional methods for automatic fabric defect detection explain the models in which
fabric feature sets rely on human senses. Traditional methods show promising results
for a particular fabric type. However, these models need to be redesigned for new fabric
types. Traditional methods require expertise as they are based on human inspection.
Since human-based determination has a limited capacity, traditional fabric defect detection
methods result in relatively high error rates and loss of time. As an alternative to traditional
approaches, modern quality inspection systems that make use of approaches such as
machine learning, deep learning, and most machine vision systems have been attracting
considerable attention in the scientific field, as well as the textile industry itself. These
systems are generally able to provide better accuracy rates [3]. Modern quality inspection
approaches have succeeded in accomplishing great results and have demonstrated their
convenience for the detection of fabric defects.

Appl. Sci. 2022, 12, 5285. https://doi.org/10.3390/app12105285 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12105285
https://doi.org/10.3390/app12105285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3488-5882
https://orcid.org/0000-0001-9800-5747
https://doi.org/10.3390/app12105285
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12105285?type=check_update&version=1

Appl. Sci. 2022, 12, 5285 2 of 13

Deep learning algorithms, mainly Convolutional Neural Networks (CNN), have
a powerful learning ability that can learn the key depth features both adaptively and
intelligently. This ability makes fabric defect detection systems more suitable for various
defect types. The deep structure of CNN stores the entire input information that represents
the defective fabric image. Storing entire representative information contributes to the
detection of defect types with higher output performance. Although CNN has many
advantages, it can still have shortcomings that sometimes affect the output. For example, it
does not store important information such as orientation, rotation, dependency in related
internal feature transfer, or spatial information in the image at the desired level. To
overcome these shortcomings, the Hinton group invented Capsule Networks (CapsNets), a
new model that develops the model hierarchical relationships inside the internal knowledge
of network representation [4]. Since their introduction in 2017, there has been an increase
in deep learning employing CapsNets as their core building blocks. The popular version of
CapsNets uses routing by agreement algorithms between different layers. This algorithm
replaces pooling in CNNs and a vector output replacing scalar outputs in CNNs. The
magnitude of the output vector represents the likelihood that a feature being represented
by the capsule exists in the input image, whereas the orientation of the entity represents
the instantiation parameter values. CapsNets are promising in terms of improving our
socio-economic activities as they can be deployed to solve real-life problems in autonomous
cars [5], machine translation [6], text recognition [7], and image recognition [8]. In this
paper, the main purpose is to use CapsNets algorithm in the detection of fabric defects.
Depending on this purpose, CapsNets [4,9] is used to classify fabric defects as non-defective,
holes, thread, stain, weave, shaded, knitting. The main contributions of this study are
summarized as follows:

• We proposed the use of CapsNets for fabric defect detection purposes, which has the
advantage of storing whole information about the input.

• In a similar research domain, CapsNets can be applied for various types of textures
and fabric defects.

• Experimental results confirm that CapsNets has a superior accuracy rate to other
well-known deep learning algorithms.

The study is organized as Section 2 summarizes the literature, Section 3 explains
CapsNet implementation, and Section 4 concludes with a series of summary remarks.

2. Literature Review

Modern machine vision-based fabric defect detection systems are an attractive scien-
tific domain as an alternative to traditional methods. In the majority of existing papers,
however, homogeneous fabrics are used as input [10]. Publications in this domain can be
grouped into five subtitles (Figure 1). Further information can be found in references [11,12].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 13

Modern quality inspection approaches have succeeded in accomplishing great results
and have demonstrated their convenience for the detection of fabric defects.

Deep learning algorithms, mainly Convolutional Neural Networks (CNN), have a
powerful learning ability that can learn the key depth features both adaptively and intel-
ligently. This ability makes fabric defect detection systems more suitable for various de-
fect types. The deep structure of CNN stores the entire input information that represents
the defective fabric image. Storing entire representative information contributes to the
detection of defect types with higher output performance. Although CNN has many
advantages, it can still have shortcomings that sometimes affect the output. For example,
it does not store important information such as orientation, rotation, dependency in re-
lated internal feature transfer, or spatial information in the image at the desired level. To
overcome these shortcomings, the Hinton group invented Capsule Networks (CapsNets),
a new model that develops the model hierarchical relationships inside the internal
knowledge of network representation [4]. Since their introduction in 2017, there has been
an increase in deep learning employing CapsNets as their core building blocks. The
popular version of CapsNets uses routing by agreement algorithms between different
layers. This algorithm replaces pooling in CNNs and a vector output replacing scalar
outputs in CNNs. The magnitude of the output vector represents the likelihood that a
feature being represented by the capsule exists in the input image, whereas the orienta-
tion of the entity represents the instantiation parameter values. CapsNets are promising
in terms of improving our socio-economic activities as they can be deployed to solve re-
al-life problems in autonomous cars [5], machine translation [6], text recognition [7], and
image recognition [8]. In this paper, the main purpose is to use CapsNets algorithm in the
detection of fabric defects. Depending on this purpose, CapsNets [4,9] is used to classify
fabric defects as non-defective, holes, thread, stain, weave, shaded, knitting. The main
contributions of this study are summarized as follows:
• We proposed the use of CapsNets for fabric defect detection purposes, which has the

advantage of storing whole information about the input.
• In a similar research domain, CapsNets can be applied for various types of textures

and fabric defects.
• Experimental results confirm that CapsNets has a superior accuracy rate to other

well-known deep learning algorithms.
The study is organized as Section 2 summarizes the literature, Section 3 explains

CapsNet implementation, and Section 4 concludes with a series of summary remarks.

2. Literature Review
Modern machine vision-based fabric defect detection systems are an attractive sci-

entific domain as an alternative to traditional methods. In the majority of existing papers,
however, homogeneous fabrics are used as input [10]. Publications in this domain can be
grouped into five subtitles (Figure 1). Further information can be found in references
[11,12].

Figure 1. Fabric defect detection approaches.

In the first group approaches, which are statistical, the focus is on some statistical
information about pixels. The basic assumption in these approaches is that the defect-free

Figure 1. Fabric defect detection approaches.

In the first group approaches, which are statistical, the focus is on some statistical
information about pixels. The basic assumption in these approaches is that the defect-
free regions are considered to be statistically rigid and the relevant inspection image
is partially processed. Representation of this statistical information varies according to
the statistical method used in [13]. Co-occurrence matrix (CM) describes the important
information as prominent features by computing pixel values’ dependence in a CM on

Appl. Sci. 2022, 12, 5285 3 of 13

each angular spatial relationship [14], where the CM is invariant under monotonic grey
value transformation [15]. The mathematical morphology method is used to gain geometric
representation information and regional shapes of an image [16]. Operations such as
dilation, erosion, smoothing, and sharpening are used in this method. The merits of
mathematical morphology can be summarized as sensitivity to defect size and shape,
effectiveness in the segmentation processes, and suitability for unidirectional textures. The
fractal method uses fractals that are significant in modeling roughness and self-similarity
on natural textures [17].

Structural approaches are methods in which primitive elements of textures are used
as the main basic characteristics. Textures are imitated by primitives as the main basic
characteristics based on certain structural rules. Structural approaches are constructed
based on two sequential stages: texture detection and modeling the texture pattern. As
a result of the stochastic variability nature in texture patterns (e.g., noise, flexibility, yarn
rotation), due to the stochastic variations in texture structures (i.e., the elasticity of yarn,
fabric motion, noise, etc.), these approaches are not sufficiently reliable in general. However,
these approaches are acceptable in detecting textural defects.

Spectral approaches use both spatial and frequency information to identify the pres-
ence of a fabric defect. The frequency information of a fabric image contributes to the
detection of defects. Spatial information provides information about the defect location.
The majority of publications consider this approach. The most common spectral methods
are transform-based methods such as Fourier, Wavelet, and Gabor methods. Wavelet trans-
form is a mapping function that is placed in Fourier and real domains to provide significant
localized information by considering vertical, horizontal, and diagonal directions of the
inputs [18]. The Fourier method converts the signal information from a time domain to
a frequency domain [19]. The last transformation method, Gabor transform, is also used
to transform an image representation to both the spatial and frequency domains. Gabor
transform is a different version of the short-time Fourier transform. Gabor filters have two
implementation categories: filter bank and implementation of optimal filters [20,21].

Model-based approaches build an image model describing and synthesizing
textures [22]. The model stores information that represents the entire texture. These
representations are provided by model parameters. The advantage of these approaches is
that they create feature sets that can match the observed feature sets. These approaches
are appropriate for describing stochastic surface variations. The Markov Random Field
and Autoregressive models have commonly used techniques in model-based approach
subtitles. The Autoregressive model represents the randomness to define computations in
terms of the time domain. This method is computationally simple since it requires a linear
equation solution [23]. Markov random fields (MRF) use both statistical and structural
information to recognize patterns [24]. The main principle in this method is to focus on
pixel intensity and its neighborhood pixel values.

Learning-based approaches are used to detect defects utilizing labeled data. This learn-
ing mechanism can be supervised and unsupervised. The main goal in these approaches
is to create a model that has been trained with labeled data and then uses this model as
a test for unseen images. These approaches have good defect tolerance, generalization
capabilities, and self-learning capabilities. The most commonly used methods are Elo-
rating and machine learning-based methods such as Artificial Neural Network (ANN),
Support Vector Machines (SVM), Regression, and Nearest Neighbor (NN). Neural network
models are flexible defect detection methods utilizing layer-by-layer structure to transform
information forward and update the information backward to minimize network error [25].
The Elo Rating is performed to detect fabric defects and this method has high accuracy in
the detection of defects on dot-and-star patterned fabrics [26]. The deep learning methods
used for fabric defect detection, specific to the subject of this study, are summarized in
three groups: CNN-based; Long Short Term Memory (LSTM) based; Autoencoder based
publications. Table 1 gives details about discussed papers in terms of the used dataset,
number of classes, and performance. The first seven rows show details of CNN-based

Appl. Sci. 2022, 12, 5285 4 of 13

publications. The eighth row shows details of the LSTM-based paper. The remaining
rows are stands for fabric defect detection studies involving the autoencoder method. For
example, Jeyaraj and Nadar performed Multi-scale CNN to categorize and localize six
fabric defects by using TILDA dataset. Their study has a higher performance rate with
96.55% accuracy [27]. Zhao et al. proposed a visual long short term memory method to
classify three datasets (DHU-FD-500, DHU-FD-1000, Aliyun-FD-10500) into ten and seven
classes, respectively. Şeker et al. used autoencoders to classify fabric defects into two
categories [28]. The purpose of the work is not only to detect fabric defects, but also to try
to extract features of fabrics with unique textures correctly, to create the optimum working
parameters for the autoencoder. The autoencoder network was first trained and then tested.
The training phase was carried out with 153 defective and 847 defect-free fabric samples.
Data were separated as 70% training set, 15% validation set, and 15% test set. The overall
performance rate for the study is 88%.

Table 1. Publication details for deep-learning based fabric defect detection literature.

Method Data Classes Acc. 1 Ref. 2

Multi-scale CNN TILDA 6: Strain, Hole, Weft formed, Slub,
Stitching, Color change 95.56% [27]

Autoencoders Custom Dataset 2: Defective and defect-free 88% [28]

Pretrained AlexNet Custom Dataset 2: Defective and Defect-free 98.68% [29]

Combination of compressive
sensing and convolutional neural
network (CS-CNN)

Custom Dataset
10: Normal, Mispick, Broken pick,
Double flat, Slub, Fleter, Drawback,
Sundries, Broken end, Oil stain

97.9% [30]

Transfer learning and faster RCNN Custom Dataset 2: Holes &Cuts, Stain 95.48% [31]

U-Net and Convolutional
Neural Network Custom Dataset 2: Defective and defect-free 96.62% [32]

Faster Regional-based CNN Custom Dataset 6: Broken pick, Felter, Drawback,
Sundries, Broken end, Oilstains 95.8% [33]

VGG19 TILDA 7: nondefect, hole, knitting, stain,
thread, weave, shaded 94.65% [34]

Visual Long Short Term
Memory (VLSTM)

DHU-FD-500,
DHU-FD-1000,

Aliyun-FD-10500

10 defect types for DHU-FD-500 and
DHU-FD-1000: Mispick, Broken
pick, Double Flat, Slub, Felter,
Draw-back, Sun-dries, Broken end,
and Oil stain
7 defect types for Aliyun-FD-10500:
Normal, Broken end, Broken picks,
Hole, Stain, Crack, Felter

99.47%
97.73%
95.73%

[35]

Fisher Criterion
Based Autoencoder Custom Dataset 2: Defect-free and defective fabrics. 98.6% [36]

Autoencoder and MXNet TILDA
Patterned fabric

5: Broken end, Hole, Netting
multiple, Thick bar, and Thin bar 98% [37]

Deep Denoising Convolutional
Autoencoder (DDCAE) Custom Dataset 2: Defective and NonDefective 97.75% [38]

1 Accuracy, 2 Reference.

3. Method

Deep learning-based methods tend to trend up in fabric defect detection studies. In
recent years, the majority of publications in this field have discussed defect detection
strategies. In this paper, the Capsule Network, as a deep learning method proposed by
Hinton et al., is used. The route followed in this paper is shown in Figure 2.

Appl. Sci. 2022, 12, 5285 5 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13

3. Method
Deep learning-based methods tend to trend up in fabric defect detection studies. In

recent years, the majority of publications in this field have discussed defect detection
strategies. In this paper, the Capsule Network, as a deep learning method proposed by
Hinton et al., is used. The route followed in this paper is shown in Figure 2.

Figure 2. Followed steps.

3.1. Data
TILDA fabric dataset is created by a working group of Texture Analysis of the DFG’s

(Deutsche Forschungsgemeinschaft) research program [39]. TILDA is used to train,
evaluate, and test the model. In TILDA, seven defect classes have been defined. There are
eight defect classes in total, with a non-defective class. Each class includes 50 TIFF pic-
tures with dimensions of 768 × 512 (grey-level). The whole dataset contains 3200 defect
images. In the TILDA dataset, we used 682 images (total initial dataset before the aug-
mentation process) that are divided into seven classes. Each of the first five classes
(nondefective, hole, stain, thread, weave) has 100 pictures, and the knitting and shaded
classes have 94 and 88 pictures, respectively (examples for our chosen images are shown
in Figure 3).

Figure 3. Examples for defect types: (a) nondefective; (b) hole; (c) weave; (d) stain; (e) thread; (f)
knitting; (g) shaded.

Deep learning approaches provide high accuracy performance. This high perfor-
mance is mostly due to data containing a large number of samples. The large dataset is of
particular importance to the feature creation that represents the data well. However,
small datasets may result in models having overfitting problems and result in low accu-
racy performance in real-life problems. To overcome such problems, data augmentation
techniques have emerged. In this paper, our initial dataset consists of seven classes where
all classes consist of 682 images in total. Using data augmentation techniques, we have
augmented our data with the help of a script written in python software. Used augmen-
tation techniques are flips (vertical and horizontal), different rotation angles, and zoom-
ing (in and out). These techniques provide us with the ability to hold image features and
do not corrupt the data. Figure 4 shows used techniques and the changing dataset size for
all fabric classes.

1. Data Preparation 2. Network Model 3. Experiments

Figure 2. Followed steps.

3.1. Data

TILDA fabric dataset is created by a working group of Texture Analysis of the DFG’s
(Deutsche Forschungsgemeinschaft) research program [39]. TILDA is used to train, eval-
uate, and test the model. In TILDA, seven defect classes have been defined. There are
eight defect classes in total, with a non-defective class. Each class includes 50 TIFF pictures
with dimensions of 768 × 512 (grey-level). The whole dataset contains 3200 defect images.
In the TILDA dataset, we used 682 images (total initial dataset before the augmentation
process) that are divided into seven classes. Each of the first five classes (nondefective, hole,
stain, thread, weave) has 100 pictures, and the knitting and shaded classes have 94 and
88 pictures, respectively (examples for our chosen images are shown in Figure 3).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13

3. Method
Deep learning-based methods tend to trend up in fabric defect detection studies. In

recent years, the majority of publications in this field have discussed defect detection
strategies. In this paper, the Capsule Network, as a deep learning method proposed by
Hinton et al., is used. The route followed in this paper is shown in Figure 2.

Figure 2. Followed steps.

3.1. Data
TILDA fabric dataset is created by a working group of Texture Analysis of the DFG’s

(Deutsche Forschungsgemeinschaft) research program [39]. TILDA is used to train,
evaluate, and test the model. In TILDA, seven defect classes have been defined. There are
eight defect classes in total, with a non-defective class. Each class includes 50 TIFF pic-
tures with dimensions of 768 × 512 (grey-level). The whole dataset contains 3200 defect
images. In the TILDA dataset, we used 682 images (total initial dataset before the aug-
mentation process) that are divided into seven classes. Each of the first five classes
(nondefective, hole, stain, thread, weave) has 100 pictures, and the knitting and shaded
classes have 94 and 88 pictures, respectively (examples for our chosen images are shown
in Figure 3).

Figure 3. Examples for defect types: (a) nondefective; (b) hole; (c) weave; (d) stain; (e) thread; (f)
knitting; (g) shaded.

Deep learning approaches provide high accuracy performance. This high perfor-
mance is mostly due to data containing a large number of samples. The large dataset is of
particular importance to the feature creation that represents the data well. However,
small datasets may result in models having overfitting problems and result in low accu-
racy performance in real-life problems. To overcome such problems, data augmentation
techniques have emerged. In this paper, our initial dataset consists of seven classes where
all classes consist of 682 images in total. Using data augmentation techniques, we have
augmented our data with the help of a script written in python software. Used augmen-
tation techniques are flips (vertical and horizontal), different rotation angles, and zoom-
ing (in and out). These techniques provide us with the ability to hold image features and
do not corrupt the data. Figure 4 shows used techniques and the changing dataset size for
all fabric classes.

1. Data Preparation 2. Network Model 3. Experiments

Figure 3. Examples for defect types: (a) nondefective; (b) hole; (c) weave; (d) stain; (e) thread;
(f) knitting; (g) shaded.

Deep learning approaches provide high accuracy performance. This high performance
is mostly due to data containing a large number of samples. The large dataset is of particular
importance to the feature creation that represents the data well. However, small datasets
may result in models having overfitting problems and result in low accuracy performance
in real-life problems. To overcome such problems, data augmentation techniques have
emerged. In this paper, our initial dataset consists of seven classes where all classes consist
of 682 images in total. Using data augmentation techniques, we have augmented our data
with the help of a script written in python software. Used augmentation techniques are
flips (vertical and horizontal), different rotation angles, and zooming (in and out). These
techniques provide us with the ability to hold image features and do not corrupt the data.
Figure 4 shows used techniques and the changing dataset size for all fabric classes.

Experiments are carried out by using augmented data. Augmented data is still not
completely ready to be input. Therefore, an operation called data pre-processing is per-
formed. Such operations proceed as follows: dimension reduction; normalization; and data
splitting. Firstly, dimension reduction is the reading of all data into a new lower dimension
of 64 × 64 as resized images. Secondly, a normalization operation is performed to convert
data into one reasonable scale. In other words, normalization is performed to convert data
into a range of zeros to ones. Thirdly, splitting the data into two different datasets is of
great importance to both the training and testing of the model. This contributes to building

Appl. Sci. 2022, 12, 5285 6 of 13

an efficient model. Since our network model is supervised, the model should initially be
trained. After the training process is complete, the model can be tested with unseen data.
Data is divided into training (27,010 images) and the test (11,581 images) image classes.
Each training and testing dataset includes all image classes in random order.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 13

Figure 4. Representative data augmentation process.

Experiments are carried out by using augmented data. Augmented data is still not
completely ready to be input. Therefore, an operation called data pre-processing is per-
formed. Such operations proceed as follows: dimension reduction; normalization; and
data splitting. Firstly, dimension reduction is the reading of all data into a new lower
dimension of 64 × 64 as resized images. Secondly, a normalization operation is performed
to convert data into one reasonable scale. In other words, normalization is performed to
convert data into a range of zeros to ones. Thirdly, splitting the data into two different
datasets is of great importance to both the training and testing of the model. This con-
tributes to building an efficient model. Since our network model is supervised, the model
should initially be trained. After the training process is complete, the model can be tested
with unseen data. Data is divided into training (27,010 images) and the test (11,581 im-
ages) image classes. Each training and testing dataset includes all image classes in ran-
dom order.

3.2. Network Model
In this section, procedures relating to Capsule Networks are discussed. The first part

of this section considers the original CapsNets explanation, whilst the second is about the
implementation of CapsNets for fabric defect detection problems.

3.2.1. Capsule Networks
Convolutional neural networks (CNN) have created great contributions to the ma-

chine learning domain. In many classification task domains, CNN’s have proven very
successful. However, CNN’s have some shortcomings that should be taken into account
[40]. The basic problem in CNN is that they are translation invariant. This translation
invariance problem means keeping the information in a spatial hierarchical manner.
More simply, the problem in CNN is to keep the dependent components of an image that
must be stored together and in a particular hierarchical form in a random structure. This
basic problem is also called the lack of translation equivariance. The lack of translation
equivariance in CNN’s case is manifest when the network incorrectly assigns the input to
a different category label, resulting in false negatives. The second problem in CNN is that
they require a large dataset to generalize the network. This is due to the fact that CNN
requires a large amount of training data to compensate for the information loss caused by
the pooling process [40]. The third problem is the poor imitation of the human visual
system. As presented by Bhowmik et al., the closer the simulations of artificial systems to
the human visual system, the better the system will perform [41]. To overcome all these
problems, CapsNets is an alternative to CNN. As presented by Hinton, CapsNet is dif-
ferent from traditional CNN. These differences lie in the use of vectors instead of scalar
values, no pooling operations, a novel activation function for capsules, and the
feed-forward training of capsule parameters unlike the back-propagation in CNN. A
comparison between capsules and traditional neurons is given in Figure 5.

Figure 4. Representative data augmentation process.

3.2. Network Model

In this section, procedures relating to Capsule Networks are discussed. The first part
of this section considers the original CapsNets explanation, whilst the second is about the
implementation of CapsNets for fabric defect detection problems.

3.2.1. Capsule Networks

Convolutional neural networks (CNN) have created great contributions to the machine
learning domain. In many classification task domains, CNN’s have proven very successful.
However, CNN’s have some shortcomings that should be taken into account [40]. The basic
problem in CNN is that they are translation invariant. This translation invariance problem
means keeping the information in a spatial hierarchical manner. More simply, the problem
in CNN is to keep the dependent components of an image that must be stored together and
in a particular hierarchical form in a random structure. This basic problem is also called
the lack of translation equivariance. The lack of translation equivariance in CNN’s case
is manifest when the network incorrectly assigns the input to a different category label,
resulting in false negatives. The second problem in CNN is that they require a large dataset
to generalize the network. This is due to the fact that CNN requires a large amount of
training data to compensate for the information loss caused by the pooling process [40].
The third problem is the poor imitation of the human visual system. As presented by
Bhowmik et al., the closer the simulations of artificial systems to the human visual system,
the better the system will perform [41]. To overcome all these problems, CapsNets is an
alternative to CNN. As presented by Hinton, CapsNet is different from traditional CNN.
These differences lie in the use of vectors instead of scalar values, no pooling operations, a
novel activation function for capsules, and the feed-forward training of capsule parameters
unlike the back-propagation in CNN. A comparison between capsules and traditional
neurons is given in Figure 5.

Appl. Sci. 2022, 12, 5285 7 of 13Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 13

Figure 5. Comparison of capsules and traditional neurons.

A CapsNet is a new CNN form used to provide information about the spa-
tial/presence relationship of features (such as scales, locations, orientations, brightness,
etc.) in an image. The foundation of this network is based on the addition of concepts
called “capsules” to CNN. A capsule is a group of neurons that include not only the
probability of a particular object’s presence but also different informative values related
to instantiation parameters such as rotation, pose, posture, slope, position, direction,
thickness, scale. Unlike CNN components like pooling and convolution, which cause
information loss, capsules are capable of holding more information. The innovation in
CapsNets is the “routing by agreement” concept, which is replaced with pooling. Based
on this concept, outputs are sent to all parent capsules in the next layer, however, their
coupling coefficients are not the same. Each capsule tries to estimate the output of the
parent capsules, and if this estimate matches the actual output of the parent capsule, the
coupling coefficient between these two capsules increases. Considering ui as the output
of capsule i, its prediction for parent capsule j is computed as 𝑢 | = 𝑊 𝑢 (1)

where 𝑢 | is the prediction vector of the output of the jth capsule in a higher level
computed by capsule i in the layer below, and 𝑊 is the weighting matrix that needs to
be learned in the backward pass. Based on the degree of confirmation between the cap-
sules in the layer below and the parent capsules, coupling coefficients cij are calculated
using the following softmax function 𝑐 = exp (𝑏)∑ exp (𝑏) (2)

where bij is the log probability that whether capsule i should be coupled with capsule j
and its initially set to zero at the beginning of the routing by agreement process. Hence,
the input vector to the parent capsule j is computed as follows

 𝑠 = ∑ 𝑎 · 𝑢 | (3)

Finally, the following no-linear squashing function is used to prevent the output
vectors of capsules from exceeding one and forming the final output of each capsule
based on its initial vector value given in Equation (4)

 𝜗 = (4)

Figure 5. Comparison of capsules and traditional neurons.

A CapsNet is a new CNN form used to provide information about the spatial/presence
relationship of features (such as scales, locations, orientations, brightness, etc.) in an image.
The foundation of this network is based on the addition of concepts called “capsules” to
CNN. A capsule is a group of neurons that include not only the probability of a particular
object’s presence but also different informative values related to instantiation parameters
such as rotation, pose, posture, slope, position, direction, thickness, scale. Unlike CNN
components like pooling and convolution, which cause information loss, capsules are
capable of holding more information. The innovation in CapsNets is the “routing by
agreement” concept, which is replaced with pooling. Based on this concept, outputs are
sent to all parent capsules in the next layer, however, their coupling coefficients are not the
same. Each capsule tries to estimate the output of the parent capsules, and if this estimate
matches the actual output of the parent capsule, the coupling coefficient between these
two capsules increases. Considering ui as the output of capsule i, its prediction for parent
capsule j is computed as

ûj|i = Wijui (1)

where ûj|i is the prediction vector of the output of the jth capsule in a higher level computed
by capsule i in the layer below, and Wij is the weighting matrix that needs to be learned in
the backward pass. Based on the degree of confirmation between the capsules in the layer
below and the parent capsules, coupling coefficients cij are calculated using the following
softmax function

cij =
exp(bij)

∑k exp(bij)
(2)

where bij is the log probability that whether capsule i should be coupled with capsule j and
its initially set to zero at the beginning of the routing by agreement process. Hence, the
input vector to the parent capsule j is computed as follows

sj = ∑i aj · ûj|i (3)

Finally, the following no-linear squashing function is used to prevent the output
vectors of capsules from exceeding one and forming the final output of each capsule based
on its initial vector value given in Equation (4)

ϑj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(4)

Appl. Sci. 2022, 12, 5285 8 of 13

This new architecture achieves significantly better, state-of-the-art performance ac-
curacy with MNIST data [42]. The CapsNets architecture using MNIST data is shown in
Figure 6 as an example.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 13

This new architecture achieves significantly better, state-of-the-art performance ac-
curacy with MNIST data [42]. The CapsNets architecture using MNIST data is shown in
Figure 6 as an example.

Figure 6. Capsule network architecture-MNIST.

To summarize the capsule network procedure, the capsules determine the parame-
ters of the features in a particular object. During the process of identification of such an
object, capsules not only determine the presence or absence of the object’s features but
also take into account the respective parameters, in which the object’s features are orga-
nized. This means the system will only detect the object if the features detected by cap-
sules are present in the correct order. The work procedure of the capsules is as follows:
• Initial capsules proceed with the matrix multiplication of the input vectors with

weight matrices, which represent the spatial relationships of low-level features with
high-level features;

• Capsules decide their parent capsule. This is achieved through the use of the dy-
namic routing algorithm. For example, suppose the system tries to recognize a pic-
ture of a house from different viewpoints. Capsules extract the information about
the roof and walls, but this does not mean any roof can be a house. Therefore, the
capsules analyze the consistent part in an image. To decide if the object is a house (or
otherwise), predictions are made by using both roofs and walls. These predictions
are then sent to the higher-level capsule. If the estimation is correct, the object is as-
signed as a house;

• After the parent capsule’s decision, the process proceeds by summing all vectors
that will be ultimately squashed to between zero and one while retaining their di-
rections. Squashing is performed using a cosine distance as a measure of the
agreement and norm calculations as the probability of presence.

3.2.2. Capsule Networks Implementation
This section describes the work procedure of our model framework, the hyperpa-

rameter settings, and the training/testing process. The model framework is designed in a
similar way, but is not identical to the original Hinton model framework. The model at-
tempts to detect and categorize six different defect classes (holes, stain, thread, knitting,
weave, and shade) and one defect-free class.

The CapsNet framework consists of two parts: the encoder and the decoder. The
encoder includes a convolutional layer (256 channels each made up of 6x6 filters with a
stride of one and a ReLu activation function applied to a 64 × 64 × 1 fabric image), Pri-
maryCaps layer (convolutional capsule layer with 6 × 6 × 32 capsules each outputting an
8D vector. At a stride of one, each primary capsule has eight convolutional units operat-
ing with a 3 × 3 kernel), and DigitCaps layer (this layer is a fully connected layer with
seven 16D capsules created by applying squashing function, each digit caps the receiving
input from all capsules from the layer below to perform classification based on seven
classes); the decoder part (the last part of the structure that determines the length of each

Figure 6. Capsule network architecture-MNIST.

To summarize the capsule network procedure, the capsules determine the parameters
of the features in a particular object. During the process of identification of such an object,
capsules not only determine the presence or absence of the object’s features but also take
into account the respective parameters, in which the object’s features are organized. This
means the system will only detect the object if the features detected by capsules are present
in the correct order. The work procedure of the capsules is as follows:

• Initial capsules proceed with the matrix multiplication of the input vectors with
weight matrices, which represent the spatial relationships of low-level features with
high-level features;

• Capsules decide their parent capsule. This is achieved through the use of the dynamic
routing algorithm. For example, suppose the system tries to recognize a picture of
a house from different viewpoints. Capsules extract the information about the roof
and walls, but this does not mean any roof can be a house. Therefore, the capsules
analyze the consistent part in an image. To decide if the object is a house (or otherwise),
predictions are made by using both roofs and walls. These predictions are then sent to
the higher-level capsule. If the estimation is correct, the object is assigned as a house;

• After the parent capsule’s decision, the process proceeds by summing all vectors that
will be ultimately squashed to between zero and one while retaining their directions.
Squashing is performed using a cosine distance as a measure of the agreement and
norm calculations as the probability of presence.

3.2.2. Capsule Networks Implementation

This section describes the work procedure of our model framework, the hyperparame-
ter settings, and the training/testing process. The model framework is designed in a similar
way, but is not identical to the original Hinton model framework. The model attempts to
detect and categorize six different defect classes (holes, stain, thread, knitting, weave, and
shade) and one defect-free class.

The CapsNet framework consists of two parts: the encoder and the decoder. The
encoder includes a convolutional layer (256 channels each made up of 6 × 6 filters with
a stride of one and a ReLu activation function applied to a 64 × 64 × 1 fabric image),
PrimaryCaps layer (convolutional capsule layer with 6 × 6 × 32 capsules each outputting
an 8D vector. At a stride of one, each primary capsule has eight convolutional units
operating with a 3 × 3 kernel), and DigitCaps layer (this layer is a fully connected layer
with seven 16D capsules created by applying squashing function, each digit caps the
receiving input from all capsules from the layer below to perform classification based on
seven classes); the decoder part (the last part of the structure that determines the length
of each capsule in the previous layer necessary to obtain the probability that entity is

Appl. Sci. 2022, 12, 5285 9 of 13

present. Decoder past is also a reconstruction of input made up of fully connected layers),
which contain a fully connected layer1, fully connected layer2, and fully connected layer3,
which are DigitCaps outputs, fully connected layer1 outputs, and fully connected layer2
outputs, respectively.

Hyperparameter settings have a very significant effect on the accurate prediction of the
model. Optimal hyperparameter settings generally vary for various datasets, and should
ideally be tuned for each specific dataset. CapsNets have their parameter-tuning algorithms
that are run during the training process. Table 2 reports the hyperparameters that we used
in our model. The parameters given in italics in Table 2 are the parameter settings that
have been changed, different from the original model (i.e., while using 9 × 9 filters with a
stride of one setting in the original basic structure of the capsule network, we used 3 × 3
and 6 × 6 filters with stride of one). Non-italic parameters in Table 2 are considered as
constant/fixed for all experimental runs, and training and testing processes are carried out.

Table 2. Hyperparameter settings (Changed setting: Batch size, kernel size, and length of digitcaps).

Parameter Setting

Activation ReLu
Batch Size 64

Epoch Number 270
Optimizer Adam
Kernel Size 3 × 3, 6 × 6

Routing Time 3
Dimension of Each Capsule 8

Length of Primary Caps 7
Length of DigitCaps 7

Detection accuracy and model deep dimensions are two important terms in deep
learning algorithms. Studies have shown that one of the more significant ways to improve
accuracy is to enlarge the network’s depth and width [43]. Deep network architectures
require significant computational resources, but CapsNets have provided high accuracy
results and deeper network structures. In this paper, the training and testing process
is performed using the TILDA dataset. Defect recognition is based on seven categories,
namely nondefective, holes, stains, knitting, threads, weaves, and shade categories. The
training process is performed three times (100, 200, 270) based on epoch number changes.
Details for these changes are given in Section 3.3. The ideal model parameters are given in
Table 2. The structure, loss and accuracy graphics per epoch are illustrated in Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 13

Figure 7. Model Structure, loss-accuracy graphs.

3.3. Experiments
Experiments on the CapsNet model are reported by considering key terms, such as

evaluation criteria, like performance metrics, performance results, novel algorithm
comparisons, and model execution properties as environmental configurations or im-
plementation details.

The performance evaluation was carried out by utilizing performance determination
through the correct classification rate (CCR as accuracy), recall, and precision. These
metrics are formulated in Equations (5)–(7), respectively. 𝐶𝐶𝑅 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (5) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁

(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (7)

where true positive, true negative, false positive, and false negative are TP, TN, FP, and
FN, respectively. Table 3 reports the metrics utilized in the accuracy criteria.

Table 3. Accuracy metric explanations.

Term Explanation
True Positive (TP) The actual sample is positive and is predicted to be positive

True Negative (TN) The actual sample is negative and is predicted to be negative
False Positive (FP) Actual is negative, but it is predicted to be positive

False Negative (FN) Actual is positive, but it is predicted to be negative

The performance verification of our model is compared with three algorithms,
namely the Multiscale CNN, AlexNet [44], VGG19, and VGG16 [45]. Since these methods
use TILDA data, it is appropriate to compare our model with these methods. In addition,
how our model gave performance results in three different epoch numbers (100, 200, 270)
has also been examined. As for the compared models and our model with different epoch
numbers, the results were evaluated separately. The multi-scale CNN is analyzed in two
different classes, defective and nondefective, and a performance result value (CCR) of
95.56% was obtained. The VGG19 model has the same characteristics as our model’s class

Figure 7. Model Structure, loss-accuracy graphs.

Appl. Sci. 2022, 12, 5285 10 of 13

3.3. Experiments

Experiments on the CapsNet model are reported by considering key terms, such
as evaluation criteria, like performance metrics, performance results, novel algorithm
comparisons, and model execution properties as environmental configurations or
implementation details.

The performance evaluation was carried out by utilizing performance determination
through the correct classification rate (CCR as accuracy), recall, and precision. These metrics
are formulated in Equations (5)–(7), respectively.

CCR =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

where true positive, true negative, false positive, and false negative are TP, TN, FP, and FN,
respectively. Table 3 reports the metrics utilized in the accuracy criteria.

Table 3. Accuracy metric explanations.

Term Explanation

True Positive (TP) The actual sample is positive and is predicted to be positive
True Negative (TN) The actual sample is negative and is predicted to be negative
False Positive (FP) Actual is negative, but it is predicted to be positive

False Negative (FN) Actual is positive, but it is predicted to be negative

The performance verification of our model is compared with three algorithms, namely
the Multiscale CNN, AlexNet [44], VGG19, and VGG16 [45]. Since these methods use
TILDA data, it is appropriate to compare our model with these methods. In addition, how
our model gave performance results in three different epoch numbers (100, 200, 270) has also
been examined. As for the compared models and our model with different epoch numbers,
the results were evaluated separately. The multi-scale CNN is analyzed in two different
classes, defective and nondefective, and a performance result value (CCR) of 95.56% was
obtained. The VGG19 model has the same characteristics as our model’s class number
and type and produced a result value of 94.65%. The VGG16 model was analyzed in two
different classes, defective and nondefective, and a result value of 96.38% was obtained.
The AlexNet model was evaluated for two different classes, defective and nondefective,
and gave a performance result value of 95.42%. The evaluation of our model at different
epoch numbers is as follows. The performance of the model was evaluated separately
for 100, 200 and 270 epochs, with the hyperparameter settings remaining the same. The
model resulted in 85.82% performance for 100 epoch number. For 200 epoch number, this
performance value is 96.22%. The performance value with the best accuracy value of the
model was obtained at the epoch number of 270. Considering all these evaluations, our
model was found to perform better, with the model’s testing accuracy achieving 98.71% as
reported in Table 4. Furthermore, Table 5 explains our model’s performance by adopting
CCR, recall, and precision metrics based on 100, 200, and 270 epoch times, respectively.

Appl. Sci. 2022, 12, 5285 11 of 13

Table 4. Performance comparisons.

Model CCR Target Classes Class Names

Multi-scale CNN 95.56% 2 Defective and Nondefective
VGG19 94.65% 7 Nondefective, Holes, Knitting, Weave, Shaded, Stain, Thread
VGG16 96.38% 2 Defective and Nondefective
AlexNet 95.42% 2 Defective and Nondefective

CapsNets 100 85.82% 7 Nondefective, Holes, Knitting, Weave, Shaded, Stain, Thread
CapsNets 200 96.22% 7 Nondefective, Holes, Knitting, Weave, Shaded, Stain, Thread

Proposed CapsNet 98.71% 7 Nondefective, Holes, Knitting, Weave, Shaded, Stain, Thread

Table 5. Performance evaluation.

Models CCR (Accuracy) Recall Precision

CapsNets 100 85.82% 85.24% 87.12%
CapsNets 200 96.22% 95.8% 96.40%

Proposed CapsNet 98.71% 97.82% 98.18%

4. Conclusions

A supervised novel deep learning model—CapsNets—has been used to classify fabric
defects into seven categories. TILDA images were used as source data for model training
and testing. The proposed model was trained over 270 epochs. Hyperparameter tuning
was also performed and contributed in terms of performance metrics. The experimental
results have been presented and discussed. The accuracies show that CapsNet algorithm
gives significant performance results. Compared to some CNN based algorithms, CapsNets
have higher performance results. Experimental results indicate that it has obtained an
accuracy of 98.71%.

For future studies, two scenarios will be considered: the first is to apply the model
in real-time applications; and the second is to compare the model with different fabric
types such as carpet, canvas, woven, and twill. Future research zones for CapsNets
could be model parameter optimization, network structure modification, investigation of
relationships of inner concepts (i.e., capsules, layers, routing algorithm, squashing).

Author Contributions: Conceptualization, Y.K. and A.D.; methodology, Y.K. and A.D.; software, Y.K.
and A.D.; validation, A.D.; formal analysis, Y.K. and A.D.; investigation, Y.K.; resources, Y.K. and
A.D.; data curation, Y.K.; writing—original draft preparation, Y.K. and A.D.; writing—review and
editing, A.D.; visualization, Y.K. and A.D.; supervision, A.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ngan, H.Y.T.; Pang, G.K.H.; Yung, N.H.C. Automated Fabric Defect Detection—A Review. Image Vis. Comput. 2011, 29, 442–458.

[CrossRef]
2. Tiwari, V.; Sharma, G. Automatic Fabric Fault Detection Using Morphological Operations on Bit Plane. Int. J. Comput. Sci. Netw.

Secur. (IJCSNS) 2015, 15, 30.
3. Susan, S.; Sharma, M. Automatic Texture Defect Detection Using Gaussian Mixture Entropy Modeling. Neurocomputing

2017, 239, 232–237. [CrossRef]
4. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. Adv. Neural Inf. Processing Syst. 2017, 2017, 3857–3867.
5. Kumar, A.D. Novel Deep Learning Model for Traffic Sign Detection Using Capsule Networks. arXiv 2018, arXiv:1805.04424.

http://doi.org/10.1016/j.imavis.2011.02.002
http://doi.org/10.1016/j.neucom.2017.02.021

Appl. Sci. 2022, 12, 5285 12 of 13

6. Wang, M.; Xie, J.; Tan, Z.; Su, J.; Xiong, D.; Li, L. Towards Linear Time Neural Machine Translation with Capsule Networks. arXiv
2018, arXiv:1811.00287.

7. Mandal, B.; Dubey, S.; Ghosh, S.; Sarkhel, R.; Das, N. Handwritten Indic Character Recognition Using Capsule Networks. In
Proceedings of the 2018 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 December 2018; pp. 304–308.

8. Chao, H.; Dong, L.; Liu, Y.; Lu, B. Emotion Recognition from Multiband EEG Signals Using CapsNet. Sensors 2019, 19, 2212.
[CrossRef]

9. Hinton, G.; Sabour, S.; Frosst, N. Matrix Capsules with EM Routing. In Proceedings of the 6th International Conference on
Learning Representations, ICLR 2018—Conference Track Proceedings, Vancouver, BC, Canada, 30 April–3 May 2018.

10. Bennamoun, M.; Bodnarova, A. Automatic Visual Inspection and Flaw Detection in Textile Materials: Past, Present and Future. In
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Diego, CA, USA, 11–14 October 1998;
Volume 5, pp. 4340–4343.

11. Mahajan, P.M.; Kolhe, S.R.; Patil, P.M. A Review of Automatic Fabric Defect Detection Techniques. Adv. Comput. Res.
2009, 1, 18–29.

12. Hanbay, K.; Talu, M.F.; Özgüven, Ö.F. Fabric Defect Detection Systems and Methods—A Systematic Literature Review. Optik
2016, 127, 11960–11973. [CrossRef]

13. Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical Pattern Recognition: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37.
[CrossRef]

14. Fanizzi, A.; Basile, T.M.; Losurdo, L.; Bellotti, R.; Bottigli, U.; Campobasso, F.; Didonna, V.; Fausto, A.; Massafra, R.; Tagliafico, A.;
et al. Ensemble Discrete Wavelet Transform and Gray-Level Co-Occurrence Matrix for Microcalcification Cluster Classification in
Digital Mammography. Appl. Sci. 2019, 9, 5388. [CrossRef]

15. Armi, L.; Fekri-Ershad, S. Texture image analysis and texture classification methods—A review. Int. Online J. Image Processing
Pattern Recognit. 2019, 2, 1–29.

16. Shih, F.Y. Image Processing and Mathematical Morphology: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017.
[CrossRef]

17. Marusina, M.Y.; Karaseva, E.A. Automatic Analysis of Medical Images Based on Fractal Methods. In Proceedings of the 2019
International Conference” Quality Management, Transport and Information Security, Information Technologies” (IT&QM&IS),
Sochi, Russia, 23–27 September 2019; pp. 349–352.

18. Yang, L.; Su, H.; Zhong, C.; Meng, Z.; Luo, H.; Li, X.; Tang, Y.Y.; Lu, Y. Hyperspectral Image Classification Using Wavelet
Transform-Based Smooth Ordering. Int. J. Wavelets Multiresolut. Inf. Processing 2019, 17, 1950050. [CrossRef]

19. Osgood, B.G. Lectures on the Fourier Transform and Its Applications; American Mathematical Soc.: Providence, RI, USA, 2019;
Volume 33, ISBN 1470441918.

20. Mak, K.L.; Peng, P. An Automated Inspection System for Textile Fabrics Based on Gabor Filters. Robot. Comput.-Integr. Manuf.
2008, 24, 359–369. [CrossRef]

21. Bodnarova, A.; Bennamoun, M.; Latham, S. Optimal Gabor Filters for Textile Flaw Detection. Pattern Recognit. 2002, 35, 2973–2991.
[CrossRef]

22. Hanbay, K.; Talu, M. Kumaş Hatalarının Online/Offline Tespit Sistemleri ve Yöntemleri. Sak. Univ. J. Sci. 2014, 18, 49–69.
[CrossRef]

23. Zhang, Y.; Liu, B.; Ji, X.; Huang, D. Classification of EEG Signals Based on Autoregressive Model and Wavelet Packet Decomposi-
tion. Neural Processing Lett. 2017, 45, 365–378. [CrossRef]

24. Smii, B. Markov Random Fields Model and Applications to Image Processing. AIMS Math. 2022, 7, 4459–4471. [CrossRef]
25. Gurney, K. An Introduction to Neural Networks; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1315273578.
26. Tsang, C.S.C.; Ngan, H.Y.T.; Pang, G.K.H. Fabric Inspection Based on the Elo Rating Method. Pattern Recognit. 2016, 51, 378–394.

[CrossRef]
27. Jeyaraj, P.R.; Samuel Nadar, E.R. Computer Vision for Automatic Detection and Classification of Fabric Defect Employing Deep

Learning Algorithm. Int. J. Cloth. Sci. Technol. 2019, 31, 510–521. [CrossRef]
28. Şeker, A.; Peker, K.A.; Yüksek, A.G.; Delibaş, E. Fabric Defect Detection Using Deep Learning. In Proceedings of the 2016 24th

Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; pp. 1437–1440.
29. Şeker, A. Evaluation of Fabric Defect Detection Based on Transfer Learning with Pre-Trained AlexNet. In Proceedings of the 2018

International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018; pp. 1–4.
30. Wei, B.; Hao, K.; Tang, X.S.; Ding, Y. A New Method Using the Convolutional Neural Network with Compressive Sensing for

Fabric Defect Classification Based on Small Sample Sizes. Text. Res. J. 2019, 89, 3539–3555. [CrossRef]
31. Siegmund, D.; Prajapati, A.; Kirchbuchner, F.; Kuijper, A. An Integrated Deep Neural Network for Defect Detection in Dynamic

Textile Textures. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2018; Volume 11047, pp. 77–84.

32. Kopaczka, M.; Saggiomo, M.; Güttler, M.; Kielholz, K.; Merhof, D. Detection and Classification of Faulty Weft Threads Using
Both Feature-Based and Deep Convolutional Machine Learning Methods. In Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2019; Volume
11351, pp. 141–163.

http://doi.org/10.3390/s19092212
http://doi.org/10.1016/j.ijleo.2016.09.110
http://doi.org/10.1109/34.824819
http://doi.org/10.3390/app9245388
http://doi.org/10.1201/9781420089448
http://doi.org/10.1142/S0219691319500504
http://doi.org/10.1016/j.rcim.2007.02.019
http://doi.org/10.1016/S0031-3203(02)00017-1
http://doi.org/10.16984/saufbed.15638
http://doi.org/10.1007/s11063-016-9530-1
http://doi.org/10.3934/math.2022248
http://doi.org/10.1016/j.patcog.2015.09.022
http://doi.org/10.1108/IJCST-11-2018-0135
http://doi.org/10.1177/0040517518813656

Appl. Sci. 2022, 12, 5285 13 of 13

33. Wei, B.; Hao, K.; Tang, X.S.; Ren, L. Fabric Defect Detection Based on Faster RCNN. In Advances in Intelligent Systems and
Computing; Springer: Berlin/Heidelberg, Germany, 2019; Volume 849, pp. 45–51.

34. Durmusoglu, A.; Kahraman, Y. Detection of Fabric Defects Using Convolutional Networks. In Proceedings of the 2021 Innovations
in Intelligent Systems and Applications Conference (ASYU), Elazig, Turkey, 6–8 October 2021; pp. 1–5. [CrossRef]

35. Zhao, Y.; Hao, K.; He, H.; Tang, X.; Wei, B. A Visual Long-Short-Term Memory Based Integrated CNN Model for Fabric Defect
Image Classification. Neurocomputing 2020, 380, 259–270. [CrossRef]

36. Li, Y.; Zhao, W.; Pan, J. Deformable Patterned Fabric Defect Detection with Fisher Criterion-Based Deep Learning. IEEE Trans.
Autom. Sci. Eng. 2017, 14, 1256–1264. [CrossRef]

37. Tian, H.; Li, F. Autoencoder-Based Fabric Defect Detection with Cross-Patch Similarity. In Proceedings of the 16th International
Conference on Machine Vision Applications, MVA 2019, Tokyo, Japan, 27–31 May 2019.

38. Zhang, H.; Tang, W.; Zhang, L.; Li, P.; Gu, D. Defect Detection of Yarn-Dyed Shirts Based on Denoising Convolutional Self-
Encoder. In Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference, DDCLS 2019, Dali, China,
24–27 May 2019; pp. 1263–1268.

39. Schulz-Mirbach, H. TILDA-Ein Referenzdatensatz zur Evaluierung von Sichtprüfungsverfahren für Textiloberflächen. Interner
Ber. 1996, 4, 96.

40. Kwabena Patrick, M.; Felix Adekoya, A.; Abra Mighty, A.; Edward, B.Y. Capsule Networks—A Survey. J. King Saud Univ. Comput.
Inf. Sci. 2022, 34, 1295–1310. [CrossRef]

41. Bhowmik, P.; Pantho, M.J.H.; Bobda, C. Bio-Inspired Smart Vision Sensor: Toward a Reconfigurable Hardware Modeling of the
Hierarchical Processing in the Brain. J. Real-Time Image Processing 2021, 18, 157–174. [CrossRef]

42. Rajasegaran, J.; Jayasundara, V.; Jayasekara, S.; Jayasekara, H.; Seneviratne, S.; Rodrigo, R. Deepcaps: Going Deeper with Capsule
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 10725–10733.

43. Li, Y.; Zhang, D.; Lee, D.J. Automatic Fabric Defect Detection with a Wide-and-Compact Network. Neurocomputing
2019, 329, 329–338. [CrossRef]

44. Arora, P.; Hanmandlu, M. Detection of Defects in Fabrics Using Information Set Features in Comparison with Deep Learning
Approaches. J. Text. Inst. 2021, 113, 266–272. [CrossRef]

45. Dong, Y.; Wang, J.; Li, C.; Liu, Z.; Xi, J.; Zhang, A. Fusing Multilevel Deep Features for Fabric Defect Detection Based NTV-RPCA.
IEEE Access 2020, 8, 161872–161883. [CrossRef]

http://doi.org/10.1109/ASYU52992.2021.9599071
http://doi.org/10.1016/j.neucom.2019.10.067
http://doi.org/10.1109/TASE.2016.2520955
http://doi.org/10.1016/j.jksuci.2019.09.014
http://doi.org/10.1007/s11554-020-00960-5
http://doi.org/10.1016/j.neucom.2018.10.070
http://doi.org/10.1080/00405000.2020.1870326
http://doi.org/10.1109/ACCESS.2020.3021482

	Introduction
	Literature Review
	Method
	Data
	Network Model
	Capsule Networks
	Capsule Networks Implementation

	Experiments

	Conclusions
	References

