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Abstract: Calculation of the electrostatic double layer force (EDL force) between clay particles is
relevant as it is closely related to important macroscopic mechanical behaviors of clays. The popular
method to calculate the EDL force is to integrate the electric potential and Maxwell stress along
the boundary enclosing a simply connected domain within which a clay particle resides. The EDL
force has also been calculated by the integration of the electrostatic force density over the preceding
domain. However, the subtle relation of the EDL forces calculated by the different existing methods
has not yet been investigated. By means of theoretical analysis and finite element simulation, it was
shown that the force calculated by the integration of Maxwell stress along the complete boundary
enclosing a multiply connected domain in which the clay particle is excluded, and that along the
partial boundary enclosing the preceding simply connected domain represents the electrical attractive
force and osmotic repulsive force, respectively, while the integration of the potential along both the
same complete and partial boundary denotes the osmotic force. Numerical results showed that the
calculated EDL force deviates from its actual value significantly with the decrease in distance between
the chosen integral boundary and particle surface, and the deviation varies with surface potential
and angle between particles. Moreover, the recommended minimum distance was proposed to be
10 times the thickness of the particle based on the present simulation results.

Keywords: EDL force; clay particle; integration; numerical simulation

1. Introduction

An electrical double layer (EDL) consisting of negative charges on the clay particle
surface and the surrounding electrolyte ions in the electric fluid exists widely within natural
materials including clay minerals in a watery environment [1,2]. The electrostatic interac-
tion between clay particles due to the overlapping EDLs plays a key role among a variety of
engineering contexts, e.g., wellbore stability due to hydration of shale [3], swelling behavior
of nuclear waste barrier materials [4], swelling capacity of expansive soil [5], aggregation
of coal slurry [6], plasticity of treated clayey soil [7], reduction in soil erosion considering
soil organic matter [8], effects of clay swelling/collapse on geological ultrafiltration [9],
unfrozen water content in frozen soil [10], fluid–mineral interaction mechanisms under-
lying enhanced oil recovery [11], efficiency of tailing dewatering [12], and froth flotation
of fine coal [13]. To determine the above electrostatic interaction quantitatively, three
methods including direct measurement with atomic force microscopy [14–16] or surface
forces apparatus [17], theoretical or numerical analysis based on the classical theory of
Derjaguin, Landau, Verwey, and Overbeek (DLVO) [2,10,13,18–34], and molecular dynam-
ics (MD) simulations [4,5,9,31,35] have often been used in previous studies. Although
some deviations from DLVO theory have been revealed by direct measurements and MD
simulations [14–17,35–37], e.g., ion–ion correlations (short-range hydration interactions
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and ion polarization are neglected), DLVO theory is still very reliable under most circum-
stances [17]. According to this theory, the electrostatic interaction between clay particles
is the sum of the van der Waals force and EDL force [2,33,34]. Further, the EDL force is
the sum of excess osmotic pressure (it was named the electrical double-layer force in [34],
whereas osmotic pressure is used throughout this study to avoid possible confusion) and
Maxwell’s stress [23,29–31,33]. The osmotic pressure felt by a clay particle is exerted by the
electrolyte ions in the EDL, and Maxwell’s stress is the coulomb interaction between charges
on the clay particle surface and the counter ions within the EDL [33]. Both of them can be
estimated by the electric potential field described by the Poisson–Boltzmann equation.

Although the shape of particles in natural materials including clay minerals may be
complex, the material is usually simplified into two parallel infinite plates [8] or ideal
spheres [13] based on which the EDL force can be calculated analytically. Scholars from
geotechnical engineering have shown that many important mechanical properties of clay
such as plasticity [38], compressibility [18–20], swelling [22–24], and shear strength [25,26]
are directly related to the EDL force between clay particles as well as the fabric, i.e.,
particle arrangement. A reasonable calculation of the EDL force is essential to the deep
understanding of the mechanical behavior of clay [25,38]. Early such studies in geotechnical
engineering also utilized a simplified particle configuration to represent the actual clay
particles system, e.g., Bolt calculated analytically the inter-particle repulsive force based on
a model that includes two infinite parallel separate charged plates and indicated that the
experimental compressibility of pure clay can be predicted quantitatively well [18].

To investigate the macro-mesoscopic links in mechanical behaviors of soils taking
the particle arrangement into account explicitly, the discrete element method (DEM) has
been developed into a powerful tool as it was introduced into the field of geotechnical
engineering four decades ago [39]. DEM research on clay has made considerable progress
in recent years [20–22,24,26,27]. A reasonable calculation of the EDL force between clay
particles considering the characteristics of finite length and nonparallel arrangement of
particles in an actual clay-electrolyte system is necessary for DEM simulations of clay.

Anandarajah and Lu proposed a numerical model to calculate the repulsive force
between two inclined charged plate particles with finite length, which are symmetric about
a mid-plane in a dielectric medium [28]. This model was frequently used in later DEM
simulations of clays [20–22,24,27]. However, Maxwell’s stress was not considered explicitly
in their model. Recently, the EDL force between two parallel three-dimensional colloidal
plates with finite size was calculated numerically [34].

Usually, the calculations of the forces corresponding to osmotic pressure and Maxwell’s
stress, which are denoted by osmotic force and electrical force, respectively, are performed
by integrations over an arbitrary enclosing boundary [23,32,33] around a charged particle
without discussing the possible influence of the location of the enclosing boundary. It
has also been shown that the force calculated by the integration of the electrostatic force
density over the proper domain [28] is the same as the integration of the potential along the
boundary enclosing a simply connected domain, and is in fact the osmotic force. However,
to the authors’ knowledge, the subtle relation of the forces calculated by the different
existing methods has not yet been investigated. The aim of this paper is to investigate such
a relation systematically, which is necessary for correct calculation of the EDL force and
thus important for understanding the macroscopic behavior of natural materials involving
considerable clay particles.

The remainder of this paper is organized as follows. In Section 2, the calculation
methods of EDL forces between charged clay particles in the literature are summarized
briefly, and then the relation between the EDL forces calculated by different methods is
analyzed. In Section 3, the revealed relations are validated and illustrated by numerical
simulations. In Section 4, the conclusions of the present study are drawn.
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2. Analysis on the Previous Calculation Methods of EDL Force between Clay Particles
2.1. Previous Methods

As shown in Figure 1, the total EDL force felt by charged clay particles in the elec-
trolyte solution results from two parts: osmotic repulsive stress and electrical (Maxwell)
attractive stress.
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Figure 1. Electrostatic stresses felt by charged clay particle in electrolyte solution.

The total EDL force can be calculated by [33]:

rtotal
i = −

‹
Γ

cosh(φ)nidΓ +

‹
Γ

(
φ,jφ,inj −

1
2

φ,kφ,kni

)
dΓ i, j, k = x, y, z (1)

where φ is the dimensionless potential, Γ is an arbitrary boundary enclosing a simply
connected domain within which the clay particle exists, and nj is the direction cosine of the
outward normal of this boundary. On the right hand side of the above equation, the item in
the first parentheses represents the contribution of osmotic repulsive stresses, while that
in the second parentheses denotes the contribution of Maxwell attractive stresses. It has
been shown that the calculated total EDL force is independent of the position and size of
the enclosed boundary Γ as long as the boundary encloses either one of the two interacting
charged clay particle [23,31,33].

In fact, the first integration on the RHS of Equation (1) can also be calculated by
integrating the electrostatic force density over the domain Ω that the above boundary Γ is
enclosing as [29,32]:

Ri = −
‹

Γ cosh(φ)nidΓ (2)

= −
˚

Ω
(cosh(φ)),idΩ (3)

Similarly, using the well-known divergence theorem, the second integration on the
RHS of Equation (1) can be rewritten as:

Rj =

‹
Γ

(
φ,jφ,inj −

1
2

φ,kφ,kni

)
dΓ (4)

=

˚
Ω

φ,iiφ,jdΩ (5)

in which the integrand is the dimensionless gradient of the Maxwell stress tensor. As this
gradient is the same as the electrostatic force density [29], it can be easily shown that −Ri is
the same as Rj as long as they have the same integral domain Ω.

2.2. Analysis

In the literature, the boundary Γ in Equation (1) is often chosen to enclose a simply
connected domain including one particle, as shown in Figure 1 [23,28,29,31,33]. As there
exists an equivalence between Equations (3) and (5), it seems that the total EDL force based



Appl. Sci. 2022, 12, 5591 4 of 16

on Equation (1) will always be zero. This is obviously wrong while the reason has not yet
been investigated [25,29,30,33].

An arbitrary complete enclosing boundary Γ has three parts Γ0, Γ1, and Γ2, as shown
in Figure 2, which was adopted by Anandarajah and Lu [28], while they used Equation (2)
to calculate the osmotic force and thus did not mention the present issue. Accordingly, the
integration in Equation (2) can be divided into three parts. The integrals on Γ1 and Γ2 are
zero as the potentials on the opposite sides are the same, but the normal has the opposite
sign. Therefore, the first integration in Equation (1) over the complete boundary Γ is that
over Γ0 that encloses the usual simply connected domain. This has been studied in [28,32].
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Figure 2. Two inclined finite charged clay particles in an electrolyte solution.

Similarly, the integration in Equation (4) can also be divided into three parts, that is:
‹

Γ

(
RMj

)
dΓ =

‹
Γ0

(
RMj

)
dΓ0 +

‹
Γ1

(
RMj

)
dΓ1 +

‹
Γ2

(
RMj

)
dΓ2 (6)

in which RMj = φ,iφ,jni − 1
2 φ,kφ,knj. The third item on the RHS of Equation (6) is zero,

as there are the same potential gradients but an opposite normal on the opposite sides of
boundary Γ2, as shown in Figure 2. However, the first and the second item on the RHS of
Equation (6) will not be zero in general. It is especially interesting to notice that the left
side in Equation (6) is the minus osmotic repulsive force, while the first item on the RHS
of Equation (6) is same as the second integration on the RHS of Equation (1) as boundary
Γ0 just encloses the simply connected domain. Comparing Equation (6) with Equation (1),
it can be concluded that the second item on the RHS of Equation (6), i.e., the integration of
the Maxwell stress exactly on the surface of the clay particle, is in fact the total EDL force
between clay particles.

As a summary, both of the forces calculated by integrating the electrostatic force
density or the gradient of Maxwell stress over a domain within which one clay particle
resides, and the force calculated by the counterpart integration alone of the complete
boundary enclosing a multiply connected domain in which the surrounding electrolyte and
clay particle are separated, are the osmotic force. The integration of Maxwell stress along the
partial boundary enclosing a simply connected domain including one particle represents
the contribution of electrical force related to Maxwell stress, while the integration related to
electrostatic force density along the same partial boundary denotes the osmotic force. In
the following section, a numerical method is adopted to illustrate the above conclusions.
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3. Illustration

In order to calculate the above forces, the potential distribution around the clay–electrolyte
system, as shown in Figure 2, has to be obtained by solving the following dimensionless
Poisson–Boltzmann equation.

φ,ii = sinh(φ) (7)

A numerical procedure based on the finite element method [40] developed previously
by the author is used here [31].

3.1. Simulation Scheme

The numerical model consists of two finite inclined charged plates denoting clay
particles in an electrolyte solution. The size of the model and the particles and the sepa-
ration between particles are presented in Figure 3. It should be noted that the size is also
dimensionless as all the aforementioned quantities are dimensionless. A constant length
of 4 and thickness of 0.01 are chosen to represent a typical clay particle, while the particle
surface potential φ0, angle α, and minimum distance between two particles d, as shown in
Figure 3, are considered as variables as they have a pronounced effect on the calculated
repulsion [31]. The designed simulation scheme is summarized in Table 1. Among the
simulations, the case of α = 60◦, d = 1.0, and φ0 = 5.0 is taken as the basic case around which
the three abovementioned factors change according to the designed simulation scheme.
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Table 1. Scheme of the numerical simulations.

Factors Levels

α: Angle between two particles 0◦ 30◦ 60◦ 120◦

d: Minimum distance between two particles 0.25 0.5 1.0 2.0
φ0: Potential on the particle surface 1.25 2.5 5.0 10.0

The potential on the outmost boundary of the model is zero, i.e., this boundary is
regarded as infinity. A very fine mesh near the charged plates is adopted to accommodate
the high potential gradient around the particle surface. Based on the necessary mesh
sensitivity analysis, the final finite element mesh used in the numerical simulation consists
of around 700 thousand triangle elements and 350 thousand nodes. The used mesh and
calculated potential nephogram are shown in Figure 4.
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Figure 4. Finite element mesh and calculated potential contour of clay–electrolyte system. (a) Com-
putation mesh. (b) Calculated nephogram.

Once the numerical electric potential field is obtained, various electric forces between
clay particles can be determined based on Equations (2)–(5). For each simulation, different
integral domains including one particle and some surrounding electrolyte were chosen to
calculate the corresponding force. It should be noted that for the case of two symmetric
inclined particles, as shown in Figure 3, the repulsive force is along the vertical direction
due to the symmetry [28]. Thus, only the vertical forces are presented in the following.

Figure 5 presents the integral domain by a dashed line box. The location and size of
the domain can be defined by four distances, xL, xR, yU, and yD shown in this figure. Eight
combinations of these four distances were chosen, as shown in Table 2. Case (1) in this table
is the largest domain that is in fact the upper half of model, while case (8) represents the
smallest domain in which the distance between the outmost boundary of the domain and
the particle is only 1% of the thickness of the particle. The rest are somewhere in between.
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Table 2. Cases of the chosen integral domain.

Cases of Integral Domain Description of the Chosen Domain

(1) The symmetrical half of the numerical model
(2) Middle plane is the bottom boundary, and xR = yU = xL = 2
(3) Middle plane is the bottom boundary, and xR = yU = xL = 1

(4) xR = xL = yU = yD = 0.5 while middle plane is the bottom
boundary if yD < 0.5

(5) xR = xL = yU = yD = 0.1
(6) xR = xL = yU = yD = 0.01
(7) xR = xL = yU = yD = 0.001
(8) xR = xL = yU = yD = 0.0001

3.2. Simulation Results

It can be seen that the accuracy of Equation (3) depends on the first-order derivative
of the calculated potential over the selected domain, Equation (2) has the higher accuracy
that depends on the calculated potential over the corresponding enclosing boundary,
Equation (5) has the lowest accuracy that depends on the second derivative of the calculated
potential over the selected domain, and the accuracy of Equation (4) is higher than that of
Equation (5) but lower than that of Equation (3). To illustrate the effect of the preceding
numerical accuracy and the revealed relation, the forces calculated based on Equations
(2)–(5) along partial boundary Γ0, and on Equation (1) with the second integration on the
RHS being along Γ0, are present from the second column to sixth column.

Due to the fact that the integration in Equation (5) along Γ1 is affected significantly by
the high potential gradient, an additional approximate boundary with length and width of
4.001 and 0.011, respectively, was used to replace Γ1 to obtain a more reasonable calculated
force. As shown in the last column in Table 3, ‘A’ is the calculated force based on the
approximate surface, while ‘E’ is that based on exact Γ1.

3.3. Discussion

Comparing the calculated forces between the second, third, and fourth column in
Table 3, which correspond to Equation (2), Equation (3), and Equation (5), respectively, it
can be seen that the forces calculated by Equations (2) and (3) are almost the same except
for the last case shown of α = 60◦, d = 1.0, and φ0 = 10 in Table 3(C2) where a large surface
potential and inclination of a clay particle likely lead to a highly nonuniform potential field.
The equivalence between the forces calculated by Equations (3) and (5) can only be observed
for the case of α = 0◦, d = 1.0, and φ0 = 5 with a relatively large integral domain shown in
Table 3, and the deviation between them increases with increasing angle and potential and
decreasing integral domain. This results from the different accuracy of Equations (2), (3)
and (5), as explained in Section 3.2.
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Table 3. Simulation results summary with various angles.

Cases of Integral Domain

Forces Calculated by −
˝

Ω(cosh(φ)),idΩ
(3)

−
‚

Γcosh(φ)nidΓ
(2)

˝
Ωφ,iiφ,jdΩ

(5)

‚
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

(4)

−
˝

Ω(cosh(φ)),idΩ+‚
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

‚
Γ1

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ1

(4)

α = 0◦, d = 1.0, φ0 = 5

(1) 41.9181 41.919 42.6284 −4.08057 45.99957

E. 55.5535
A. 44.1105

(2) 41.4821 41.4829 40.8156 −4.51652 45.99942

(3) 37.8506 37.8502 36.9956 −8.14821 45.99841

(4) 25.4717 25.4725 24.8562 −20.5264 45.9989

(5) 11.7165 11.7162 11.1427 −34.2799 45.9961

(6) 2.41696 2.4151 0.756983 −43.6094 46.0245

(7) 0.267132 0.267424 −1.74149 −49.4987 49.766124

(8) 0.0270656 0.0270943 0.854463 −45.4325 45.4595943

α = 30◦, d = 1.0, φ0 = 5

(1) 14.5612 14.5814 11.0568 −2.21389 16.79529

E. 9.9963
A. 16.2762

(2) 14.3739 14.394 10.596 −2.40119 16.79519

(2) 12.9334 12.9505 8.76133 −3.84458 16.79508

(4) 9.08348 9.10003 5.13292 −7.6949 16.79493

(5) 5.52526 5.54211 1.87563 −11.2503 16.79241

(6) 4.69334 4.71906 0.150223 −11.9472 16.66626

(7) 4.54029 4.56411 −1.66645 −14.2617 18.82581

(8) 4.52836 4.54737 −0.016742 −12.4096 16.95697

α = 60◦, d = 1.0, φ0 = 5

(1) 8.57801 8.56983 7.76551 −1.99145 10.56128

E. 13.5686
A. 11.17

(2) 8.4642 8.45751 7.26571 −2.10353 10.56104

(3) 7.59411 7.58868 6.65608 −2.97219 10.56087

(4) 5.31143 5.35323 2.58477 −5.20807 10.5613

(5) 3.2634 3.30397 1.78368 −7.25474 10.55871

(6) 2.81201 2.85691 5.17412 −7.70819 10.5651

(7) 2.75684 2.7515 3.18902 −8.89642 11.64792

(8) 2.74428 2.74146 11.8245 −8.30761 11.04907
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Table 3. Cont.

Cases of Integral Domain

Forces Calculated by −
˝

Ω(cosh(φ)),idΩ
(3)

−
‚

Γcosh(φ)nidΓ
(2)

˝
Ωφ,iiφ,jdΩ

(5)

‚
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

(4)

−
˝

Ω(cosh(φ)),idΩ+‚
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

‚
Γ1

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ1

(4)

α = 120◦, d = 1.0, φ0 = 5

(1) 5.21578 5.2126 8.94309 −1.85451 7.06711

E. 9.33596
A. 6.87327

(2) 5.13841 5.13542 9.45913 −1.93177 7.06719

(3) 4.53579 4.5382 9.2586 −2.53251 7.07071

(4) 3.08634 3.07855 8.58533 −3.98769 7.06624

(5) 1.76454 1.75726 2.77421 −6.53748 8.29474

(6) 1.39752 1.412 9.00203 −6.24937 7.66137

(7) 1.31954 1.31844 −2.34152 1.28711 0.03133

(8) 1.32381 1.32289 −1.93446 3.53418 −2.21129

C1 simulation results with various distances.

Cases of Integral Domain

Forces Calculated by −
˝

Ω(cosh(φ)),idΩ
(3)

−
‚

Γcosh(φ)nidΓ
(2)

˝
Ωφ,iiφ,jdΩ

(5)

‚
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

(4)

−
˝

Ω(cosh(φ)),idΩ

+
‚

Γ0
(φ,jφ,inj− 1

2 φ,kφ,kni)dΓ0

‚
Γ1

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ1

(4)

α = 60◦, d = 0.25, φ0 = 5

(1) 26.6611 26.6727 18.447 −8.54981 35.22251

E. 24.8521
A. 33.4008

(2) 26.5483 26.5606 19.388 −8.66178 35.22238

(3) 25.6743 25.6871 19.4043 −9.53509 35.22219

(4) 23.3468 23.3596 17.2951 −11.8598 35.2194

(5) 14.0126 14.0277 7.78747 −21.204 35.2317

(6) 10.136 10.1407 −10.2776 −25.2685 35.4092

(7) 9.62126 9.63385 −0.486377 −33.4616 43.09545

(8) 9.56283 9.5787 −11.1003 −28.9482 38.5269

α = 60◦, d = 0.5, φ0 = 5

(1) 17.1749 17.1909 10.2881 −4.70608 21.89698

E. 15.1737
A. 18.6278

(2) 17.0644 17.0782 11.8684 −4.81875 21.89695

(3) 16.1822 16.1987 9.44785 −5.69796 21.89666

(4) 13.849 13.864 8.26698 −8.03038 21.89438

(5) 7.53681 7.5523 1.70729 −14.3467 21.899
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Table 3. Cont.

Cases of Integral Domain

Forces Calculated by −
˝

Ω(cosh(φ)),idΩ
(3)

−
‚

Γcosh(φ)nidΓ
(2)

˝
Ωφ,iiφ,jdΩ

(5)

‚
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

(4)

−
˝

Ω(cosh(φ)),idΩ

+
‚

Γ0
(φ,jφ,inj− 1

2 φ,kφ,kni)dΓ0

‚
Γ1

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ1

(4)

(6) 6.0884 6.07494 7.13563 −15.9807 22.05564

(7) 5.82044 5.83365 19.5341 −22.4836 28.31725

(8) 5.78831 5.80616 1.51359 −17.6729 23.47906

α = 60◦, d = 1.0, φ0 = 5

(1) 8.57801 8.56983 7.76551 −1.99145 10.56128

E. 13.5686
A. 11.17

(2) 8.4642 8.45751 7.26571 −2.10353 10.56104

(3) 7.59411 7.58868 6.65608 −2.97219 10.56087

(4) 5.31143 5.35323 2.58477 −5.20807 10.5613

(5) 3.2634 3.30397 1.78368 −7.25474 10.55871

(6) 2.81201 2.85691 5.17412 −7.70819 10.5651

(7) 2.75684 2.7515 3.18902 −8.89642 11.64792

(8) 2.74428 2.74146 11.8245 −8.30761 11.04907

α = 60◦, d = 2.0, φ0 = 5

(1) 2.77782 2.79098 0.961339 −0.531701 3.322681

E. 0.93001
A. 1.95205

(2) 2.67181 2.68379 −1.28608 −0.639291 3.323081

(3) 1.86347 1.87736 3.04117 −1.44393 3.32129

(4) −0.159159 −0.14411 −0.83373 −3.46682 3.32271

(5) 0.961793 0.978263 −1.8733 −2.34286 3.321123

(6) 0.87742 0.876537 −4.12355 −2.4559 3.332437

(7) 0.834751 0.850943 −3.27306 −2.95893 3.809873

(8) 0.830091 0.848327 −23.2206 −2.21347 3.061797
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Table 3. Cont.

C2 simulation results with various potentials.

Cases of Integral Domain

Forces Calculated by −
˝

Ω(cosh(φ)),idΩ
(3)

−
‚

Γcosh(φ)nidΓ
(2)

˝
Ωφ,iiφ,jdΩ

(5)

˝
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

(4)

−
˝

Ω(cosh(φ)),idΩ

+
‚

Γ0
(φ,jφ,inj− 1

2 φ,kφ,kni)dΓ0

‚
Γ1

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ1

(4)

α = 60◦, d = 1.0, φ0 = 1.25

(1) 0.808423 0.808461 0.684227 −0.222941 1.031402

E. 0.940827
A. 1.00577

(2) 0.796192 0.796227 0.629184 −0.235144 1.031371

(3) 0.705504 0.705547 0.576616 −0.325804 1.031351

(4) 0.505749 0.505777 0.393089 −0.525623 1.0314

(5) 0.281558 0.281601 0.176257 −0.749722 1.031323

(6) 0.231156 0.231193 0.126488 −0.813081 1.044274

(7) 0.225944 0.225982 0.709761 −1.03674 1.262722

(8) 0.225412 0.225466 −0.239472 −0.914679 1.140145

α = 60◦, d = 1.0, φ0 = 2.5

(1) 2.9725 2.97282 2.53695 −0.773569 3.746389

E. 3.50645
A. 3.61858

(2) 2.92954 2.92985 2.28648 −0.816429 3.746279

(3) 2.60693 2.60729 2.13561 −1.13892 3.74621

(4) 1.86276 1.86301 1.46956 −1.88342 3.74643

(5) 1.06551 1.06588 0.698398 −2.68025 3.74613

(6) 0.879232 0.879531 0.551997 −2.91542 3.794951

(7) 0.857727 0.858068 2.94154 −3.7099 4.567968

(8) 0.855445 0.855904 −1.39334 −3.24253 4.098434

α = 60◦, d = 1.0, φ0 = 5

(1) 8.57801 8.56983 7.76551 −1.99145 10.56128

E. 13.5686
A. 11.17

(2) 8.4642 8.45751 7.26571 −2.10353 10.56104

(3) 7.59411 7.58868 6.65608 −2.97219 10.56087

(4) 5.31143 5.35323 2.58477 −5.20807 10.5613

(5) 3.2634 3.30397 1.78368 −7.25474 10.55871

(6) 2.81201 2.85691 5.17412 −7.70819 10.5651

(7) 2.75684 2.7515 3.18902 −8.89642 11.64792
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Table 3. Cont.

C2 simulation results with various potentials.

Cases of Integral Domain

Forces Calculated by −
˝

Ω(cosh(φ)),idΩ
(3)

−
‚

Γcosh(φ)nidΓ
(2)

˝
Ωφ,iiφ,jdΩ

(5)

˝
Γ0

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ0

(4)

−
˝

Ω(cosh(φ)),idΩ

+
‚

Γ0
(φ,jφ,inj− 1

2 φ,kφ,kni)dΓ0

‚
Γ1

(φ,jφ,inj− 1
2 φ,kφ,kni)dΓ1

(4)

(8) 2.74428 2.74146 11.8245 −8.30761 11.04907

α = 60◦, d = 1.0, φ0 = 10

(1) 32.5597 14.1146 40.9626 −3.05201 17.16661

E. 141.335
A. 97.3959

(2) 27.816 13.944 −47.8924 −3.22182 17.16582

(3) 24.5412 12.5918 −43.9021 −4.57397 17.16577

(4) 25.7657 8.69255 16.5763 −8.47474 17.16729

(5) 31.3253 5.74476 −29.7056 −11.409 17.15376

(6) 25.8531 6.03414 35.635 −12.0687 18.10284

(7) 24.6186 5.29568 67.5614 −24.9577 30.25338

(8) 32.5597 5.298 −251.741 −19.4528 24.7508
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Comparing the forces between the sixth and last column shown in Table 3, it can be
observed that the last column, i.e., the integration of Maxwell stress along a boundary
approximate to Γ1, is almost the same as the total EDL force in the sixth column, which is
calculated using Equation (1). Similarly, the deviation between them increases nonlinearly
with surface potential, angle, and distance. Therefore, it can be seen that the integration
of Maxwell stress just along the surface of the clay particle is indeed the total EDL force
between clay particles, while that along the complete boundary enclosing a multiply
connected domain is the osmotic repulsive force. For the ideal case of two infinite parallel
charged plates, Verwey and Overbeek [1] used Equation (2) choosing a partial enclosing
boundary similar to Γ0, as shown in Figure 2, which corresponds to a simply connected
domain bounded by the mid-plane and infinity. This method was widely adopted in the
later studies [5,10,13,23,28,29,31,33,34]. On the contrary, Derjaguin and Landau [41] used
Equation (4) choosing an enclosing boundary identical to Γ1, as shown in Figure 2, which
is just the surface of the enclosed particle. For the ideal case of infinite parallel particles,
analytical solutions based on the above two methods are the same [33]. For the actual case of
particles with finite size, the contribution of Maxwell’s stress was usually taken into account
numerically by Equation (4) choosing the enclosing boundary similar to Γ0 [8,17,23] without
considering the possible adverse effect of numerical accuracy. However, as illustrated in
Table 3, the calculated contribution of Maxwell’s stress is prone to be affected by the
selection of an integral boundary. As an example, the calculated EDL forces for the case of
α = 60◦, d = 1.0, and φ0 = 10 with different integral boundaries listed in Table 2 are shown
in Figure 6 in which the characteristic distances between the integral boundary and particle
surface presented in Table 3 are also shown. It can be seen that the calculated EDL force
deviates remarkably when the chosen integral boundary is close enough to the particle.
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Figure 6. Calculated EDL forces for different chosen integral domain (α = 60◦, d = 1.0, and φ0 = 10).

Another example of the case of α = 120◦, d = 1.0, and φ0 = 5 is shown in Figure 7, and
it can be seen that the calculated EDL force that is actually repulsive can become attractive
due to the computation error when the chosen integral boundary is close enough to the
particle surface. Therefore, it will likely lead to a misunderstanding of the aggregation
or dispersion of relevant soils [6,8,13] if the above-mentioned relation is not taken into
account reasonably.

An interesting observation that can be obtained by checking all the sixth columns in
Table 3 is that the distance between the integral boundary and the particle should be larger
than 0.1, i.e., 10 times the thickness of the particle of 0.01; otherwise, the numerical error in
the calculated EDL force is likely to be out of control. This means that the enclosed boundary
Γ as shown in Equation (1) should be chosen with caution, although the calculated EDL
force is independent of its position and size theoretically [8,17,33]. This would be the case
when the above interaction between dense clay particles needs to be evaluated, as with the
DEM simulation of the clay sample [6,7,13].
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Figure 7. Calculated EDL forces for different chosen integral domain (α = 120◦, d = 1.0, and φ0 = 5).

4. Conclusions

The total repulsive forces between two charged clay particles consist of two parts:
osmotic repulsive force and electrical/Maxwell attractive force. They are usually calculated
by the integrations of potential and Maxwell stress along a partial boundary enclosing a
simply connected domain including one clay particle in the literature. Based on the analysis
and numerical validation, the following conclusions are obtained:

(1) The integration of electrostatic force density, i.e., Maxwell stress gradient over a
domain including one particle and surrounding electrolyte, or the integration of
the potential and Maxwell stress along the complete boundary enclosing a multiply
connected domain in which the surrounding electrolyte and the clay particle are
separated, are the same osmotic repulsive force. However, the divergence between
them will be inevitably observed in the numerical solution, and it increases nonlinearly
with the surface potential, angle, and distance between clay particles.

(2) The integration of Maxwell stress along the partial boundary enclosing a simply
connected domain within which one particle exists represents the contribution of
electrical (Maxwell) attractive stress. However, the integration of the potential along
the same partial boundary denotes the osmotic repulsive force.

(3) The integration of Maxwell stress exactly on the surface of the clay particle is in fact
the total EDL force between clay particles. However, it is impractical to calculate a
reasonable force by means of numerical method.

(4) Although the calculated total repulsive stress is independent of its position and size
theoretically, it is recommended that the distance between the integral box and the
particle should be at least 10 times the thickness of the particle, based on the present
numerical simulations.
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