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Abstract: Adsorption is a typical method for treating copper-containing wastewater. Fly ash and
steel slag both have a good adsorption performance, and activated clay is added in this study, too. In
this study, the performance of residue and soil adsorption composite (RSAC) particles for copper ion
adsorption was discussed through the substrate ratio and the influence mechanism, to achieve the
win–win effect of industrial waste reuse and copper ion wastewater treatment. The results indicated
that adsorption time, dosage, initial copper ion concentration, coexisting ions, and temperature
showed different effects on the adsorption, respectively. Additionally, the adsorption kinetic study
showed the removal of copper ions by adsorption of RSAC particles was in accordance with quasi-
primary kinetic model and quasi-secondary kinetic model. The adsorption thermodynamics study
shows the adsorption process of ∆G0 < 0, ∆H0 > 0 and ∆S0 > 0, indicating that the process of copper
ion adsorption by RSAC particles was spontaneous, heat-absorbing, and entropy-increasing. The
research demonstrates that RSAC particles have a certain adsorption capacity for copper ion.

Keywords: water pollution; adsorption; copper ions; adsorption mechanism; adsorption kinetics;
thermodynamics

1. Introduction

Water contamination through heavy metal ions is an environmental problem of great
concern [1]. Adsorption is one of the most efficient methods to remove noxious heavy
metal ions, especially for wastewater with large volumes and low heavy metal ion concen-
trations [2]. Adsorption is spontaneous and the basic principle is that the surface energy of
substances could change the concentration at the phase interface. Adsorption usually relies
on some adsorbent materials with a large specific surface area and a high surface energy to
remove heavy metal ions [3,4]. Adsorption has two major advantages: the reaction rate is
fast, and no other reagents are needed. Therefore, adsorption is regarded as an important
and promising method for addressing heavy metal ions such as copper in wastewater.

The key issue of adsorption is the adsorbent. Adsorbents with good adsorption
performance have such qualities as: a fast adsorption reaction rate, stable physical and
chemical properties, good solid–liquid separation, an economical cost, easy recovery and
regeneration, and reusability [5]. However, industrial adsorbents could not meet all of these
qualities. Therefore, the core of the adsorption method focusing on treating wastewater
with heavy metal ions is to find efficient adsorbents at a low cost [6,7].

Currently, common adsorbents in the water treatment domain include activated
carbon, fly ash, etc. Activated carbon has a large surface area, fast filtration rate, stable
structure, large adsorption capacity, a wide range of applications, and good adsorption
performance. However, activated carbon has a short service life, high sludge treatment cost,
and low recycling performance [8,9]. Fly ash, a waste product from power plants that use
coal as the main fuel, has a loose and porous structure. It can intercept pollutant molecules
and bind pollutants to the active sites on the surface by a chemical bond, resulting in
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excellent adsorption [10]. Whereas, Andersson et al. [11] have also considered fly ash a
low-cost material for adsorption. It has been found that steel slag has a good adsorption
effect on copper, nickel and zinc ions, which mainly relies on the generation of hydroxide
complexes [12]. Under optimal conditions, the adsorption efficiency of modified steel slag
for uranium was 98% [13]. Activated white clay is an adsorbent made from clay minerals
by inorganic acidification and other means, and dried by water rinsing. It is mainly made
of bentonite clay as a raw material; its appearance is presented as a milky white powder,
which is a non-toxic, tasteless, odorless, strong adsorption; and it can adsorb colored
substances and organic matter [14]. Bentonite is considered to be an excellent adsorbent for
Cu2+, and the maximum adsorption capacity was 248.9 mg/g [15].

The residue and soil adsorption composite (RSAC) particle consists of solid waste
and natural minerals. The raw materials used in the preparation of RSAC granules are
fly ash, steel slag, activated white clay, bonding agent, and porogenic agents. The main
raw materials are fly ash, steel slag, and activated white clay, the first two of which are
industrial waste substrates [16].

2. Materials and Methods
2.1. RSAC Preparation

The fly ash used in this study was obtained from a power plant in Nanjing, China, and
the steel slag was from a steel mill in Nanjing, China. Table 1 presents the main physical
properties of the fly ash and the steel slag, Table 2 provides the particle size distribution of
the fly ash and the steel slag, and Table 3 provides the chemical composition of the fly ash
and the steel slag as measured by X-ray fluorescence analysis (XRF).

Table 1. Physical properties of waste substrates.

Waste Substrates Density (g/cm3)
Specific Surface

Area (m2/g) Particle Size (µm) Color

Fly ash 2.91 580 150 or more Grey
Steel slag 2.10 3653 210 or more Brown

Table 2. Particle size distribution of waste substrates.

Fly ash particle size (µm) >3350 3350~880 880~325 325~212 <212

Proportion (%) 7.45 12.76 42.93 23.55 11.87

Steel slag particle size (µm) >1400 1400~180 180~45 <45 -

Proportion (%) 2.49 7.68 32.40 57.36 -

Table 3. Chemical composition of waste substrates (%).

Chemical Composition Fly Ash Steel Slag

CaO 1.31 55.0
Fe2O3 4.39 21.5
Al2O3 45.9 1.51
SiO2 44.4 13.4
MgO 0.261 3.65
MnO 0.026 1.75
SO3 0.666 0.512

V2O5 0.038 0.417
TiO2 1.26 0.296
Na2O 0.094 0.077
ZnO 0.021 -
CuO 0.02 -
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Additionally, the physical properties and the chemical composition of the activated
white clay used in this experiment are presented in Tables 4 and 5.

Table 4. Physical properties of activated white clay.

Ingredients Density
(g/cm3)

Particle Size
(Through 75 µm Sieve)

Moisture
(%)

Free Acid
(as H2SO4) Color

Activated
white clay 0.7–1.1 ≥95% 12 ≤0.2% pale

Table 5. Chemical composition of activated white clay.

SiO2 Al2O3 MgO Fe2O3

Content (%) 50–70 10–16 1–6 2–4

The binder used in the experiments was 525R ordinary silicate cement, which has
the characteristics of a slow thickening rate, fast setting, and high strength. It can signifi-
cantly improve the early strength of the composites [17]. The porogenic agent used in the
experiment was a plant-based foaming agent. It is made by a saponification reaction with
rosin and sodium hydroxide as the main raw materials, and it has a light yellow-brown
viscous liquid appearance. The use of a plant-based foaming agent makes the adsorbent
structure lose and porous, which can enhance the adsorption performance of RSPRC parti-
cles [18]. After comprehensive consideration of the adsorption and mechanical properties,
the following substrate proportioning methods were set, which are shown in Table 6.

Table 6. Ratio of base material to binder for different groups (%).

Groups Fly Ash Steel Slag Activated White Clay Bonding Agent

Group I 65 15 10 10
Group II 70 10 10 10
Group III 65 10 15 10
Group IV 60 10 20 10

After the groups of adsorbents were maintained and shaped, static adsorption tests
were performed. The results of the experiments are shown in Table 7 and Figure 1. The
RSAC particle morphology and the residual liquid shape were observed after the comple-
tion of static adsorption experiments.

Table 7. Copper ion removal by different groups of adsorbents.

Groups Initial Copper Ion
Concentration (mg/L)

Residual Copper Ion
Concentration (mg/L) Removal Rate (%)

Group I 100 28.92 71.08
Group II 100 31.04 69.96
Group III 100 25.54 74.46
Group IV 100 18.48 81.52

The properties of the RSAC particles in each group were observed after the adsorption
of copper ions. The residuals of Groups I, II, and III were clear, the RSAC particles were not
abnormal, and the hardness did not change significantly. The residuals of group IV were
somewhat turbid, with slight precipitation, the surface of RSAC particles showed signs of
shedding, and the hardness decreased.
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Figure 1. Comparison of adsorption effect of different groups of adsorbents. 

The properties of the RSAC particles in each group were observed after the adsorp-
tion of copper ions. The residuals of Groups I, II, and III were clear, the RSAC particles 
were not abnormal, and the hardness did not change significantly. The residuals of group 
IV were somewhat turbid, with slight precipitation, the surface of RSAC particles showed 
signs of shedding, and the hardness decreased. 

Although Group IV had the best adsorption effect on copper ions, it was found that 
the residual solution had slight precipitation and the strength of the RSAC particles was 
reduced to break easily. On balance, Group III with the second highest removal rate was 
selected as the best ratio for the subsequent experiments. The process flow of the pellet is 
shown in Figure 2. 

 
Figure 2. Experimental RSAC pellet fabrication process. 

  

Figure 1. Comparison of adsorption effect of different groups of adsorbents.

Although Group IV had the best adsorption effect on copper ions, it was found that
the residual solution had slight precipitation and the strength of the RSAC particles was
reduced to break easily. On balance, Group III with the second highest removal rate was
selected as the best ratio for the subsequent experiments. The process flow of the pellet is
shown in Figure 2.
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2.2. Determination of Copper Ion Concentration
2.2.1. Measurement Methods

The method used for the determination of copper ion concentration was the bisgly-
oxal oxaldihydrazone spectrophotometric method (GB/T 5750.6-2006). The measurement
instrument used was a 752 UV-Vis spectrophotometer, which had a minimum detection
mass concentration of 0.04 mg/L. At pH 9, copper ions (Cu2+) could react with bis (cy-
clohexanone oxaldihydrazone) and acetaldehyde. The reaction product is a purple bis
(acetaldehyde oxaldihydrazone) chelate, and the copper ion concentration is determined
by the relationship between absorbance and copper ion concentration in direct proportion.
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2.2.2. Reagents for Experiments

The reagents for the experiments were: copper sulfate (CuSO4), acetaldehyde solution
(W(CH3CHO) = 40%), ammonium chloride (NH4CI), ammonium hydroxide (NH4OH), am-
monium citrate ((NH4)3C6H5O7), ethyl alcohol (C2H6O), and bis(cyclohexanone)oxaldihyd-
razone(BCO). All reagents were supplied by Sinopharm Chemical Reagent Co., Ltd.,
Nanjing, China. All solutions in these experiments were prepared with analytical grade
water (R = 18 M/cm) using grade A glassware unless otherwise stated.

2.2.3. Determination Procedure

Absorb 25.0 mL water sample in 50 mL glass plug colorimetric tube; another 50 mL
colorimetric tube 5, respectively, adding copper standard solution 0 mL, 0.50 mL, 1.00 mL,
1.50 mL, and 2.00 mL, diluted with deionized water to 25 mL.

Absorbing 2.0 mL ammonium citrate solution, adding each colorimetric tube, mixing
evenly and adjusting pH to 9.0 with (1 + 1) ammonia. Then, 5.0 mL ammonia-ammonium
chloride buffer solution was added and mixed evenly. Then, 5.0 mL BCO solution and
1.0 mL acetaldehyde were added successively. Finally, deionized water was added to the
scale and mixed evenly.

Heat for 10 min in a 50 ◦C water bath, remove, and cool. After cooling to room temper-
ature (standing for 20 min), under the condition of wavelength of 546 nm, the absorbance
of the sample to be tested and the standard series was determined using a colorimetric dish
with an optical path of 1 cm and deionized water as the reference.

The standard curve was plotted with the copper ion concentration of the standard
series as the abscissa and the corresponding absorbance as the ordinate. The correspond-
ing copper ion concentration was determined from the standard curve according to the
absorbance of the water sample to be measured.

The results of the standard series measurements are presented in Table 8.

Table 8. Measurement results for the standard series.

Absorbance A 0.019 0.020 0.374 0.563 0.751

Copper ion concentration (mg/L) 0 2 4 6 8

The standard curve was plotted as shown in Figure 3 and the linear regression equation
(Equation (1)):

y = 0.0914x + 0.016, R2 = 0.9997 (1)

2.3. Copper Ion Removal Effect Examination Index

The adsorption effect of RSAC particles on copper ions is mainly reflected in two
aspects, namely the copper ion removal rate and the adsorption amount. Removal rate (η)
and adsorption amount (Γ) are used in this paper to investigate the copper ion removal
effect and the adsorption performance of RSAC particles, respectively.

η =
C0 − Ce

C0
× 100% (2)

Γ =
(C0 − Ce) V

m
(3)

In Equations (2) and (3), η is the removal rate of copper ions (%), C0 is the initial
copper ion concentration of the solution (mg/L), Ce is the concentration of copper ions
in solution at equilibrium (mg/L), Γ is the amount of copper adsorbed per unit mass of
adsorbent (mg/g), V is the volume of the solution (L), and m is the mass of adsorbent (g).
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2.4. Effect of Time on Adsorption

RSAC particles were weighted and divided into five groups: 2, 4, 6, 8, and 10 g.
The groups were put into conical flasks, respectively, with 150 mL of 100 mg/L copper
ion solution. Then, all the samples were mixed at room temperature (25 ± 1 ◦C). The
concentration of residual copper ion in the supernatant of each sample was measured at a
specific time and the relationship was investigated.

2.5. Effect of Dosage on Adsorption

The same samples were prepared and oscillated at room temperature (25 ± 1 ◦C). The
concentration of residual copper ions in the supernatant of each sample was measured
when the adsorption time reached 48 h.

2.6. Study of Initial Concentration on Adsorption

A series of 10, 50, 100, and 150 mg/L copper ion solutions were prepared separately.
Then, a 5 g RSAC adsorbent was added into the solution series. Finally, the copper ion
concentration in the supernatant of each sample was measured when the static adsorption
time reached 2, 6, 12, 24, 48, and 72 h.

2.7. Study of Coexisting Metal Cations on Adsorption

A series of 150 mL of 100 mg/L copper ion solutions were prepared with the coexis-
tence of Na+, Mg2+, Ca2+, and Fe3+, respectively. To each sample 5 g RSAC particles was
added and then mixed at room temperature (25 ± 1 ◦C). The cooper ion concentration in
the supernatant of each sample was measured when the adsorption time reached 48 h.

2.8. Study of Ambient Temperature on Adsorption

Three groups of 150 mL solutions with 10, 40, 80, 120, 160, and 200 mg/L cooper ion
were prepared. To each sample was added 5 g RSAC particles. The three groups were
mixed at 15 ◦C, 25 ◦C, and 35 ◦C separately. To each sample was measured a cooper ion
concentration of the supernatant when reaching adsorption equilibrium.
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The Freundlich and Langmuir models are often used to describe the adsorption
behavior in solid–liquid systems [19]. Therefore, the adsorption isotherms of the Freundlich
and the Langmuir models were plotted using nonlinear fits based on the experimental
results of heavy metal ion adsorption by RSAC particles.

The expression for the Langmuir model equation is (Equation (4)):

qe =
qmaxKLCe

1 + KLCe
(4)

In Equation (4), qe is the adsorption equilibrium adsorption capacity (mg/g), Ce is the
equilibrium concentration (mg/L), qmax is the maximum adsorption capacity (mg/g), and
KL is the Langmuir adsorption constant.

The expression for the Freundlich model equation is (Equation (5)):

qe = KFCe
1
n (5)

In Equation (5), qe is the adsorption equilibrium adsorption capacity (mg/g), Ce is
the equilibrium concentration (mg/L), KF is the Freundlich adsorption constant, and n is a
constant related to the adsorption capacity.

2.9. Kinetic Study of Copper Ion Adsorption by RSAC

Currently, quasi-primary and quasi-secondary kinetic models are often used to de-
scribe the adsorption kinetic behavior of adsorbents in solid–liquid static adsorption sys-
tems [20].

The expression for the quasi-level kinetic model equation is (Equation (6)):

ln
(
qe − qt

)
= lnqe − k1t (6)

In Equation (6), qe is the amount of solute adsorbed on the adsorbent surface at
adsorption equilibrium (mg/g), qt is the amount of solute adsorbed on the adsorbent
surface at the specified moment (t) during the adsorption process (mg/g), and k1 is the
adsorption rate constant (h−1).

The expression for the quasi-secondary kinetic model equation is (Equation (7)):

t
qt

=
1

k2qe
+

t
qe

(7)

In Equation (7), qe is the amount of solute adsorbed on the adsorbent surface at
adsorption equilibrium (mg/g), qt is the amount of solute adsorbed on the adsorbent
surface at the specified moment (t) during the adsorption process (mg/g), and k2 is the
adsorption rate constant (g/(mg·h)).

A 150 mL sample of a 100 mg/L copper ion was prepared and 5 g RSAC particles
were added. Then, the sample was mixed at room temperature (25 ± 1 ◦C). The rest copper
ion concentration was measured at different times to calculate the adsorbed copper ion.
The experimental data of static adsorption of copper ions were fitted to the curve using
quasi-primary and quasi-secondary kinetic models in turn.

2.10. Thermodynamic Study of the Adsorption of Copper Ions by RSAC

The thermodynamic equations are as follows (Equations (8) and (9)):

∆G0 = ∆H0 − T∆S0 = −RTlnK0 (8)

ln K0 = ∆S0/R − ∆H0/RT (9)

In Equations (8) and (9), T is the thermodynamic temperature (K), ∆H0 is the en-
thalpy change of adsorption (kJ/mol), ∆G0 is the free energy of adsorption (kJ/mol),
∆S0 is the change in entropy of adsorption [J/(mol·K)], R is the molar volume constant
8.314 J/(mol·K), and K0 is the adsorption partition coefficient, usually taken as the Lang-
muir constant KL. Using the isothermal adsorption experimental data of RSAC particles at
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different temperatures, the adsorption equilibrium coefficient K0 was calculated [21]. A
straight line could be fitted by using the inverse of the temperature 1/T as the horizontal
coordinate and lnK0 as the vertical coordinate for the graph.

3. Results and Discussion
3.1. Adsorption Experiments
3.1.1. Effect of Adsorption Time

The concentration of the residual copper ion in the supernatant of each sample as a
function of adsorption time is shown in Figure 4. The residual copper ion concentration
showed a similar trend for different dosage amounts. At the beginning of the adsorption
reaction (0–12 h), the residual copper ion concentration decreased significantly with the
increasing time; at the middle of the adsorption reaction (12–48 h), the residual copper ion
concentration decreased slowly with time; at the end of the adsorption reaction (48–72 h),
the adsorption equilibrium state was reached. The reason for this trend could be that the
initial adsorption occurs mainly on the surface and in the pores of RSAC particles. In
the initial adsorption stage, there are many active sites on the surface and in the pores
of RSAC particles so copper ions could occupy the active sites rapidly and show the
characteristics of a fast adsorption rate [22]. With the extension of time and the increase of
adsorption capacity, the active sites become fewer [23]. It was also found that there were
large functional groups on the surface of FA and MFA, such as O-H, C=C, and Si-O-Si,
which played a crucial role in the process of adsorption of heavy metal ions [24]. It could be
inferred that the adsorption equilibrium time of copper ions on RSAC particles is 48 h. This
is consistent with the experimental results to explore the optimal ratio of RSAC particles.
Therefore, the adsorption time could be set as 48 h in the subsequent static adsorption
experiments.
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3.1.2. Effect of Adsorbent Amount

Figure 5 shows the correlation between adsorbent amount and copper ion adsorption.
Firstly, the copper ion removal rate increased continuously with the increase of the RSAC
particle amount, but the slope decreased at the same time. Meanwhile, the adsorption
amount per unit mass of RSAC particles showed a different trend: the adsorption amount
per unit mass of RSAC particles increased at the beginning stage and decreased after
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reaching a specific point with the increase of the adsorbent amount. The two trends
indicated that there was a balance point between efficiency and performance. The amount
aimed best removal rate may lead to inefficient usage of RSAC particles: the adsorption
capacity per mass of RSAC particles was only 1.43 mg/g at 10 g, which indicated that the
adsorption performance of RSAC particles was not fully utilized. The reason may be that
the copper ion removal rate increased because of the increase of RSPRC particle amount,
the increase in contact area, and the increase in the number of adsorption sites [25].
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Figure 5. Effect of adsorbent amount on the adsorption of copper ions by RSAC particles.

The adsorption amount of copper ions per unit mass of adsorbent showed a different
trend. This may be due to the fact that when the concentration of copper ions in the
solution is constant and the adsorbent dosage is low, the adsorption sites are not significant
in driving the diffusion and adsorption reaction caused by the atmosphere of copper
ion concentration. With the increase in the dosage, the total adsorption sites provided
to copper ions in the solid-liquid system increased and the adsorption amount per unit
mass of RSPRC particles also increased [26]. Considering economic factors, the dosage of
5 g/150 mL was chosen as a balance point and used in the subsequent experiments.

3.1.3. Effect of Initial Concentration

The relationship between the initial concentration and the residual concentration of
copper ions is shown in Figure 6. The removal rate of copper ions and the adsorption
amount per unit mass of RSAC particles in each sample after adsorption for 72 h is pre-
sented in Table 9. As shown in Figure 6, a high initial copper ion concentration led to a
corresponding steep adsorption curve and a fast adsorption rate compared with a low
initial concentration sample in the pre-sorption stage. This could be attributed to high initial
copper ion concentration providing a sufficient driving force for mass transport, which
could make ions occupy the active site on adsorbents rapidly, facilitating the adsorption of
copper ions by RSAC particles [27,28].
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Table 9. Copper ion removal for different initial concentrations.

Initial Concentration
(mg/L) Removal Rate (%) Adsorption of RSAC Particles per

Unit Mass (mg/g)

10 91.90 0.28
50 93.58 1.40

100 74.61 2.24
150 53.50 2.41

3.1.4. Effect of Coexisting Metal Cations

Figure 7 shows the relationship between the metal cation concentration and the effect
on the removal of copper ions. The results revealed that the adsorption removal rate
of copper ions by RSAC particles fluctuates in a small range with the increase of Na+

concentration, which indicated that Na+ has a weak competitive behavior against RSAC
particles. The adsorption removal rate of copper ions by RSAC particles decreases with the
increase of Mg2+ and Ca2+ concentration, which indicated that Mg2+ and Ca2+ may have
some effect on the removal rate. The adsorption removal rate decreased significantly with
the increase of Fe3+ concentration, from 74.65% to 62.47%, which indicated that Fe3+ had a
significant inhibitory effect on the adsorption of copper ions.

The experimental results may be interpreted as that metal cations can replace the
original cations in the RSAC particles by ion exchange into the adsorbent surface and pore
channels, affecting the adsorption of copper ions on the RSAC particles by changing the
adsorbent environment [29]. A higher charge number of the metal cation may result in a
stronger ability to replace the original cation [30]. Ion exchange and surface adsorption
may be involved in the adsorption process of copper [31].
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3.1.5. Effect of Ambient Temperature

The fitted curves at 25 ◦C are shown in Figure 8. The fitting parameters can be obtained
from the adsorption isotherm. It can be observed from Table 10 that the fit coefficients R2

of both Langmuir and Freundlich models are greater than 0.95 at different temperatures,
which indicates that both models could well express the isothermal characteristics of
the adsorption of copper ions by RSAC particles. This also implies that the adsorption
isotherm characteristics of the adsorbent for copper ions could fit two or more adsorption
isotherm models under certain conditions [32]. Based on the Langmuir model, the KL
and the qmax which increase as temperature increases indicates that the intermolecular
binding and the adsorption capacity may increase as temperature increases. Based on
Freunlich model, the low 1/n value indicates that the adsorption process could undertake
easily. Meanwhile, the KF which represents the absorbability increases as temperature
increases [33]. The two models show that the adsorption of copper ions by RSAC particles
is a heat-absorbing process. This could be explained from different aspects. Firstly, the
cooper ion needs the energy to approach the RSAC particles and overcome the resistance
from the liquid film of the particles to reach the internal active sites. Secondly, the physical
adsorption may release heat since the intermolecular force (Van der Waals force) between
adsorbates and adsorbents contributed to the main effect during adsorption, which made
the molecular kinetic energy decrease by releasing thermal energy [34]. Another study
also found that the adsorption process of fly ash involves physical adsorption [35]. In
conclusion, chemisorption is an endothermic reaction while physical adsorption is an
exothermic reaction, and the adsorbed thermal is more than the released thermal, causing
the increase in temperature to promote the adsorption reaction, which is consistent with
previous research conclusions [36,37].
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Table 10. Parameters for the adsorption isotherm model fit.

Temp. (◦C)
Langmuir Model Freundlich Model

KL qmax RL
2 KF 1/n RF

2

15 0.138 2.438 0.974 0.737 0.248 0.960
25 0.196 2.633 0.967 0.805 0.253 0.952
35 0.254 2.862 0.954 0.874 0.262 0.956

3.2. Kinetic Study of Copper Ion Adsorption by RSAC

The fitted curves are shown in Figure 9 and the fitted parameters of the two kinetic
models are shown in Table 11. As shown in Figure 9, the adsorption amount of copper
ions by RSAC particles increases rapidly with the increase of adsorption time in the early
stage of the adsorption reaction. The increase of adsorption amount decreases gradually
to almost 0 in the middle and the late stage of the adsorption reaction, which means the
adsorption reaches the equilibrium state. In the preliminary stage of adsorption reaction,
the adsorbent mainly adsorbs copper ions at the solid–liquid interface [38]. After the
preliminary stage, copper ions diffuse from the adsorbent surface to the internal micropores
and lattice, reach and are fixed by the internal surface active-sites, thus the adsorption
rate decreases slowly [39]. Another study found that the adsorption of fly ash involves
both boundary-layer diffusion and intraparticle diffusion [11]. Kai-sung Wang et al. also
found fast surface adsorption was followed by a slow intra-particle diffusion adsorption
of fly ash [40]. The adsorption process of copper ions by RSAC particles can reach the
equilibrium state at 48 h.
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Table 11. Sorption kinetic model fitting parameters.

Initial Concentration
(mg/L)

Quasi-One Dynamical Model Quasi-Secondary Dynamical
Model (QSDM)

qe k1 R1
2 qe k2 R2

2

100 2.241 0.0713 0.990 2.640 0.0955 0.993

The R2 of both models is greater than 0.95 and the difference between them is not
significant (Table 11), which indicates that both kinetic models could describe the adsorp-
tion process of copper ions on RSAC particles well. It could be further inferred that the
adsorption process of copper ions on RSAC particles is a mixed control: both surface
diffusion and internal fine pore diffusion are important.

3.3. Thermodynamic Study of the Adsorption of Copper Ions by RSAC

As shown in Figure 10, the intercept and the slope of the straight line were calculated
by ∆S0 and ∆H0; then, we proceeded to calculate the different temperatures of ∆G0, and
Table 12 presents the various thermodynamic parameters obtained. The adsorption free
energy ∆G0 of copper ions adsorbed by RSAC particles at different temperatures is nega-
tive, and the absolute value of ∆G0 increases gradually with the increase of temperature
(Table 12). This indicates that the adsorption of copper ions in solution by RSAC particles is
a spontaneous reaction and the spontaneity increases with the increase of temperature [41].
The enthalpy change ∆H0 during the adsorption of copper ions by RSAC particles is
positive, which indicates that the adsorption process is a heat absorption reaction and
therefore the increase in temperature contributes to the adsorption [42]. As presented in
Table 5, the maximum adsorption capacity of copper ions increases with the increasing
temperature, which also confirms that the adsorption of copper ions by RSAC particles is a
heat absorption reaction.
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Table 12. Thermodynamic parameters of copper ion adsorption on RSAC particles.

Temp. (K) qmax
(mmol/g)

KL × 10−3

(L/mol)
∆G0

(kJ/mol)
∆H0

(kJ/mol)
∆S0

(J/mol-K)
R2

288.15 0.0381 8.832 −21.79
22.55 153.89 0.9955298.15 0.0411 12.544 −23.33

308.15 0.0447 16.256 −24.87

4. Conclusions

This study aimed to prepare and to apply RSAC to remove copper ions from wastew-
ater and to discuss the influence mechanism and the microstructure for adsorption by
RSAC particles. One of the more significant findings to emerge from this study is that the
adsorption of copper ions in a solution by RSAC particles is a spontaneous, heat absorption
reaction. The mechanism of copper ion removal by RSAC particles includes an ion ex-
change reaction and chemical precipitation in addition to physical adsorption. The second
major finding is that metal cations can replace the original cations in the RSAC particle ion
exchange, change the environment of the adsorbent, and affect the adsorption of copper
ions on RSAC particles. This study has also indicated that both Langmuir and Freundlich
models can well describe the isothermal characteristics of the adsorption of copper ions
by RSAC particles. Both the quasi-primary kinetic model and the quasi-secondary kinetic
model can describe the adsorption process of copper ions on RSAC particles well. It can be
further inferred that the adsorption process of copper ions on RSAC particles is a mixed
control, and both surface diffusion and internal fine pore diffusion are important.
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